mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-02-06 06:33:24 +00:00
fb55a8fd7c
Adds a function to target transform info to query for the cost of address computation. The cost model analysis pass now also queries this interface. The code in LoopVectorize adds the cost of address computation as part of the memory instruction cost calculation. Only there, we know whether the instruction will be scalarized or not. Increase the penality for inserting in to D registers on swift. This becomes necessary because we now always assume that address computation has a cost and three is a closer value to the architecture. radar://13097204 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174713 91177308-0d34-0410-b5e6-96231b3b80d8
Analysis Opportunities: //===---------------------------------------------------------------------===// In test/Transforms/LoopStrengthReduce/quadradic-exit-value.ll, the ScalarEvolution expression for %r is this: {1,+,3,+,2}<loop> Outside the loop, this could be evaluated simply as (%n * %n), however ScalarEvolution currently evaluates it as (-2 + (2 * (trunc i65 (((zext i64 (-2 + %n) to i65) * (zext i64 (-1 + %n) to i65)) /u 2) to i64)) + (3 * %n)) In addition to being much more complicated, it involves i65 arithmetic, which is very inefficient when expanded into code. //===---------------------------------------------------------------------===// In formatValue in test/CodeGen/X86/lsr-delayed-fold.ll, ScalarEvolution is forming this expression: ((trunc i64 (-1 * %arg5) to i32) + (trunc i64 %arg5 to i32) + (-1 * (trunc i64 undef to i32))) This could be folded to (-1 * (trunc i64 undef to i32)) //===---------------------------------------------------------------------===//