mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-25 00:33:15 +00:00
96ba57fdda
isel is *required* to split the edge. PHI values get evaluated on the edge, not in their predecessor block. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@122170 91177308-0d34-0410-b5e6-96231b3b80d8
2750 lines
104 KiB
C++
2750 lines
104 KiB
C++
//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This implements the SelectionDAGISel class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "isel"
|
|
#include "ScheduleDAGSDNodes.h"
|
|
#include "SelectionDAGBuilder.h"
|
|
#include "llvm/CodeGen/FunctionLoweringInfo.h"
|
|
#include "llvm/CodeGen/SelectionDAGISel.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/DebugInfo.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/InlineAsm.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/IntrinsicInst.h"
|
|
#include "llvm/LLVMContext.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/CodeGen/FastISel.h"
|
|
#include "llvm/CodeGen/GCStrategy.h"
|
|
#include "llvm/CodeGen/GCMetadata.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
|
|
#include "llvm/CodeGen/SchedulerRegistry.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Target/TargetIntrinsicInfo.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/Timer.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
|
|
STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
|
|
STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
|
|
STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
|
|
|
|
#ifndef NDEBUG
|
|
STATISTIC(NumBBWithOutOfOrderLineInfo,
|
|
"Number of blocks with out of order line number info");
|
|
STATISTIC(NumMBBWithOutOfOrderLineInfo,
|
|
"Number of machine blocks with out of order line number info");
|
|
#endif
|
|
|
|
static cl::opt<bool>
|
|
EnableFastISelVerbose("fast-isel-verbose", cl::Hidden,
|
|
cl::desc("Enable verbose messages in the \"fast\" "
|
|
"instruction selector"));
|
|
static cl::opt<bool>
|
|
EnableFastISelAbort("fast-isel-abort", cl::Hidden,
|
|
cl::desc("Enable abort calls when \"fast\" instruction fails"));
|
|
|
|
#ifndef NDEBUG
|
|
static cl::opt<bool>
|
|
ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
|
|
cl::desc("Pop up a window to show dags before the first "
|
|
"dag combine pass"));
|
|
static cl::opt<bool>
|
|
ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
|
|
cl::desc("Pop up a window to show dags before legalize types"));
|
|
static cl::opt<bool>
|
|
ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
|
|
cl::desc("Pop up a window to show dags before legalize"));
|
|
static cl::opt<bool>
|
|
ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
|
|
cl::desc("Pop up a window to show dags before the second "
|
|
"dag combine pass"));
|
|
static cl::opt<bool>
|
|
ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
|
|
cl::desc("Pop up a window to show dags before the post legalize types"
|
|
" dag combine pass"));
|
|
static cl::opt<bool>
|
|
ViewISelDAGs("view-isel-dags", cl::Hidden,
|
|
cl::desc("Pop up a window to show isel dags as they are selected"));
|
|
static cl::opt<bool>
|
|
ViewSchedDAGs("view-sched-dags", cl::Hidden,
|
|
cl::desc("Pop up a window to show sched dags as they are processed"));
|
|
static cl::opt<bool>
|
|
ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
|
|
cl::desc("Pop up a window to show SUnit dags after they are processed"));
|
|
#else
|
|
static const bool ViewDAGCombine1 = false,
|
|
ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
|
|
ViewDAGCombine2 = false,
|
|
ViewDAGCombineLT = false,
|
|
ViewISelDAGs = false, ViewSchedDAGs = false,
|
|
ViewSUnitDAGs = false;
|
|
#endif
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
///
|
|
/// RegisterScheduler class - Track the registration of instruction schedulers.
|
|
///
|
|
//===---------------------------------------------------------------------===//
|
|
MachinePassRegistry RegisterScheduler::Registry;
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
///
|
|
/// ISHeuristic command line option for instruction schedulers.
|
|
///
|
|
//===---------------------------------------------------------------------===//
|
|
static cl::opt<RegisterScheduler::FunctionPassCtor, false,
|
|
RegisterPassParser<RegisterScheduler> >
|
|
ISHeuristic("pre-RA-sched",
|
|
cl::init(&createDefaultScheduler),
|
|
cl::desc("Instruction schedulers available (before register"
|
|
" allocation):"));
|
|
|
|
static RegisterScheduler
|
|
defaultListDAGScheduler("default", "Best scheduler for the target",
|
|
createDefaultScheduler);
|
|
|
|
namespace llvm {
|
|
//===--------------------------------------------------------------------===//
|
|
/// createDefaultScheduler - This creates an instruction scheduler appropriate
|
|
/// for the target.
|
|
ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
|
|
CodeGenOpt::Level OptLevel) {
|
|
const TargetLowering &TLI = IS->getTargetLowering();
|
|
|
|
if (OptLevel == CodeGenOpt::None)
|
|
return createSourceListDAGScheduler(IS, OptLevel);
|
|
if (TLI.getSchedulingPreference() == Sched::Latency)
|
|
return createTDListDAGScheduler(IS, OptLevel);
|
|
if (TLI.getSchedulingPreference() == Sched::RegPressure)
|
|
return createBURRListDAGScheduler(IS, OptLevel);
|
|
if (TLI.getSchedulingPreference() == Sched::Hybrid)
|
|
return createHybridListDAGScheduler(IS, OptLevel);
|
|
assert(TLI.getSchedulingPreference() == Sched::ILP &&
|
|
"Unknown sched type!");
|
|
return createILPListDAGScheduler(IS, OptLevel);
|
|
}
|
|
}
|
|
|
|
// EmitInstrWithCustomInserter - This method should be implemented by targets
|
|
// that mark instructions with the 'usesCustomInserter' flag. These
|
|
// instructions are special in various ways, which require special support to
|
|
// insert. The specified MachineInstr is created but not inserted into any
|
|
// basic blocks, and this method is called to expand it into a sequence of
|
|
// instructions, potentially also creating new basic blocks and control flow.
|
|
// When new basic blocks are inserted and the edges from MBB to its successors
|
|
// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
|
|
// DenseMap.
|
|
MachineBasicBlock *
|
|
TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
|
|
MachineBasicBlock *MBB) const {
|
|
#ifndef NDEBUG
|
|
dbgs() << "If a target marks an instruction with "
|
|
"'usesCustomInserter', it must implement "
|
|
"TargetLowering::EmitInstrWithCustomInserter!";
|
|
#endif
|
|
llvm_unreachable(0);
|
|
return 0;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SelectionDAGISel code
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SelectionDAGISel::SelectionDAGISel(const TargetMachine &tm, CodeGenOpt::Level OL) :
|
|
MachineFunctionPass(ID), TM(tm), TLI(*tm.getTargetLowering()),
|
|
FuncInfo(new FunctionLoweringInfo(TLI)),
|
|
CurDAG(new SelectionDAG(tm)),
|
|
SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, OL)),
|
|
GFI(),
|
|
OptLevel(OL),
|
|
DAGSize(0) {
|
|
initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
|
|
initializeAliasAnalysisAnalysisGroup(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
SelectionDAGISel::~SelectionDAGISel() {
|
|
delete SDB;
|
|
delete CurDAG;
|
|
delete FuncInfo;
|
|
}
|
|
|
|
void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired<AliasAnalysis>();
|
|
AU.addPreserved<AliasAnalysis>();
|
|
AU.addRequired<GCModuleInfo>();
|
|
AU.addPreserved<GCModuleInfo>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
/// FunctionCallsSetJmp - Return true if the function has a call to setjmp or
|
|
/// other function that gcc recognizes as "returning twice". This is used to
|
|
/// limit code-gen optimizations on the machine function.
|
|
///
|
|
/// FIXME: Remove after <rdar://problem/8031714> is fixed.
|
|
static bool FunctionCallsSetJmp(const Function *F) {
|
|
const Module *M = F->getParent();
|
|
static const char *ReturnsTwiceFns[] = {
|
|
"_setjmp",
|
|
"setjmp",
|
|
"sigsetjmp",
|
|
"setjmp_syscall",
|
|
"savectx",
|
|
"qsetjmp",
|
|
"vfork",
|
|
"getcontext"
|
|
};
|
|
#define NUM_RETURNS_TWICE_FNS sizeof(ReturnsTwiceFns) / sizeof(const char *)
|
|
|
|
for (unsigned I = 0; I < NUM_RETURNS_TWICE_FNS; ++I)
|
|
if (const Function *Callee = M->getFunction(ReturnsTwiceFns[I])) {
|
|
if (!Callee->use_empty())
|
|
for (Value::const_use_iterator
|
|
I = Callee->use_begin(), E = Callee->use_end();
|
|
I != E; ++I)
|
|
if (const CallInst *CI = dyn_cast<CallInst>(*I))
|
|
if (CI->getParent()->getParent() == F)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
#undef NUM_RETURNS_TWICE_FNS
|
|
}
|
|
|
|
/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
|
|
/// may trap on it. In this case we have to split the edge so that the path
|
|
/// through the predecessor block that doesn't go to the phi block doesn't
|
|
/// execute the possibly trapping instruction.
|
|
///
|
|
/// This is required for correctness, so it must be done at -O0.
|
|
///
|
|
static void SplitCriticalSideEffectEdges(Function &Fn, Pass *SDISel) {
|
|
// Loop for blocks with phi nodes.
|
|
for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
|
|
PHINode *PN = dyn_cast<PHINode>(BB->begin());
|
|
if (PN == 0) continue;
|
|
|
|
ReprocessBlock:
|
|
// For each block with a PHI node, check to see if any of the input values
|
|
// are potentially trapping constant expressions. Constant expressions are
|
|
// the only potentially trapping value that can occur as the argument to a
|
|
// PHI.
|
|
for (BasicBlock::iterator I = BB->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
|
ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
|
|
if (CE == 0 || !CE->canTrap()) continue;
|
|
|
|
// The only case we have to worry about is when the edge is critical.
|
|
// Since this block has a PHI Node, we assume it has multiple input
|
|
// edges: check to see if the pred has multiple successors.
|
|
BasicBlock *Pred = PN->getIncomingBlock(i);
|
|
if (Pred->getTerminator()->getNumSuccessors() == 1)
|
|
continue;
|
|
|
|
// Okay, we have to split this edge.
|
|
SplitCriticalEdge(Pred->getTerminator(),
|
|
GetSuccessorNumber(Pred, BB), SDISel, true);
|
|
goto ReprocessBlock;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
|
|
// Do some sanity-checking on the command-line options.
|
|
assert((!EnableFastISelVerbose || EnableFastISel) &&
|
|
"-fast-isel-verbose requires -fast-isel");
|
|
assert((!EnableFastISelAbort || EnableFastISel) &&
|
|
"-fast-isel-abort requires -fast-isel");
|
|
|
|
const Function &Fn = *mf.getFunction();
|
|
const TargetInstrInfo &TII = *TM.getInstrInfo();
|
|
const TargetRegisterInfo &TRI = *TM.getRegisterInfo();
|
|
|
|
MF = &mf;
|
|
RegInfo = &MF->getRegInfo();
|
|
AA = &getAnalysis<AliasAnalysis>();
|
|
GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : 0;
|
|
|
|
DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
|
|
|
|
SplitCriticalSideEffectEdges(const_cast<Function&>(Fn), this);
|
|
|
|
CurDAG->init(*MF);
|
|
FuncInfo->set(Fn, *MF);
|
|
SDB->init(GFI, *AA);
|
|
|
|
SelectAllBasicBlocks(Fn);
|
|
|
|
// If the first basic block in the function has live ins that need to be
|
|
// copied into vregs, emit the copies into the top of the block before
|
|
// emitting the code for the block.
|
|
MachineBasicBlock *EntryMBB = MF->begin();
|
|
RegInfo->EmitLiveInCopies(EntryMBB, TRI, TII);
|
|
|
|
DenseMap<unsigned, unsigned> LiveInMap;
|
|
if (!FuncInfo->ArgDbgValues.empty())
|
|
for (MachineRegisterInfo::livein_iterator LI = RegInfo->livein_begin(),
|
|
E = RegInfo->livein_end(); LI != E; ++LI)
|
|
if (LI->second)
|
|
LiveInMap.insert(std::make_pair(LI->first, LI->second));
|
|
|
|
// Insert DBG_VALUE instructions for function arguments to the entry block.
|
|
for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
|
|
MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
|
|
unsigned Reg = MI->getOperand(0).getReg();
|
|
if (TargetRegisterInfo::isPhysicalRegister(Reg))
|
|
EntryMBB->insert(EntryMBB->begin(), MI);
|
|
else {
|
|
MachineInstr *Def = RegInfo->getVRegDef(Reg);
|
|
MachineBasicBlock::iterator InsertPos = Def;
|
|
// FIXME: VR def may not be in entry block.
|
|
Def->getParent()->insert(llvm::next(InsertPos), MI);
|
|
}
|
|
|
|
// If Reg is live-in then update debug info to track its copy in a vreg.
|
|
DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
|
|
if (LDI != LiveInMap.end()) {
|
|
MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
|
|
MachineBasicBlock::iterator InsertPos = Def;
|
|
const MDNode *Variable =
|
|
MI->getOperand(MI->getNumOperands()-1).getMetadata();
|
|
unsigned Offset = MI->getOperand(1).getImm();
|
|
// Def is never a terminator here, so it is ok to increment InsertPos.
|
|
BuildMI(*EntryMBB, ++InsertPos, MI->getDebugLoc(),
|
|
TII.get(TargetOpcode::DBG_VALUE))
|
|
.addReg(LDI->second, RegState::Debug)
|
|
.addImm(Offset).addMetadata(Variable);
|
|
|
|
// If this vreg is directly copied into an exported register then
|
|
// that COPY instructions also need DBG_VALUE, if it is the only
|
|
// user of LDI->second.
|
|
MachineInstr *CopyUseMI = NULL;
|
|
for (MachineRegisterInfo::use_iterator
|
|
UI = RegInfo->use_begin(LDI->second);
|
|
MachineInstr *UseMI = UI.skipInstruction();) {
|
|
if (UseMI->isDebugValue()) continue;
|
|
if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
|
|
CopyUseMI = UseMI; continue;
|
|
}
|
|
// Otherwise this is another use or second copy use.
|
|
CopyUseMI = NULL; break;
|
|
}
|
|
if (CopyUseMI) {
|
|
MachineInstr *NewMI =
|
|
BuildMI(*MF, CopyUseMI->getDebugLoc(),
|
|
TII.get(TargetOpcode::DBG_VALUE))
|
|
.addReg(CopyUseMI->getOperand(0).getReg(), RegState::Debug)
|
|
.addImm(Offset).addMetadata(Variable);
|
|
EntryMBB->insertAfter(CopyUseMI, NewMI);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Determine if there are any calls in this machine function.
|
|
MachineFrameInfo *MFI = MF->getFrameInfo();
|
|
if (!MFI->hasCalls()) {
|
|
for (MachineFunction::const_iterator
|
|
I = MF->begin(), E = MF->end(); I != E; ++I) {
|
|
const MachineBasicBlock *MBB = I;
|
|
for (MachineBasicBlock::const_iterator
|
|
II = MBB->begin(), IE = MBB->end(); II != IE; ++II) {
|
|
const TargetInstrDesc &TID = TM.getInstrInfo()->get(II->getOpcode());
|
|
|
|
// Operand 1 of an inline asm instruction indicates whether the asm
|
|
// needs stack or not.
|
|
if ((II->isInlineAsm() && II->getOperand(1).getImm()) ||
|
|
(TID.isCall() && !TID.isReturn())) {
|
|
MFI->setHasCalls(true);
|
|
goto done;
|
|
}
|
|
}
|
|
}
|
|
done:;
|
|
}
|
|
|
|
// Determine if there is a call to setjmp in the machine function.
|
|
MF->setCallsSetJmp(FunctionCallsSetJmp(&Fn));
|
|
|
|
// Replace forward-declared registers with the registers containing
|
|
// the desired value.
|
|
MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
for (DenseMap<unsigned, unsigned>::iterator
|
|
I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
|
|
I != E; ++I) {
|
|
unsigned From = I->first;
|
|
unsigned To = I->second;
|
|
// If To is also scheduled to be replaced, find what its ultimate
|
|
// replacement is.
|
|
for (;;) {
|
|
DenseMap<unsigned, unsigned>::iterator J =
|
|
FuncInfo->RegFixups.find(To);
|
|
if (J == E) break;
|
|
To = J->second;
|
|
}
|
|
// Replace it.
|
|
MRI.replaceRegWith(From, To);
|
|
}
|
|
|
|
// Release function-specific state. SDB and CurDAG are already cleared
|
|
// at this point.
|
|
FuncInfo->clear();
|
|
|
|
return true;
|
|
}
|
|
|
|
void
|
|
SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
|
|
BasicBlock::const_iterator End,
|
|
bool &HadTailCall) {
|
|
// Lower all of the non-terminator instructions. If a call is emitted
|
|
// as a tail call, cease emitting nodes for this block. Terminators
|
|
// are handled below.
|
|
for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I)
|
|
SDB->visit(*I);
|
|
|
|
// Make sure the root of the DAG is up-to-date.
|
|
CurDAG->setRoot(SDB->getControlRoot());
|
|
HadTailCall = SDB->HasTailCall;
|
|
SDB->clear();
|
|
|
|
// Final step, emit the lowered DAG as machine code.
|
|
CodeGenAndEmitDAG();
|
|
return;
|
|
}
|
|
|
|
void SelectionDAGISel::ComputeLiveOutVRegInfo() {
|
|
SmallPtrSet<SDNode*, 128> VisitedNodes;
|
|
SmallVector<SDNode*, 128> Worklist;
|
|
|
|
Worklist.push_back(CurDAG->getRoot().getNode());
|
|
|
|
APInt Mask;
|
|
APInt KnownZero;
|
|
APInt KnownOne;
|
|
|
|
do {
|
|
SDNode *N = Worklist.pop_back_val();
|
|
|
|
// If we've already seen this node, ignore it.
|
|
if (!VisitedNodes.insert(N))
|
|
continue;
|
|
|
|
// Otherwise, add all chain operands to the worklist.
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
|
|
if (N->getOperand(i).getValueType() == MVT::Other)
|
|
Worklist.push_back(N->getOperand(i).getNode());
|
|
|
|
// If this is a CopyToReg with a vreg dest, process it.
|
|
if (N->getOpcode() != ISD::CopyToReg)
|
|
continue;
|
|
|
|
unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
|
|
if (!TargetRegisterInfo::isVirtualRegister(DestReg))
|
|
continue;
|
|
|
|
// Ignore non-scalar or non-integer values.
|
|
SDValue Src = N->getOperand(2);
|
|
EVT SrcVT = Src.getValueType();
|
|
if (!SrcVT.isInteger() || SrcVT.isVector())
|
|
continue;
|
|
|
|
unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
|
|
Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits());
|
|
CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne);
|
|
|
|
// Only install this information if it tells us something.
|
|
if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) {
|
|
DestReg -= TargetRegisterInfo::FirstVirtualRegister;
|
|
if (DestReg >= FuncInfo->LiveOutRegInfo.size())
|
|
FuncInfo->LiveOutRegInfo.resize(DestReg+1);
|
|
FunctionLoweringInfo::LiveOutInfo &LOI =
|
|
FuncInfo->LiveOutRegInfo[DestReg];
|
|
LOI.NumSignBits = NumSignBits;
|
|
LOI.KnownOne = KnownOne;
|
|
LOI.KnownZero = KnownZero;
|
|
}
|
|
} while (!Worklist.empty());
|
|
}
|
|
|
|
void SelectionDAGISel::CodeGenAndEmitDAG() {
|
|
std::string GroupName;
|
|
if (TimePassesIsEnabled)
|
|
GroupName = "Instruction Selection and Scheduling";
|
|
std::string BlockName;
|
|
if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
|
|
ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
|
|
ViewSUnitDAGs)
|
|
BlockName = MF->getFunction()->getNameStr() + ":" +
|
|
FuncInfo->MBB->getBasicBlock()->getNameStr();
|
|
|
|
DEBUG(dbgs() << "Initial selection DAG:\n"; CurDAG->dump());
|
|
|
|
if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName);
|
|
|
|
// Run the DAG combiner in pre-legalize mode.
|
|
{
|
|
NamedRegionTimer T("DAG Combining 1", GroupName, TimePassesIsEnabled);
|
|
CurDAG->Combine(Unrestricted, *AA, OptLevel);
|
|
}
|
|
|
|
DEBUG(dbgs() << "Optimized lowered selection DAG:\n"; CurDAG->dump());
|
|
|
|
// Second step, hack on the DAG until it only uses operations and types that
|
|
// the target supports.
|
|
if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " +
|
|
BlockName);
|
|
|
|
bool Changed;
|
|
{
|
|
NamedRegionTimer T("Type Legalization", GroupName, TimePassesIsEnabled);
|
|
Changed = CurDAG->LegalizeTypes();
|
|
}
|
|
|
|
DEBUG(dbgs() << "Type-legalized selection DAG:\n"; CurDAG->dump());
|
|
|
|
if (Changed) {
|
|
if (ViewDAGCombineLT)
|
|
CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
|
|
|
|
// Run the DAG combiner in post-type-legalize mode.
|
|
{
|
|
NamedRegionTimer T("DAG Combining after legalize types", GroupName,
|
|
TimePassesIsEnabled);
|
|
CurDAG->Combine(NoIllegalTypes, *AA, OptLevel);
|
|
}
|
|
|
|
DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n";
|
|
CurDAG->dump());
|
|
}
|
|
|
|
{
|
|
NamedRegionTimer T("Vector Legalization", GroupName, TimePassesIsEnabled);
|
|
Changed = CurDAG->LegalizeVectors();
|
|
}
|
|
|
|
if (Changed) {
|
|
{
|
|
NamedRegionTimer T("Type Legalization 2", GroupName, TimePassesIsEnabled);
|
|
CurDAG->LegalizeTypes();
|
|
}
|
|
|
|
if (ViewDAGCombineLT)
|
|
CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
|
|
|
|
// Run the DAG combiner in post-type-legalize mode.
|
|
{
|
|
NamedRegionTimer T("DAG Combining after legalize vectors", GroupName,
|
|
TimePassesIsEnabled);
|
|
CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
|
|
}
|
|
|
|
DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n";
|
|
CurDAG->dump());
|
|
}
|
|
|
|
if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName);
|
|
|
|
{
|
|
NamedRegionTimer T("DAG Legalization", GroupName, TimePassesIsEnabled);
|
|
CurDAG->Legalize(OptLevel);
|
|
}
|
|
|
|
DEBUG(dbgs() << "Legalized selection DAG:\n"; CurDAG->dump());
|
|
|
|
if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName);
|
|
|
|
// Run the DAG combiner in post-legalize mode.
|
|
{
|
|
NamedRegionTimer T("DAG Combining 2", GroupName, TimePassesIsEnabled);
|
|
CurDAG->Combine(NoIllegalOperations, *AA, OptLevel);
|
|
}
|
|
|
|
DEBUG(dbgs() << "Optimized legalized selection DAG:\n"; CurDAG->dump());
|
|
|
|
if (OptLevel != CodeGenOpt::None)
|
|
ComputeLiveOutVRegInfo();
|
|
|
|
if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName);
|
|
|
|
// Third, instruction select all of the operations to machine code, adding the
|
|
// code to the MachineBasicBlock.
|
|
{
|
|
NamedRegionTimer T("Instruction Selection", GroupName, TimePassesIsEnabled);
|
|
DoInstructionSelection();
|
|
}
|
|
|
|
DEBUG(dbgs() << "Selected selection DAG:\n"; CurDAG->dump());
|
|
|
|
if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName);
|
|
|
|
// Schedule machine code.
|
|
ScheduleDAGSDNodes *Scheduler = CreateScheduler();
|
|
{
|
|
NamedRegionTimer T("Instruction Scheduling", GroupName,
|
|
TimePassesIsEnabled);
|
|
Scheduler->Run(CurDAG, FuncInfo->MBB, FuncInfo->InsertPt);
|
|
}
|
|
|
|
if (ViewSUnitDAGs) Scheduler->viewGraph();
|
|
|
|
// Emit machine code to BB. This can change 'BB' to the last block being
|
|
// inserted into.
|
|
MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
|
|
{
|
|
NamedRegionTimer T("Instruction Creation", GroupName, TimePassesIsEnabled);
|
|
|
|
LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule();
|
|
FuncInfo->InsertPt = Scheduler->InsertPos;
|
|
}
|
|
|
|
// If the block was split, make sure we update any references that are used to
|
|
// update PHI nodes later on.
|
|
if (FirstMBB != LastMBB)
|
|
SDB->UpdateSplitBlock(FirstMBB, LastMBB);
|
|
|
|
// Free the scheduler state.
|
|
{
|
|
NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName,
|
|
TimePassesIsEnabled);
|
|
delete Scheduler;
|
|
}
|
|
|
|
// Free the SelectionDAG state, now that we're finished with it.
|
|
CurDAG->clear();
|
|
}
|
|
|
|
void SelectionDAGISel::DoInstructionSelection() {
|
|
DEBUG(errs() << "===== Instruction selection begins:\n");
|
|
|
|
PreprocessISelDAG();
|
|
|
|
// Select target instructions for the DAG.
|
|
{
|
|
// Number all nodes with a topological order and set DAGSize.
|
|
DAGSize = CurDAG->AssignTopologicalOrder();
|
|
|
|
// Create a dummy node (which is not added to allnodes), that adds
|
|
// a reference to the root node, preventing it from being deleted,
|
|
// and tracking any changes of the root.
|
|
HandleSDNode Dummy(CurDAG->getRoot());
|
|
ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode());
|
|
++ISelPosition;
|
|
|
|
// The AllNodes list is now topological-sorted. Visit the
|
|
// nodes by starting at the end of the list (the root of the
|
|
// graph) and preceding back toward the beginning (the entry
|
|
// node).
|
|
while (ISelPosition != CurDAG->allnodes_begin()) {
|
|
SDNode *Node = --ISelPosition;
|
|
// Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
|
|
// but there are currently some corner cases that it misses. Also, this
|
|
// makes it theoretically possible to disable the DAGCombiner.
|
|
if (Node->use_empty())
|
|
continue;
|
|
|
|
SDNode *ResNode = Select(Node);
|
|
|
|
// FIXME: This is pretty gross. 'Select' should be changed to not return
|
|
// anything at all and this code should be nuked with a tactical strike.
|
|
|
|
// If node should not be replaced, continue with the next one.
|
|
if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE)
|
|
continue;
|
|
// Replace node.
|
|
if (ResNode)
|
|
ReplaceUses(Node, ResNode);
|
|
|
|
// If after the replacement this node is not used any more,
|
|
// remove this dead node.
|
|
if (Node->use_empty()) { // Don't delete EntryToken, etc.
|
|
ISelUpdater ISU(ISelPosition);
|
|
CurDAG->RemoveDeadNode(Node, &ISU);
|
|
}
|
|
}
|
|
|
|
CurDAG->setRoot(Dummy.getValue());
|
|
}
|
|
|
|
DEBUG(errs() << "===== Instruction selection ends:\n");
|
|
|
|
PostprocessISelDAG();
|
|
}
|
|
|
|
/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
|
|
/// do other setup for EH landing-pad blocks.
|
|
void SelectionDAGISel::PrepareEHLandingPad() {
|
|
// Add a label to mark the beginning of the landing pad. Deletion of the
|
|
// landing pad can thus be detected via the MachineModuleInfo.
|
|
MCSymbol *Label = MF->getMMI().addLandingPad(FuncInfo->MBB);
|
|
|
|
const TargetInstrDesc &II = TM.getInstrInfo()->get(TargetOpcode::EH_LABEL);
|
|
BuildMI(*FuncInfo->MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
|
|
.addSym(Label);
|
|
|
|
// Mark exception register as live in.
|
|
unsigned Reg = TLI.getExceptionAddressRegister();
|
|
if (Reg) FuncInfo->MBB->addLiveIn(Reg);
|
|
|
|
// Mark exception selector register as live in.
|
|
Reg = TLI.getExceptionSelectorRegister();
|
|
if (Reg) FuncInfo->MBB->addLiveIn(Reg);
|
|
|
|
// FIXME: Hack around an exception handling flaw (PR1508): the personality
|
|
// function and list of typeids logically belong to the invoke (or, if you
|
|
// like, the basic block containing the invoke), and need to be associated
|
|
// with it in the dwarf exception handling tables. Currently however the
|
|
// information is provided by an intrinsic (eh.selector) that can be moved
|
|
// to unexpected places by the optimizers: if the unwind edge is critical,
|
|
// then breaking it can result in the intrinsics being in the successor of
|
|
// the landing pad, not the landing pad itself. This results
|
|
// in exceptions not being caught because no typeids are associated with
|
|
// the invoke. This may not be the only way things can go wrong, but it
|
|
// is the only way we try to work around for the moment.
|
|
const BasicBlock *LLVMBB = FuncInfo->MBB->getBasicBlock();
|
|
const BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator());
|
|
|
|
if (Br && Br->isUnconditional()) { // Critical edge?
|
|
BasicBlock::const_iterator I, E;
|
|
for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I)
|
|
if (isa<EHSelectorInst>(I))
|
|
break;
|
|
|
|
if (I == E)
|
|
// No catch info found - try to extract some from the successor.
|
|
CopyCatchInfo(Br->getSuccessor(0), LLVMBB, &MF->getMMI(), *FuncInfo);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
bool SelectionDAGISel::TryToFoldFastISelLoad(const LoadInst *LI,
|
|
FastISel *FastIS) {
|
|
// Don't try to fold volatile loads. Target has to deal with alignment
|
|
// constraints.
|
|
if (LI->isVolatile()) return false;
|
|
|
|
// Figure out which vreg this is going into.
|
|
unsigned LoadReg = FastIS->getRegForValue(LI);
|
|
assert(LoadReg && "Load isn't already assigned a vreg? ");
|
|
|
|
// Check to see what the uses of this vreg are. If it has no uses, or more
|
|
// than one use (at the machine instr level) then we can't fold it.
|
|
MachineRegisterInfo::reg_iterator RI = RegInfo->reg_begin(LoadReg);
|
|
if (RI == RegInfo->reg_end())
|
|
return false;
|
|
|
|
// See if there is exactly one use of the vreg. If there are multiple uses,
|
|
// then the instruction got lowered to multiple machine instructions or the
|
|
// use of the loaded value ended up being multiple operands of the result, in
|
|
// either case, we can't fold this.
|
|
MachineRegisterInfo::reg_iterator PostRI = RI; ++PostRI;
|
|
if (PostRI != RegInfo->reg_end())
|
|
return false;
|
|
|
|
assert(RI.getOperand().isUse() &&
|
|
"The only use of the vreg must be a use, we haven't emitted the def!");
|
|
|
|
// Ask the target to try folding the load.
|
|
return FastIS->TryToFoldLoad(&*RI, RI.getOperandNo(), LI);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/// CheckLineNumbers - Check if basic block instructions follow source order
|
|
/// or not.
|
|
static void CheckLineNumbers(const BasicBlock *BB) {
|
|
unsigned Line = 0;
|
|
unsigned Col = 0;
|
|
for (BasicBlock::const_iterator BI = BB->begin(),
|
|
BE = BB->end(); BI != BE; ++BI) {
|
|
const DebugLoc DL = BI->getDebugLoc();
|
|
if (DL.isUnknown()) continue;
|
|
unsigned L = DL.getLine();
|
|
unsigned C = DL.getCol();
|
|
if (L < Line || (L == Line && C < Col)) {
|
|
++NumBBWithOutOfOrderLineInfo;
|
|
return;
|
|
}
|
|
Line = L;
|
|
Col = C;
|
|
}
|
|
}
|
|
|
|
/// CheckLineNumbers - Check if machine basic block instructions follow source
|
|
/// order or not.
|
|
static void CheckLineNumbers(const MachineBasicBlock *MBB) {
|
|
unsigned Line = 0;
|
|
unsigned Col = 0;
|
|
for (MachineBasicBlock::const_iterator MBI = MBB->begin(),
|
|
MBE = MBB->end(); MBI != MBE; ++MBI) {
|
|
const DebugLoc DL = MBI->getDebugLoc();
|
|
if (DL.isUnknown()) continue;
|
|
unsigned L = DL.getLine();
|
|
unsigned C = DL.getCol();
|
|
if (L < Line || (L == Line && C < Col)) {
|
|
++NumMBBWithOutOfOrderLineInfo;
|
|
return;
|
|
}
|
|
Line = L;
|
|
Col = C;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
|
|
// Initialize the Fast-ISel state, if needed.
|
|
FastISel *FastIS = 0;
|
|
if (EnableFastISel)
|
|
FastIS = TLI.createFastISel(*FuncInfo);
|
|
|
|
// Iterate over all basic blocks in the function.
|
|
for (Function::const_iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) {
|
|
const BasicBlock *LLVMBB = &*I;
|
|
#ifndef NDEBUG
|
|
CheckLineNumbers(LLVMBB);
|
|
#endif
|
|
FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
|
|
FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
|
|
|
|
BasicBlock::const_iterator const Begin = LLVMBB->getFirstNonPHI();
|
|
BasicBlock::const_iterator const End = LLVMBB->end();
|
|
BasicBlock::const_iterator BI = End;
|
|
|
|
FuncInfo->InsertPt = FuncInfo->MBB->getFirstNonPHI();
|
|
|
|
// Setup an EH landing-pad block.
|
|
if (FuncInfo->MBB->isLandingPad())
|
|
PrepareEHLandingPad();
|
|
|
|
// Lower any arguments needed in this block if this is the entry block.
|
|
if (LLVMBB == &Fn.getEntryBlock())
|
|
LowerArguments(LLVMBB);
|
|
|
|
// Before doing SelectionDAG ISel, see if FastISel has been requested.
|
|
if (FastIS) {
|
|
FastIS->startNewBlock();
|
|
|
|
// Emit code for any incoming arguments. This must happen before
|
|
// beginning FastISel on the entry block.
|
|
if (LLVMBB == &Fn.getEntryBlock()) {
|
|
CurDAG->setRoot(SDB->getControlRoot());
|
|
SDB->clear();
|
|
CodeGenAndEmitDAG();
|
|
|
|
// If we inserted any instructions at the beginning, make a note of
|
|
// where they are, so we can be sure to emit subsequent instructions
|
|
// after them.
|
|
if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
|
|
FastIS->setLastLocalValue(llvm::prior(FuncInfo->InsertPt));
|
|
else
|
|
FastIS->setLastLocalValue(0);
|
|
}
|
|
|
|
// Do FastISel on as many instructions as possible.
|
|
for (; BI != Begin; --BI) {
|
|
const Instruction *Inst = llvm::prior(BI);
|
|
|
|
// If we no longer require this instruction, skip it.
|
|
if (!Inst->mayWriteToMemory() &&
|
|
!isa<TerminatorInst>(Inst) &&
|
|
!isa<DbgInfoIntrinsic>(Inst) &&
|
|
!FuncInfo->isExportedInst(Inst))
|
|
continue;
|
|
|
|
// Bottom-up: reset the insert pos at the top, after any local-value
|
|
// instructions.
|
|
FastIS->recomputeInsertPt();
|
|
|
|
// Try to select the instruction with FastISel.
|
|
if (FastIS->SelectInstruction(Inst)) {
|
|
// If fast isel succeeded, check to see if there is a single-use
|
|
// non-volatile load right before the selected instruction, and see if
|
|
// the load is used by the instruction. If so, try to fold it.
|
|
const Instruction *BeforeInst = 0;
|
|
if (Inst != Begin)
|
|
BeforeInst = llvm::prior(llvm::prior(BI));
|
|
if (BeforeInst && isa<LoadInst>(BeforeInst) &&
|
|
BeforeInst->hasOneUse() && *BeforeInst->use_begin() == Inst &&
|
|
TryToFoldFastISelLoad(cast<LoadInst>(BeforeInst), FastIS)) {
|
|
// If we succeeded, don't re-select the load.
|
|
--BI;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Then handle certain instructions as single-LLVM-Instruction blocks.
|
|
if (isa<CallInst>(Inst)) {
|
|
++NumFastIselFailures;
|
|
if (EnableFastISelVerbose || EnableFastISelAbort) {
|
|
dbgs() << "FastISel missed call: ";
|
|
Inst->dump();
|
|
}
|
|
|
|
if (!Inst->getType()->isVoidTy() && !Inst->use_empty()) {
|
|
unsigned &R = FuncInfo->ValueMap[Inst];
|
|
if (!R)
|
|
R = FuncInfo->CreateRegs(Inst->getType());
|
|
}
|
|
|
|
bool HadTailCall = false;
|
|
SelectBasicBlock(Inst, BI, HadTailCall);
|
|
|
|
// If the call was emitted as a tail call, we're done with the block.
|
|
if (HadTailCall) {
|
|
--BI;
|
|
break;
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, give up on FastISel for the rest of the block.
|
|
// For now, be a little lenient about non-branch terminators.
|
|
if (!isa<TerminatorInst>(Inst) || isa<BranchInst>(Inst)) {
|
|
++NumFastIselFailures;
|
|
if (EnableFastISelVerbose || EnableFastISelAbort) {
|
|
dbgs() << "FastISel miss: ";
|
|
Inst->dump();
|
|
}
|
|
if (EnableFastISelAbort)
|
|
// The "fast" selector couldn't handle something and bailed.
|
|
// For the purpose of debugging, just abort.
|
|
llvm_unreachable("FastISel didn't select the entire block");
|
|
}
|
|
break;
|
|
}
|
|
|
|
FastIS->recomputeInsertPt();
|
|
}
|
|
|
|
if (Begin != BI)
|
|
++NumDAGBlocks;
|
|
else
|
|
++NumFastIselBlocks;
|
|
|
|
// Run SelectionDAG instruction selection on the remainder of the block
|
|
// not handled by FastISel. If FastISel is not run, this is the entire
|
|
// block.
|
|
bool HadTailCall;
|
|
SelectBasicBlock(Begin, BI, HadTailCall);
|
|
|
|
FinishBasicBlock();
|
|
FuncInfo->PHINodesToUpdate.clear();
|
|
}
|
|
|
|
delete FastIS;
|
|
#ifndef NDEBUG
|
|
for (MachineFunction::const_iterator MBI = MF->begin(), MBE = MF->end();
|
|
MBI != MBE; ++MBI)
|
|
CheckLineNumbers(MBI);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
SelectionDAGISel::FinishBasicBlock() {
|
|
|
|
DEBUG(dbgs() << "Total amount of phi nodes to update: "
|
|
<< FuncInfo->PHINodesToUpdate.size() << "\n";
|
|
for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i)
|
|
dbgs() << "Node " << i << " : ("
|
|
<< FuncInfo->PHINodesToUpdate[i].first
|
|
<< ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
|
|
|
|
// Next, now that we know what the last MBB the LLVM BB expanded is, update
|
|
// PHI nodes in successors.
|
|
if (SDB->SwitchCases.empty() &&
|
|
SDB->JTCases.empty() &&
|
|
SDB->BitTestCases.empty()) {
|
|
for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
|
|
MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
|
|
assert(PHI->isPHI() &&
|
|
"This is not a machine PHI node that we are updating!");
|
|
if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
|
|
continue;
|
|
PHI->addOperand(
|
|
MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
|
|
PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
|
|
}
|
|
return;
|
|
}
|
|
|
|
for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) {
|
|
// Lower header first, if it wasn't already lowered
|
|
if (!SDB->BitTestCases[i].Emitted) {
|
|
// Set the current basic block to the mbb we wish to insert the code into
|
|
FuncInfo->MBB = SDB->BitTestCases[i].Parent;
|
|
FuncInfo->InsertPt = FuncInfo->MBB->end();
|
|
// Emit the code
|
|
SDB->visitBitTestHeader(SDB->BitTestCases[i], FuncInfo->MBB);
|
|
CurDAG->setRoot(SDB->getRoot());
|
|
SDB->clear();
|
|
CodeGenAndEmitDAG();
|
|
}
|
|
|
|
for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) {
|
|
// Set the current basic block to the mbb we wish to insert the code into
|
|
FuncInfo->MBB = SDB->BitTestCases[i].Cases[j].ThisBB;
|
|
FuncInfo->InsertPt = FuncInfo->MBB->end();
|
|
// Emit the code
|
|
if (j+1 != ej)
|
|
SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB,
|
|
SDB->BitTestCases[i].Reg,
|
|
SDB->BitTestCases[i].Cases[j],
|
|
FuncInfo->MBB);
|
|
else
|
|
SDB->visitBitTestCase(SDB->BitTestCases[i].Default,
|
|
SDB->BitTestCases[i].Reg,
|
|
SDB->BitTestCases[i].Cases[j],
|
|
FuncInfo->MBB);
|
|
|
|
|
|
CurDAG->setRoot(SDB->getRoot());
|
|
SDB->clear();
|
|
CodeGenAndEmitDAG();
|
|
}
|
|
|
|
// Update PHI Nodes
|
|
for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
|
|
pi != pe; ++pi) {
|
|
MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
|
|
MachineBasicBlock *PHIBB = PHI->getParent();
|
|
assert(PHI->isPHI() &&
|
|
"This is not a machine PHI node that we are updating!");
|
|
// This is "default" BB. We have two jumps to it. From "header" BB and
|
|
// from last "case" BB.
|
|
if (PHIBB == SDB->BitTestCases[i].Default) {
|
|
PHI->addOperand(MachineOperand::
|
|
CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
|
|
false));
|
|
PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent));
|
|
PHI->addOperand(MachineOperand::
|
|
CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
|
|
false));
|
|
PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases.
|
|
back().ThisBB));
|
|
}
|
|
// One of "cases" BB.
|
|
for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size();
|
|
j != ej; ++j) {
|
|
MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB;
|
|
if (cBB->isSuccessor(PHIBB)) {
|
|
PHI->addOperand(MachineOperand::
|
|
CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
|
|
false));
|
|
PHI->addOperand(MachineOperand::CreateMBB(cBB));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
SDB->BitTestCases.clear();
|
|
|
|
// If the JumpTable record is filled in, then we need to emit a jump table.
|
|
// Updating the PHI nodes is tricky in this case, since we need to determine
|
|
// whether the PHI is a successor of the range check MBB or the jump table MBB
|
|
for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) {
|
|
// Lower header first, if it wasn't already lowered
|
|
if (!SDB->JTCases[i].first.Emitted) {
|
|
// Set the current basic block to the mbb we wish to insert the code into
|
|
FuncInfo->MBB = SDB->JTCases[i].first.HeaderBB;
|
|
FuncInfo->InsertPt = FuncInfo->MBB->end();
|
|
// Emit the code
|
|
SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first,
|
|
FuncInfo->MBB);
|
|
CurDAG->setRoot(SDB->getRoot());
|
|
SDB->clear();
|
|
CodeGenAndEmitDAG();
|
|
}
|
|
|
|
// Set the current basic block to the mbb we wish to insert the code into
|
|
FuncInfo->MBB = SDB->JTCases[i].second.MBB;
|
|
FuncInfo->InsertPt = FuncInfo->MBB->end();
|
|
// Emit the code
|
|
SDB->visitJumpTable(SDB->JTCases[i].second);
|
|
CurDAG->setRoot(SDB->getRoot());
|
|
SDB->clear();
|
|
CodeGenAndEmitDAG();
|
|
|
|
// Update PHI Nodes
|
|
for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
|
|
pi != pe; ++pi) {
|
|
MachineInstr *PHI = FuncInfo->PHINodesToUpdate[pi].first;
|
|
MachineBasicBlock *PHIBB = PHI->getParent();
|
|
assert(PHI->isPHI() &&
|
|
"This is not a machine PHI node that we are updating!");
|
|
// "default" BB. We can go there only from header BB.
|
|
if (PHIBB == SDB->JTCases[i].second.Default) {
|
|
PHI->addOperand
|
|
(MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
|
|
false));
|
|
PHI->addOperand
|
|
(MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB));
|
|
}
|
|
// JT BB. Just iterate over successors here
|
|
if (FuncInfo->MBB->isSuccessor(PHIBB)) {
|
|
PHI->addOperand
|
|
(MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[pi].second,
|
|
false));
|
|
PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
|
|
}
|
|
}
|
|
}
|
|
SDB->JTCases.clear();
|
|
|
|
// If the switch block involved a branch to one of the actual successors, we
|
|
// need to update PHI nodes in that block.
|
|
for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
|
|
MachineInstr *PHI = FuncInfo->PHINodesToUpdate[i].first;
|
|
assert(PHI->isPHI() &&
|
|
"This is not a machine PHI node that we are updating!");
|
|
if (FuncInfo->MBB->isSuccessor(PHI->getParent())) {
|
|
PHI->addOperand(
|
|
MachineOperand::CreateReg(FuncInfo->PHINodesToUpdate[i].second, false));
|
|
PHI->addOperand(MachineOperand::CreateMBB(FuncInfo->MBB));
|
|
}
|
|
}
|
|
|
|
// If we generated any switch lowering information, build and codegen any
|
|
// additional DAGs necessary.
|
|
for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) {
|
|
// Set the current basic block to the mbb we wish to insert the code into
|
|
MachineBasicBlock *ThisBB = FuncInfo->MBB = SDB->SwitchCases[i].ThisBB;
|
|
FuncInfo->InsertPt = FuncInfo->MBB->end();
|
|
|
|
// Determine the unique successors.
|
|
SmallVector<MachineBasicBlock *, 2> Succs;
|
|
Succs.push_back(SDB->SwitchCases[i].TrueBB);
|
|
if (SDB->SwitchCases[i].TrueBB != SDB->SwitchCases[i].FalseBB)
|
|
Succs.push_back(SDB->SwitchCases[i].FalseBB);
|
|
|
|
// Emit the code. Note that this could result in ThisBB being split, so
|
|
// we need to check for updates.
|
|
SDB->visitSwitchCase(SDB->SwitchCases[i], FuncInfo->MBB);
|
|
CurDAG->setRoot(SDB->getRoot());
|
|
SDB->clear();
|
|
CodeGenAndEmitDAG();
|
|
ThisBB = FuncInfo->MBB;
|
|
|
|
// Handle any PHI nodes in successors of this chunk, as if we were coming
|
|
// from the original BB before switch expansion. Note that PHI nodes can
|
|
// occur multiple times in PHINodesToUpdate. We have to be very careful to
|
|
// handle them the right number of times.
|
|
for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
|
|
FuncInfo->MBB = Succs[i];
|
|
FuncInfo->InsertPt = FuncInfo->MBB->end();
|
|
// FuncInfo->MBB may have been removed from the CFG if a branch was
|
|
// constant folded.
|
|
if (ThisBB->isSuccessor(FuncInfo->MBB)) {
|
|
for (MachineBasicBlock::iterator Phi = FuncInfo->MBB->begin();
|
|
Phi != FuncInfo->MBB->end() && Phi->isPHI();
|
|
++Phi) {
|
|
// This value for this PHI node is recorded in PHINodesToUpdate.
|
|
for (unsigned pn = 0; ; ++pn) {
|
|
assert(pn != FuncInfo->PHINodesToUpdate.size() &&
|
|
"Didn't find PHI entry!");
|
|
if (FuncInfo->PHINodesToUpdate[pn].first == Phi) {
|
|
Phi->addOperand(MachineOperand::
|
|
CreateReg(FuncInfo->PHINodesToUpdate[pn].second,
|
|
false));
|
|
Phi->addOperand(MachineOperand::CreateMBB(ThisBB));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
SDB->SwitchCases.clear();
|
|
}
|
|
|
|
|
|
/// Create the scheduler. If a specific scheduler was specified
|
|
/// via the SchedulerRegistry, use it, otherwise select the
|
|
/// one preferred by the target.
|
|
///
|
|
ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
|
|
RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault();
|
|
|
|
if (!Ctor) {
|
|
Ctor = ISHeuristic;
|
|
RegisterScheduler::setDefault(Ctor);
|
|
}
|
|
|
|
return Ctor(this, OptLevel);
|
|
}
|
|
|
|
ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() {
|
|
return new ScheduleHazardRecognizer();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helper functions used by the generated instruction selector.
|
|
//===----------------------------------------------------------------------===//
|
|
// Calls to these methods are generated by tblgen.
|
|
|
|
/// CheckAndMask - The isel is trying to match something like (and X, 255). If
|
|
/// the dag combiner simplified the 255, we still want to match. RHS is the
|
|
/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
|
|
/// specified in the .td file (e.g. 255).
|
|
bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
|
|
int64_t DesiredMaskS) const {
|
|
const APInt &ActualMask = RHS->getAPIntValue();
|
|
const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
|
|
|
|
// If the actual mask exactly matches, success!
|
|
if (ActualMask == DesiredMask)
|
|
return true;
|
|
|
|
// If the actual AND mask is allowing unallowed bits, this doesn't match.
|
|
if (ActualMask.intersects(~DesiredMask))
|
|
return false;
|
|
|
|
// Otherwise, the DAG Combiner may have proven that the value coming in is
|
|
// either already zero or is not demanded. Check for known zero input bits.
|
|
APInt NeededMask = DesiredMask & ~ActualMask;
|
|
if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
|
|
return true;
|
|
|
|
// TODO: check to see if missing bits are just not demanded.
|
|
|
|
// Otherwise, this pattern doesn't match.
|
|
return false;
|
|
}
|
|
|
|
/// CheckOrMask - The isel is trying to match something like (or X, 255). If
|
|
/// the dag combiner simplified the 255, we still want to match. RHS is the
|
|
/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
|
|
/// specified in the .td file (e.g. 255).
|
|
bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
|
|
int64_t DesiredMaskS) const {
|
|
const APInt &ActualMask = RHS->getAPIntValue();
|
|
const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
|
|
|
|
// If the actual mask exactly matches, success!
|
|
if (ActualMask == DesiredMask)
|
|
return true;
|
|
|
|
// If the actual AND mask is allowing unallowed bits, this doesn't match.
|
|
if (ActualMask.intersects(~DesiredMask))
|
|
return false;
|
|
|
|
// Otherwise, the DAG Combiner may have proven that the value coming in is
|
|
// either already zero or is not demanded. Check for known zero input bits.
|
|
APInt NeededMask = DesiredMask & ~ActualMask;
|
|
|
|
APInt KnownZero, KnownOne;
|
|
CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne);
|
|
|
|
// If all the missing bits in the or are already known to be set, match!
|
|
if ((NeededMask & KnownOne) == NeededMask)
|
|
return true;
|
|
|
|
// TODO: check to see if missing bits are just not demanded.
|
|
|
|
// Otherwise, this pattern doesn't match.
|
|
return false;
|
|
}
|
|
|
|
|
|
/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
|
|
/// by tblgen. Others should not call it.
|
|
void SelectionDAGISel::
|
|
SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) {
|
|
std::vector<SDValue> InOps;
|
|
std::swap(InOps, Ops);
|
|
|
|
Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
|
|
Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1
|
|
Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc
|
|
Ops.push_back(InOps[InlineAsm::Op_IsAlignStack]); // 3
|
|
|
|
unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
|
|
if (InOps[e-1].getValueType() == MVT::Flag)
|
|
--e; // Don't process a flag operand if it is here.
|
|
|
|
while (i != e) {
|
|
unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
|
|
if (!InlineAsm::isMemKind(Flags)) {
|
|
// Just skip over this operand, copying the operands verbatim.
|
|
Ops.insert(Ops.end(), InOps.begin()+i,
|
|
InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
|
|
i += InlineAsm::getNumOperandRegisters(Flags) + 1;
|
|
} else {
|
|
assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
|
|
"Memory operand with multiple values?");
|
|
// Otherwise, this is a memory operand. Ask the target to select it.
|
|
std::vector<SDValue> SelOps;
|
|
if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps))
|
|
report_fatal_error("Could not match memory address. Inline asm"
|
|
" failure!");
|
|
|
|
// Add this to the output node.
|
|
unsigned NewFlags =
|
|
InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
|
|
Ops.push_back(CurDAG->getTargetConstant(NewFlags, MVT::i32));
|
|
Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
|
|
i += 2;
|
|
}
|
|
}
|
|
|
|
// Add the flag input back if present.
|
|
if (e != InOps.size())
|
|
Ops.push_back(InOps.back());
|
|
}
|
|
|
|
/// findFlagUse - Return use of EVT::Flag value produced by the specified
|
|
/// SDNode.
|
|
///
|
|
static SDNode *findFlagUse(SDNode *N) {
|
|
unsigned FlagResNo = N->getNumValues()-1;
|
|
for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
|
|
SDUse &Use = I.getUse();
|
|
if (Use.getResNo() == FlagResNo)
|
|
return Use.getUser();
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/// findNonImmUse - Return true if "Use" is a non-immediate use of "Def".
|
|
/// This function recursively traverses up the operand chain, ignoring
|
|
/// certain nodes.
|
|
static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse,
|
|
SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited,
|
|
bool IgnoreChains) {
|
|
// The NodeID's are given uniques ID's where a node ID is guaranteed to be
|
|
// greater than all of its (recursive) operands. If we scan to a point where
|
|
// 'use' is smaller than the node we're scanning for, then we know we will
|
|
// never find it.
|
|
//
|
|
// The Use may be -1 (unassigned) if it is a newly allocated node. This can
|
|
// happen because we scan down to newly selected nodes in the case of flag
|
|
// uses.
|
|
if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1))
|
|
return false;
|
|
|
|
// Don't revisit nodes if we already scanned it and didn't fail, we know we
|
|
// won't fail if we scan it again.
|
|
if (!Visited.insert(Use))
|
|
return false;
|
|
|
|
for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {
|
|
// Ignore chain uses, they are validated by HandleMergeInputChains.
|
|
if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains)
|
|
continue;
|
|
|
|
SDNode *N = Use->getOperand(i).getNode();
|
|
if (N == Def) {
|
|
if (Use == ImmedUse || Use == Root)
|
|
continue; // We are not looking for immediate use.
|
|
assert(N != Root);
|
|
return true;
|
|
}
|
|
|
|
// Traverse up the operand chain.
|
|
if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// IsProfitableToFold - Returns true if it's profitable to fold the specific
|
|
/// operand node N of U during instruction selection that starts at Root.
|
|
bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
|
|
SDNode *Root) const {
|
|
if (OptLevel == CodeGenOpt::None) return false;
|
|
return N.hasOneUse();
|
|
}
|
|
|
|
/// IsLegalToFold - Returns true if the specific operand node N of
|
|
/// U can be folded during instruction selection that starts at Root.
|
|
bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
|
|
CodeGenOpt::Level OptLevel,
|
|
bool IgnoreChains) {
|
|
if (OptLevel == CodeGenOpt::None) return false;
|
|
|
|
// If Root use can somehow reach N through a path that that doesn't contain
|
|
// U then folding N would create a cycle. e.g. In the following
|
|
// diagram, Root can reach N through X. If N is folded into into Root, then
|
|
// X is both a predecessor and a successor of U.
|
|
//
|
|
// [N*] //
|
|
// ^ ^ //
|
|
// / \ //
|
|
// [U*] [X]? //
|
|
// ^ ^ //
|
|
// \ / //
|
|
// \ / //
|
|
// [Root*] //
|
|
//
|
|
// * indicates nodes to be folded together.
|
|
//
|
|
// If Root produces a flag, then it gets (even more) interesting. Since it
|
|
// will be "glued" together with its flag use in the scheduler, we need to
|
|
// check if it might reach N.
|
|
//
|
|
// [N*] //
|
|
// ^ ^ //
|
|
// / \ //
|
|
// [U*] [X]? //
|
|
// ^ ^ //
|
|
// \ \ //
|
|
// \ | //
|
|
// [Root*] | //
|
|
// ^ | //
|
|
// f | //
|
|
// | / //
|
|
// [Y] / //
|
|
// ^ / //
|
|
// f / //
|
|
// | / //
|
|
// [FU] //
|
|
//
|
|
// If FU (flag use) indirectly reaches N (the load), and Root folds N
|
|
// (call it Fold), then X is a predecessor of FU and a successor of
|
|
// Fold. But since Fold and FU are flagged together, this will create
|
|
// a cycle in the scheduling graph.
|
|
|
|
// If the node has flags, walk down the graph to the "lowest" node in the
|
|
// flagged set.
|
|
EVT VT = Root->getValueType(Root->getNumValues()-1);
|
|
while (VT == MVT::Flag) {
|
|
SDNode *FU = findFlagUse(Root);
|
|
if (FU == NULL)
|
|
break;
|
|
Root = FU;
|
|
VT = Root->getValueType(Root->getNumValues()-1);
|
|
|
|
// If our query node has a flag result with a use, we've walked up it. If
|
|
// the user (which has already been selected) has a chain or indirectly uses
|
|
// the chain, our WalkChainUsers predicate will not consider it. Because of
|
|
// this, we cannot ignore chains in this predicate.
|
|
IgnoreChains = false;
|
|
}
|
|
|
|
|
|
SmallPtrSet<SDNode*, 16> Visited;
|
|
return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains);
|
|
}
|
|
|
|
SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) {
|
|
std::vector<SDValue> Ops(N->op_begin(), N->op_end());
|
|
SelectInlineAsmMemoryOperands(Ops);
|
|
|
|
std::vector<EVT> VTs;
|
|
VTs.push_back(MVT::Other);
|
|
VTs.push_back(MVT::Flag);
|
|
SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(),
|
|
VTs, &Ops[0], Ops.size());
|
|
New->setNodeId(-1);
|
|
return New.getNode();
|
|
}
|
|
|
|
SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) {
|
|
return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0));
|
|
}
|
|
|
|
/// GetVBR - decode a vbr encoding whose top bit is set.
|
|
LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64_t
|
|
GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
|
|
assert(Val >= 128 && "Not a VBR");
|
|
Val &= 127; // Remove first vbr bit.
|
|
|
|
unsigned Shift = 7;
|
|
uint64_t NextBits;
|
|
do {
|
|
NextBits = MatcherTable[Idx++];
|
|
Val |= (NextBits&127) << Shift;
|
|
Shift += 7;
|
|
} while (NextBits & 128);
|
|
|
|
return Val;
|
|
}
|
|
|
|
|
|
/// UpdateChainsAndFlags - When a match is complete, this method updates uses of
|
|
/// interior flag and chain results to use the new flag and chain results.
|
|
void SelectionDAGISel::
|
|
UpdateChainsAndFlags(SDNode *NodeToMatch, SDValue InputChain,
|
|
const SmallVectorImpl<SDNode*> &ChainNodesMatched,
|
|
SDValue InputFlag,
|
|
const SmallVectorImpl<SDNode*> &FlagResultNodesMatched,
|
|
bool isMorphNodeTo) {
|
|
SmallVector<SDNode*, 4> NowDeadNodes;
|
|
|
|
ISelUpdater ISU(ISelPosition);
|
|
|
|
// Now that all the normal results are replaced, we replace the chain and
|
|
// flag results if present.
|
|
if (!ChainNodesMatched.empty()) {
|
|
assert(InputChain.getNode() != 0 &&
|
|
"Matched input chains but didn't produce a chain");
|
|
// Loop over all of the nodes we matched that produced a chain result.
|
|
// Replace all the chain results with the final chain we ended up with.
|
|
for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
|
|
SDNode *ChainNode = ChainNodesMatched[i];
|
|
|
|
// If this node was already deleted, don't look at it.
|
|
if (ChainNode->getOpcode() == ISD::DELETED_NODE)
|
|
continue;
|
|
|
|
// Don't replace the results of the root node if we're doing a
|
|
// MorphNodeTo.
|
|
if (ChainNode == NodeToMatch && isMorphNodeTo)
|
|
continue;
|
|
|
|
SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
|
|
if (ChainVal.getValueType() == MVT::Flag)
|
|
ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
|
|
assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
|
|
CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU);
|
|
|
|
// If the node became dead and we haven't already seen it, delete it.
|
|
if (ChainNode->use_empty() &&
|
|
!std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
|
|
NowDeadNodes.push_back(ChainNode);
|
|
}
|
|
}
|
|
|
|
// If the result produces a flag, update any flag results in the matched
|
|
// pattern with the flag result.
|
|
if (InputFlag.getNode() != 0) {
|
|
// Handle any interior nodes explicitly marked.
|
|
for (unsigned i = 0, e = FlagResultNodesMatched.size(); i != e; ++i) {
|
|
SDNode *FRN = FlagResultNodesMatched[i];
|
|
|
|
// If this node was already deleted, don't look at it.
|
|
if (FRN->getOpcode() == ISD::DELETED_NODE)
|
|
continue;
|
|
|
|
assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Flag &&
|
|
"Doesn't have a flag result");
|
|
CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1),
|
|
InputFlag, &ISU);
|
|
|
|
// If the node became dead and we haven't already seen it, delete it.
|
|
if (FRN->use_empty() &&
|
|
!std::count(NowDeadNodes.begin(), NowDeadNodes.end(), FRN))
|
|
NowDeadNodes.push_back(FRN);
|
|
}
|
|
}
|
|
|
|
if (!NowDeadNodes.empty())
|
|
CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU);
|
|
|
|
DEBUG(errs() << "ISEL: Match complete!\n");
|
|
}
|
|
|
|
enum ChainResult {
|
|
CR_Simple,
|
|
CR_InducesCycle,
|
|
CR_LeadsToInteriorNode
|
|
};
|
|
|
|
/// WalkChainUsers - Walk down the users of the specified chained node that is
|
|
/// part of the pattern we're matching, looking at all of the users we find.
|
|
/// This determines whether something is an interior node, whether we have a
|
|
/// non-pattern node in between two pattern nodes (which prevent folding because
|
|
/// it would induce a cycle) and whether we have a TokenFactor node sandwiched
|
|
/// between pattern nodes (in which case the TF becomes part of the pattern).
|
|
///
|
|
/// The walk we do here is guaranteed to be small because we quickly get down to
|
|
/// already selected nodes "below" us.
|
|
static ChainResult
|
|
WalkChainUsers(SDNode *ChainedNode,
|
|
SmallVectorImpl<SDNode*> &ChainedNodesInPattern,
|
|
SmallVectorImpl<SDNode*> &InteriorChainedNodes) {
|
|
ChainResult Result = CR_Simple;
|
|
|
|
for (SDNode::use_iterator UI = ChainedNode->use_begin(),
|
|
E = ChainedNode->use_end(); UI != E; ++UI) {
|
|
// Make sure the use is of the chain, not some other value we produce.
|
|
if (UI.getUse().getValueType() != MVT::Other) continue;
|
|
|
|
SDNode *User = *UI;
|
|
|
|
// If we see an already-selected machine node, then we've gone beyond the
|
|
// pattern that we're selecting down into the already selected chunk of the
|
|
// DAG.
|
|
if (User->isMachineOpcode() ||
|
|
User->getOpcode() == ISD::HANDLENODE) // Root of the graph.
|
|
continue;
|
|
|
|
if (User->getOpcode() == ISD::CopyToReg ||
|
|
User->getOpcode() == ISD::CopyFromReg ||
|
|
User->getOpcode() == ISD::INLINEASM ||
|
|
User->getOpcode() == ISD::EH_LABEL) {
|
|
// If their node ID got reset to -1 then they've already been selected.
|
|
// Treat them like a MachineOpcode.
|
|
if (User->getNodeId() == -1)
|
|
continue;
|
|
}
|
|
|
|
// If we have a TokenFactor, we handle it specially.
|
|
if (User->getOpcode() != ISD::TokenFactor) {
|
|
// If the node isn't a token factor and isn't part of our pattern, then it
|
|
// must be a random chained node in between two nodes we're selecting.
|
|
// This happens when we have something like:
|
|
// x = load ptr
|
|
// call
|
|
// y = x+4
|
|
// store y -> ptr
|
|
// Because we structurally match the load/store as a read/modify/write,
|
|
// but the call is chained between them. We cannot fold in this case
|
|
// because it would induce a cycle in the graph.
|
|
if (!std::count(ChainedNodesInPattern.begin(),
|
|
ChainedNodesInPattern.end(), User))
|
|
return CR_InducesCycle;
|
|
|
|
// Otherwise we found a node that is part of our pattern. For example in:
|
|
// x = load ptr
|
|
// y = x+4
|
|
// store y -> ptr
|
|
// This would happen when we're scanning down from the load and see the
|
|
// store as a user. Record that there is a use of ChainedNode that is
|
|
// part of the pattern and keep scanning uses.
|
|
Result = CR_LeadsToInteriorNode;
|
|
InteriorChainedNodes.push_back(User);
|
|
continue;
|
|
}
|
|
|
|
// If we found a TokenFactor, there are two cases to consider: first if the
|
|
// TokenFactor is just hanging "below" the pattern we're matching (i.e. no
|
|
// uses of the TF are in our pattern) we just want to ignore it. Second,
|
|
// the TokenFactor can be sandwiched in between two chained nodes, like so:
|
|
// [Load chain]
|
|
// ^
|
|
// |
|
|
// [Load]
|
|
// ^ ^
|
|
// | \ DAG's like cheese
|
|
// / \ do you?
|
|
// / |
|
|
// [TokenFactor] [Op]
|
|
// ^ ^
|
|
// | |
|
|
// \ /
|
|
// \ /
|
|
// [Store]
|
|
//
|
|
// In this case, the TokenFactor becomes part of our match and we rewrite it
|
|
// as a new TokenFactor.
|
|
//
|
|
// To distinguish these two cases, do a recursive walk down the uses.
|
|
switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) {
|
|
case CR_Simple:
|
|
// If the uses of the TokenFactor are just already-selected nodes, ignore
|
|
// it, it is "below" our pattern.
|
|
continue;
|
|
case CR_InducesCycle:
|
|
// If the uses of the TokenFactor lead to nodes that are not part of our
|
|
// pattern that are not selected, folding would turn this into a cycle,
|
|
// bail out now.
|
|
return CR_InducesCycle;
|
|
case CR_LeadsToInteriorNode:
|
|
break; // Otherwise, keep processing.
|
|
}
|
|
|
|
// Okay, we know we're in the interesting interior case. The TokenFactor
|
|
// is now going to be considered part of the pattern so that we rewrite its
|
|
// uses (it may have uses that are not part of the pattern) with the
|
|
// ultimate chain result of the generated code. We will also add its chain
|
|
// inputs as inputs to the ultimate TokenFactor we create.
|
|
Result = CR_LeadsToInteriorNode;
|
|
ChainedNodesInPattern.push_back(User);
|
|
InteriorChainedNodes.push_back(User);
|
|
continue;
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
|
|
/// operation for when the pattern matched at least one node with a chains. The
|
|
/// input vector contains a list of all of the chained nodes that we match. We
|
|
/// must determine if this is a valid thing to cover (i.e. matching it won't
|
|
/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
|
|
/// be used as the input node chain for the generated nodes.
|
|
static SDValue
|
|
HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
|
|
SelectionDAG *CurDAG) {
|
|
// Walk all of the chained nodes we've matched, recursively scanning down the
|
|
// users of the chain result. This adds any TokenFactor nodes that are caught
|
|
// in between chained nodes to the chained and interior nodes list.
|
|
SmallVector<SDNode*, 3> InteriorChainedNodes;
|
|
for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
|
|
if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched,
|
|
InteriorChainedNodes) == CR_InducesCycle)
|
|
return SDValue(); // Would induce a cycle.
|
|
}
|
|
|
|
// Okay, we have walked all the matched nodes and collected TokenFactor nodes
|
|
// that we are interested in. Form our input TokenFactor node.
|
|
SmallVector<SDValue, 3> InputChains;
|
|
for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
|
|
// Add the input chain of this node to the InputChains list (which will be
|
|
// the operands of the generated TokenFactor) if it's not an interior node.
|
|
SDNode *N = ChainNodesMatched[i];
|
|
if (N->getOpcode() != ISD::TokenFactor) {
|
|
if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N))
|
|
continue;
|
|
|
|
// Otherwise, add the input chain.
|
|
SDValue InChain = ChainNodesMatched[i]->getOperand(0);
|
|
assert(InChain.getValueType() == MVT::Other && "Not a chain");
|
|
InputChains.push_back(InChain);
|
|
continue;
|
|
}
|
|
|
|
// If we have a token factor, we want to add all inputs of the token factor
|
|
// that are not part of the pattern we're matching.
|
|
for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) {
|
|
if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(),
|
|
N->getOperand(op).getNode()))
|
|
InputChains.push_back(N->getOperand(op));
|
|
}
|
|
}
|
|
|
|
SDValue Res;
|
|
if (InputChains.size() == 1)
|
|
return InputChains[0];
|
|
return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(),
|
|
MVT::Other, &InputChains[0], InputChains.size());
|
|
}
|
|
|
|
/// MorphNode - Handle morphing a node in place for the selector.
|
|
SDNode *SelectionDAGISel::
|
|
MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
|
|
const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) {
|
|
// It is possible we're using MorphNodeTo to replace a node with no
|
|
// normal results with one that has a normal result (or we could be
|
|
// adding a chain) and the input could have flags and chains as well.
|
|
// In this case we need to shift the operands down.
|
|
// FIXME: This is a horrible hack and broken in obscure cases, no worse
|
|
// than the old isel though.
|
|
int OldFlagResultNo = -1, OldChainResultNo = -1;
|
|
|
|
unsigned NTMNumResults = Node->getNumValues();
|
|
if (Node->getValueType(NTMNumResults-1) == MVT::Flag) {
|
|
OldFlagResultNo = NTMNumResults-1;
|
|
if (NTMNumResults != 1 &&
|
|
Node->getValueType(NTMNumResults-2) == MVT::Other)
|
|
OldChainResultNo = NTMNumResults-2;
|
|
} else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
|
|
OldChainResultNo = NTMNumResults-1;
|
|
|
|
// Call the underlying SelectionDAG routine to do the transmogrification. Note
|
|
// that this deletes operands of the old node that become dead.
|
|
SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps);
|
|
|
|
// MorphNodeTo can operate in two ways: if an existing node with the
|
|
// specified operands exists, it can just return it. Otherwise, it
|
|
// updates the node in place to have the requested operands.
|
|
if (Res == Node) {
|
|
// If we updated the node in place, reset the node ID. To the isel,
|
|
// this should be just like a newly allocated machine node.
|
|
Res->setNodeId(-1);
|
|
}
|
|
|
|
unsigned ResNumResults = Res->getNumValues();
|
|
// Move the flag if needed.
|
|
if ((EmitNodeInfo & OPFL_FlagOutput) && OldFlagResultNo != -1 &&
|
|
(unsigned)OldFlagResultNo != ResNumResults-1)
|
|
CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldFlagResultNo),
|
|
SDValue(Res, ResNumResults-1));
|
|
|
|
if ((EmitNodeInfo & OPFL_FlagOutput) != 0)
|
|
--ResNumResults;
|
|
|
|
// Move the chain reference if needed.
|
|
if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
|
|
(unsigned)OldChainResultNo != ResNumResults-1)
|
|
CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo),
|
|
SDValue(Res, ResNumResults-1));
|
|
|
|
// Otherwise, no replacement happened because the node already exists. Replace
|
|
// Uses of the old node with the new one.
|
|
if (Res != Node)
|
|
CurDAG->ReplaceAllUsesWith(Node, Res);
|
|
|
|
return Res;
|
|
}
|
|
|
|
/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
|
|
LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
|
|
CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
|
|
SDValue N,
|
|
const SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
|
|
// Accept if it is exactly the same as a previously recorded node.
|
|
unsigned RecNo = MatcherTable[MatcherIndex++];
|
|
assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
|
|
return N == RecordedNodes[RecNo].first;
|
|
}
|
|
|
|
/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
|
|
LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
|
|
CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
|
|
SelectionDAGISel &SDISel) {
|
|
return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
|
|
}
|
|
|
|
/// CheckNodePredicate - Implements OP_CheckNodePredicate.
|
|
LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
|
|
CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
|
|
SelectionDAGISel &SDISel, SDNode *N) {
|
|
return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
|
|
}
|
|
|
|
LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
|
|
CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
|
|
SDNode *N) {
|
|
uint16_t Opc = MatcherTable[MatcherIndex++];
|
|
Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
|
|
return N->getOpcode() == Opc;
|
|
}
|
|
|
|
LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
|
|
CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
|
|
SDValue N, const TargetLowering &TLI) {
|
|
MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
|
|
if (N.getValueType() == VT) return true;
|
|
|
|
// Handle the case when VT is iPTR.
|
|
return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy();
|
|
}
|
|
|
|
LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
|
|
CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
|
|
SDValue N, const TargetLowering &TLI,
|
|
unsigned ChildNo) {
|
|
if (ChildNo >= N.getNumOperands())
|
|
return false; // Match fails if out of range child #.
|
|
return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI);
|
|
}
|
|
|
|
|
|
LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
|
|
CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
|
|
SDValue N) {
|
|
return cast<CondCodeSDNode>(N)->get() ==
|
|
(ISD::CondCode)MatcherTable[MatcherIndex++];
|
|
}
|
|
|
|
LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
|
|
CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
|
|
SDValue N, const TargetLowering &TLI) {
|
|
MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
|
|
if (cast<VTSDNode>(N)->getVT() == VT)
|
|
return true;
|
|
|
|
// Handle the case when VT is iPTR.
|
|
return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy();
|
|
}
|
|
|
|
LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
|
|
CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
|
|
SDValue N) {
|
|
int64_t Val = MatcherTable[MatcherIndex++];
|
|
if (Val & 128)
|
|
Val = GetVBR(Val, MatcherTable, MatcherIndex);
|
|
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
|
|
return C != 0 && C->getSExtValue() == Val;
|
|
}
|
|
|
|
LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
|
|
CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
|
|
SDValue N, SelectionDAGISel &SDISel) {
|
|
int64_t Val = MatcherTable[MatcherIndex++];
|
|
if (Val & 128)
|
|
Val = GetVBR(Val, MatcherTable, MatcherIndex);
|
|
|
|
if (N->getOpcode() != ISD::AND) return false;
|
|
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
|
|
return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val);
|
|
}
|
|
|
|
LLVM_ATTRIBUTE_ALWAYS_INLINE static bool
|
|
CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
|
|
SDValue N, SelectionDAGISel &SDISel) {
|
|
int64_t Val = MatcherTable[MatcherIndex++];
|
|
if (Val & 128)
|
|
Val = GetVBR(Val, MatcherTable, MatcherIndex);
|
|
|
|
if (N->getOpcode() != ISD::OR) return false;
|
|
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
|
|
return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val);
|
|
}
|
|
|
|
/// IsPredicateKnownToFail - If we know how and can do so without pushing a
|
|
/// scope, evaluate the current node. If the current predicate is known to
|
|
/// fail, set Result=true and return anything. If the current predicate is
|
|
/// known to pass, set Result=false and return the MatcherIndex to continue
|
|
/// with. If the current predicate is unknown, set Result=false and return the
|
|
/// MatcherIndex to continue with.
|
|
static unsigned IsPredicateKnownToFail(const unsigned char *Table,
|
|
unsigned Index, SDValue N,
|
|
bool &Result, SelectionDAGISel &SDISel,
|
|
SmallVectorImpl<std::pair<SDValue, SDNode*> > &RecordedNodes) {
|
|
switch (Table[Index++]) {
|
|
default:
|
|
Result = false;
|
|
return Index-1; // Could not evaluate this predicate.
|
|
case SelectionDAGISel::OPC_CheckSame:
|
|
Result = !::CheckSame(Table, Index, N, RecordedNodes);
|
|
return Index;
|
|
case SelectionDAGISel::OPC_CheckPatternPredicate:
|
|
Result = !::CheckPatternPredicate(Table, Index, SDISel);
|
|
return Index;
|
|
case SelectionDAGISel::OPC_CheckPredicate:
|
|
Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
|
|
return Index;
|
|
case SelectionDAGISel::OPC_CheckOpcode:
|
|
Result = !::CheckOpcode(Table, Index, N.getNode());
|
|
return Index;
|
|
case SelectionDAGISel::OPC_CheckType:
|
|
Result = !::CheckType(Table, Index, N, SDISel.TLI);
|
|
return Index;
|
|
case SelectionDAGISel::OPC_CheckChild0Type:
|
|
case SelectionDAGISel::OPC_CheckChild1Type:
|
|
case SelectionDAGISel::OPC_CheckChild2Type:
|
|
case SelectionDAGISel::OPC_CheckChild3Type:
|
|
case SelectionDAGISel::OPC_CheckChild4Type:
|
|
case SelectionDAGISel::OPC_CheckChild5Type:
|
|
case SelectionDAGISel::OPC_CheckChild6Type:
|
|
case SelectionDAGISel::OPC_CheckChild7Type:
|
|
Result = !::CheckChildType(Table, Index, N, SDISel.TLI,
|
|
Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type);
|
|
return Index;
|
|
case SelectionDAGISel::OPC_CheckCondCode:
|
|
Result = !::CheckCondCode(Table, Index, N);
|
|
return Index;
|
|
case SelectionDAGISel::OPC_CheckValueType:
|
|
Result = !::CheckValueType(Table, Index, N, SDISel.TLI);
|
|
return Index;
|
|
case SelectionDAGISel::OPC_CheckInteger:
|
|
Result = !::CheckInteger(Table, Index, N);
|
|
return Index;
|
|
case SelectionDAGISel::OPC_CheckAndImm:
|
|
Result = !::CheckAndImm(Table, Index, N, SDISel);
|
|
return Index;
|
|
case SelectionDAGISel::OPC_CheckOrImm:
|
|
Result = !::CheckOrImm(Table, Index, N, SDISel);
|
|
return Index;
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct MatchScope {
|
|
/// FailIndex - If this match fails, this is the index to continue with.
|
|
unsigned FailIndex;
|
|
|
|
/// NodeStack - The node stack when the scope was formed.
|
|
SmallVector<SDValue, 4> NodeStack;
|
|
|
|
/// NumRecordedNodes - The number of recorded nodes when the scope was formed.
|
|
unsigned NumRecordedNodes;
|
|
|
|
/// NumMatchedMemRefs - The number of matched memref entries.
|
|
unsigned NumMatchedMemRefs;
|
|
|
|
/// InputChain/InputFlag - The current chain/flag
|
|
SDValue InputChain, InputFlag;
|
|
|
|
/// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
|
|
bool HasChainNodesMatched, HasFlagResultNodesMatched;
|
|
};
|
|
|
|
}
|
|
|
|
SDNode *SelectionDAGISel::
|
|
SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable,
|
|
unsigned TableSize) {
|
|
// FIXME: Should these even be selected? Handle these cases in the caller?
|
|
switch (NodeToMatch->getOpcode()) {
|
|
default:
|
|
break;
|
|
case ISD::EntryToken: // These nodes remain the same.
|
|
case ISD::BasicBlock:
|
|
case ISD::Register:
|
|
//case ISD::VALUETYPE:
|
|
//case ISD::CONDCODE:
|
|
case ISD::HANDLENODE:
|
|
case ISD::MDNODE_SDNODE:
|
|
case ISD::TargetConstant:
|
|
case ISD::TargetConstantFP:
|
|
case ISD::TargetConstantPool:
|
|
case ISD::TargetFrameIndex:
|
|
case ISD::TargetExternalSymbol:
|
|
case ISD::TargetBlockAddress:
|
|
case ISD::TargetJumpTable:
|
|
case ISD::TargetGlobalTLSAddress:
|
|
case ISD::TargetGlobalAddress:
|
|
case ISD::TokenFactor:
|
|
case ISD::CopyFromReg:
|
|
case ISD::CopyToReg:
|
|
case ISD::EH_LABEL:
|
|
NodeToMatch->setNodeId(-1); // Mark selected.
|
|
return 0;
|
|
case ISD::AssertSext:
|
|
case ISD::AssertZext:
|
|
CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0),
|
|
NodeToMatch->getOperand(0));
|
|
return 0;
|
|
case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch);
|
|
case ISD::UNDEF: return Select_UNDEF(NodeToMatch);
|
|
}
|
|
|
|
assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
|
|
|
|
// Set up the node stack with NodeToMatch as the only node on the stack.
|
|
SmallVector<SDValue, 8> NodeStack;
|
|
SDValue N = SDValue(NodeToMatch, 0);
|
|
NodeStack.push_back(N);
|
|
|
|
// MatchScopes - Scopes used when matching, if a match failure happens, this
|
|
// indicates where to continue checking.
|
|
SmallVector<MatchScope, 8> MatchScopes;
|
|
|
|
// RecordedNodes - This is the set of nodes that have been recorded by the
|
|
// state machine. The second value is the parent of the node, or null if the
|
|
// root is recorded.
|
|
SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
|
|
|
|
// MatchedMemRefs - This is the set of MemRef's we've seen in the input
|
|
// pattern.
|
|
SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
|
|
|
|
// These are the current input chain and flag for use when generating nodes.
|
|
// Various Emit operations change these. For example, emitting a copytoreg
|
|
// uses and updates these.
|
|
SDValue InputChain, InputFlag;
|
|
|
|
// ChainNodesMatched - If a pattern matches nodes that have input/output
|
|
// chains, the OPC_EmitMergeInputChains operation is emitted which indicates
|
|
// which ones they are. The result is captured into this list so that we can
|
|
// update the chain results when the pattern is complete.
|
|
SmallVector<SDNode*, 3> ChainNodesMatched;
|
|
SmallVector<SDNode*, 3> FlagResultNodesMatched;
|
|
|
|
DEBUG(errs() << "ISEL: Starting pattern match on root node: ";
|
|
NodeToMatch->dump(CurDAG);
|
|
errs() << '\n');
|
|
|
|
// Determine where to start the interpreter. Normally we start at opcode #0,
|
|
// but if the state machine starts with an OPC_SwitchOpcode, then we
|
|
// accelerate the first lookup (which is guaranteed to be hot) with the
|
|
// OpcodeOffset table.
|
|
unsigned MatcherIndex = 0;
|
|
|
|
if (!OpcodeOffset.empty()) {
|
|
// Already computed the OpcodeOffset table, just index into it.
|
|
if (N.getOpcode() < OpcodeOffset.size())
|
|
MatcherIndex = OpcodeOffset[N.getOpcode()];
|
|
DEBUG(errs() << " Initial Opcode index to " << MatcherIndex << "\n");
|
|
|
|
} else if (MatcherTable[0] == OPC_SwitchOpcode) {
|
|
// Otherwise, the table isn't computed, but the state machine does start
|
|
// with an OPC_SwitchOpcode instruction. Populate the table now, since this
|
|
// is the first time we're selecting an instruction.
|
|
unsigned Idx = 1;
|
|
while (1) {
|
|
// Get the size of this case.
|
|
unsigned CaseSize = MatcherTable[Idx++];
|
|
if (CaseSize & 128)
|
|
CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
|
|
if (CaseSize == 0) break;
|
|
|
|
// Get the opcode, add the index to the table.
|
|
uint16_t Opc = MatcherTable[Idx++];
|
|
Opc |= (unsigned short)MatcherTable[Idx++] << 8;
|
|
if (Opc >= OpcodeOffset.size())
|
|
OpcodeOffset.resize((Opc+1)*2);
|
|
OpcodeOffset[Opc] = Idx;
|
|
Idx += CaseSize;
|
|
}
|
|
|
|
// Okay, do the lookup for the first opcode.
|
|
if (N.getOpcode() < OpcodeOffset.size())
|
|
MatcherIndex = OpcodeOffset[N.getOpcode()];
|
|
}
|
|
|
|
while (1) {
|
|
assert(MatcherIndex < TableSize && "Invalid index");
|
|
#ifndef NDEBUG
|
|
unsigned CurrentOpcodeIndex = MatcherIndex;
|
|
#endif
|
|
BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
|
|
switch (Opcode) {
|
|
case OPC_Scope: {
|
|
// Okay, the semantics of this operation are that we should push a scope
|
|
// then evaluate the first child. However, pushing a scope only to have
|
|
// the first check fail (which then pops it) is inefficient. If we can
|
|
// determine immediately that the first check (or first several) will
|
|
// immediately fail, don't even bother pushing a scope for them.
|
|
unsigned FailIndex;
|
|
|
|
while (1) {
|
|
unsigned NumToSkip = MatcherTable[MatcherIndex++];
|
|
if (NumToSkip & 128)
|
|
NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
|
|
// Found the end of the scope with no match.
|
|
if (NumToSkip == 0) {
|
|
FailIndex = 0;
|
|
break;
|
|
}
|
|
|
|
FailIndex = MatcherIndex+NumToSkip;
|
|
|
|
unsigned MatcherIndexOfPredicate = MatcherIndex;
|
|
(void)MatcherIndexOfPredicate; // silence warning.
|
|
|
|
// If we can't evaluate this predicate without pushing a scope (e.g. if
|
|
// it is a 'MoveParent') or if the predicate succeeds on this node, we
|
|
// push the scope and evaluate the full predicate chain.
|
|
bool Result;
|
|
MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
|
|
Result, *this, RecordedNodes);
|
|
if (!Result)
|
|
break;
|
|
|
|
DEBUG(errs() << " Skipped scope entry (due to false predicate) at "
|
|
<< "index " << MatcherIndexOfPredicate
|
|
<< ", continuing at " << FailIndex << "\n");
|
|
++NumDAGIselRetries;
|
|
|
|
// Otherwise, we know that this case of the Scope is guaranteed to fail,
|
|
// move to the next case.
|
|
MatcherIndex = FailIndex;
|
|
}
|
|
|
|
// If the whole scope failed to match, bail.
|
|
if (FailIndex == 0) break;
|
|
|
|
// Push a MatchScope which indicates where to go if the first child fails
|
|
// to match.
|
|
MatchScope NewEntry;
|
|
NewEntry.FailIndex = FailIndex;
|
|
NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
|
|
NewEntry.NumRecordedNodes = RecordedNodes.size();
|
|
NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
|
|
NewEntry.InputChain = InputChain;
|
|
NewEntry.InputFlag = InputFlag;
|
|
NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
|
|
NewEntry.HasFlagResultNodesMatched = !FlagResultNodesMatched.empty();
|
|
MatchScopes.push_back(NewEntry);
|
|
continue;
|
|
}
|
|
case OPC_RecordNode: {
|
|
// Remember this node, it may end up being an operand in the pattern.
|
|
SDNode *Parent = 0;
|
|
if (NodeStack.size() > 1)
|
|
Parent = NodeStack[NodeStack.size()-2].getNode();
|
|
RecordedNodes.push_back(std::make_pair(N, Parent));
|
|
continue;
|
|
}
|
|
|
|
case OPC_RecordChild0: case OPC_RecordChild1:
|
|
case OPC_RecordChild2: case OPC_RecordChild3:
|
|
case OPC_RecordChild4: case OPC_RecordChild5:
|
|
case OPC_RecordChild6: case OPC_RecordChild7: {
|
|
unsigned ChildNo = Opcode-OPC_RecordChild0;
|
|
if (ChildNo >= N.getNumOperands())
|
|
break; // Match fails if out of range child #.
|
|
|
|
RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
|
|
N.getNode()));
|
|
continue;
|
|
}
|
|
case OPC_RecordMemRef:
|
|
MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand());
|
|
continue;
|
|
|
|
case OPC_CaptureFlagInput:
|
|
// If the current node has an input flag, capture it in InputFlag.
|
|
if (N->getNumOperands() != 0 &&
|
|
N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag)
|
|
InputFlag = N->getOperand(N->getNumOperands()-1);
|
|
continue;
|
|
|
|
case OPC_MoveChild: {
|
|
unsigned ChildNo = MatcherTable[MatcherIndex++];
|
|
if (ChildNo >= N.getNumOperands())
|
|
break; // Match fails if out of range child #.
|
|
N = N.getOperand(ChildNo);
|
|
NodeStack.push_back(N);
|
|
continue;
|
|
}
|
|
|
|
case OPC_MoveParent:
|
|
// Pop the current node off the NodeStack.
|
|
NodeStack.pop_back();
|
|
assert(!NodeStack.empty() && "Node stack imbalance!");
|
|
N = NodeStack.back();
|
|
continue;
|
|
|
|
case OPC_CheckSame:
|
|
if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
|
|
continue;
|
|
case OPC_CheckPatternPredicate:
|
|
if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
|
|
continue;
|
|
case OPC_CheckPredicate:
|
|
if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
|
|
N.getNode()))
|
|
break;
|
|
continue;
|
|
case OPC_CheckComplexPat: {
|
|
unsigned CPNum = MatcherTable[MatcherIndex++];
|
|
unsigned RecNo = MatcherTable[MatcherIndex++];
|
|
assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
|
|
if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
|
|
RecordedNodes[RecNo].first, CPNum,
|
|
RecordedNodes))
|
|
break;
|
|
continue;
|
|
}
|
|
case OPC_CheckOpcode:
|
|
if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
|
|
continue;
|
|
|
|
case OPC_CheckType:
|
|
if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break;
|
|
continue;
|
|
|
|
case OPC_SwitchOpcode: {
|
|
unsigned CurNodeOpcode = N.getOpcode();
|
|
unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
|
|
unsigned CaseSize;
|
|
while (1) {
|
|
// Get the size of this case.
|
|
CaseSize = MatcherTable[MatcherIndex++];
|
|
if (CaseSize & 128)
|
|
CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
|
|
if (CaseSize == 0) break;
|
|
|
|
uint16_t Opc = MatcherTable[MatcherIndex++];
|
|
Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
|
|
|
|
// If the opcode matches, then we will execute this case.
|
|
if (CurNodeOpcode == Opc)
|
|
break;
|
|
|
|
// Otherwise, skip over this case.
|
|
MatcherIndex += CaseSize;
|
|
}
|
|
|
|
// If no cases matched, bail out.
|
|
if (CaseSize == 0) break;
|
|
|
|
// Otherwise, execute the case we found.
|
|
DEBUG(errs() << " OpcodeSwitch from " << SwitchStart
|
|
<< " to " << MatcherIndex << "\n");
|
|
continue;
|
|
}
|
|
|
|
case OPC_SwitchType: {
|
|
MVT CurNodeVT = N.getValueType().getSimpleVT();
|
|
unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
|
|
unsigned CaseSize;
|
|
while (1) {
|
|
// Get the size of this case.
|
|
CaseSize = MatcherTable[MatcherIndex++];
|
|
if (CaseSize & 128)
|
|
CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
|
|
if (CaseSize == 0) break;
|
|
|
|
MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
|
|
if (CaseVT == MVT::iPTR)
|
|
CaseVT = TLI.getPointerTy();
|
|
|
|
// If the VT matches, then we will execute this case.
|
|
if (CurNodeVT == CaseVT)
|
|
break;
|
|
|
|
// Otherwise, skip over this case.
|
|
MatcherIndex += CaseSize;
|
|
}
|
|
|
|
// If no cases matched, bail out.
|
|
if (CaseSize == 0) break;
|
|
|
|
// Otherwise, execute the case we found.
|
|
DEBUG(errs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString()
|
|
<< "] from " << SwitchStart << " to " << MatcherIndex<<'\n');
|
|
continue;
|
|
}
|
|
case OPC_CheckChild0Type: case OPC_CheckChild1Type:
|
|
case OPC_CheckChild2Type: case OPC_CheckChild3Type:
|
|
case OPC_CheckChild4Type: case OPC_CheckChild5Type:
|
|
case OPC_CheckChild6Type: case OPC_CheckChild7Type:
|
|
if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
|
|
Opcode-OPC_CheckChild0Type))
|
|
break;
|
|
continue;
|
|
case OPC_CheckCondCode:
|
|
if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
|
|
continue;
|
|
case OPC_CheckValueType:
|
|
if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break;
|
|
continue;
|
|
case OPC_CheckInteger:
|
|
if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
|
|
continue;
|
|
case OPC_CheckAndImm:
|
|
if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
|
|
continue;
|
|
case OPC_CheckOrImm:
|
|
if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
|
|
continue;
|
|
|
|
case OPC_CheckFoldableChainNode: {
|
|
assert(NodeStack.size() != 1 && "No parent node");
|
|
// Verify that all intermediate nodes between the root and this one have
|
|
// a single use.
|
|
bool HasMultipleUses = false;
|
|
for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
|
|
if (!NodeStack[i].hasOneUse()) {
|
|
HasMultipleUses = true;
|
|
break;
|
|
}
|
|
if (HasMultipleUses) break;
|
|
|
|
// Check to see that the target thinks this is profitable to fold and that
|
|
// we can fold it without inducing cycles in the graph.
|
|
if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
|
|
NodeToMatch) ||
|
|
!IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
|
|
NodeToMatch, OptLevel,
|
|
true/*We validate our own chains*/))
|
|
break;
|
|
|
|
continue;
|
|
}
|
|
case OPC_EmitInteger: {
|
|
MVT::SimpleValueType VT =
|
|
(MVT::SimpleValueType)MatcherTable[MatcherIndex++];
|
|
int64_t Val = MatcherTable[MatcherIndex++];
|
|
if (Val & 128)
|
|
Val = GetVBR(Val, MatcherTable, MatcherIndex);
|
|
RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
|
|
CurDAG->getTargetConstant(Val, VT), (SDNode*)0));
|
|
continue;
|
|
}
|
|
case OPC_EmitRegister: {
|
|
MVT::SimpleValueType VT =
|
|
(MVT::SimpleValueType)MatcherTable[MatcherIndex++];
|
|
unsigned RegNo = MatcherTable[MatcherIndex++];
|
|
RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
|
|
CurDAG->getRegister(RegNo, VT), (SDNode*)0));
|
|
continue;
|
|
}
|
|
|
|
case OPC_EmitConvertToTarget: {
|
|
// Convert from IMM/FPIMM to target version.
|
|
unsigned RecNo = MatcherTable[MatcherIndex++];
|
|
assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
|
|
SDValue Imm = RecordedNodes[RecNo].first;
|
|
|
|
if (Imm->getOpcode() == ISD::Constant) {
|
|
int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue();
|
|
Imm = CurDAG->getTargetConstant(Val, Imm.getValueType());
|
|
} else if (Imm->getOpcode() == ISD::ConstantFP) {
|
|
const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
|
|
Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType());
|
|
}
|
|
|
|
RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
|
|
continue;
|
|
}
|
|
|
|
case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0
|
|
case OPC_EmitMergeInputChains1_1: { // OPC_EmitMergeInputChains, 1, 1
|
|
// These are space-optimized forms of OPC_EmitMergeInputChains.
|
|
assert(InputChain.getNode() == 0 &&
|
|
"EmitMergeInputChains should be the first chain producing node");
|
|
assert(ChainNodesMatched.empty() &&
|
|
"Should only have one EmitMergeInputChains per match");
|
|
|
|
// Read all of the chained nodes.
|
|
unsigned RecNo = Opcode == OPC_EmitMergeInputChains1_1;
|
|
assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
|
|
ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
|
|
|
|
// FIXME: What if other value results of the node have uses not matched
|
|
// by this pattern?
|
|
if (ChainNodesMatched.back() != NodeToMatch &&
|
|
!RecordedNodes[RecNo].first.hasOneUse()) {
|
|
ChainNodesMatched.clear();
|
|
break;
|
|
}
|
|
|
|
// Merge the input chains if they are not intra-pattern references.
|
|
InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
|
|
|
|
if (InputChain.getNode() == 0)
|
|
break; // Failed to merge.
|
|
continue;
|
|
}
|
|
|
|
case OPC_EmitMergeInputChains: {
|
|
assert(InputChain.getNode() == 0 &&
|
|
"EmitMergeInputChains should be the first chain producing node");
|
|
// This node gets a list of nodes we matched in the input that have
|
|
// chains. We want to token factor all of the input chains to these nodes
|
|
// together. However, if any of the input chains is actually one of the
|
|
// nodes matched in this pattern, then we have an intra-match reference.
|
|
// Ignore these because the newly token factored chain should not refer to
|
|
// the old nodes.
|
|
unsigned NumChains = MatcherTable[MatcherIndex++];
|
|
assert(NumChains != 0 && "Can't TF zero chains");
|
|
|
|
assert(ChainNodesMatched.empty() &&
|
|
"Should only have one EmitMergeInputChains per match");
|
|
|
|
// Read all of the chained nodes.
|
|
for (unsigned i = 0; i != NumChains; ++i) {
|
|
unsigned RecNo = MatcherTable[MatcherIndex++];
|
|
assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
|
|
ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
|
|
|
|
// FIXME: What if other value results of the node have uses not matched
|
|
// by this pattern?
|
|
if (ChainNodesMatched.back() != NodeToMatch &&
|
|
!RecordedNodes[RecNo].first.hasOneUse()) {
|
|
ChainNodesMatched.clear();
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If the inner loop broke out, the match fails.
|
|
if (ChainNodesMatched.empty())
|
|
break;
|
|
|
|
// Merge the input chains if they are not intra-pattern references.
|
|
InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
|
|
|
|
if (InputChain.getNode() == 0)
|
|
break; // Failed to merge.
|
|
|
|
continue;
|
|
}
|
|
|
|
case OPC_EmitCopyToReg: {
|
|
unsigned RecNo = MatcherTable[MatcherIndex++];
|
|
assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
|
|
unsigned DestPhysReg = MatcherTable[MatcherIndex++];
|
|
|
|
if (InputChain.getNode() == 0)
|
|
InputChain = CurDAG->getEntryNode();
|
|
|
|
InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(),
|
|
DestPhysReg, RecordedNodes[RecNo].first,
|
|
InputFlag);
|
|
|
|
InputFlag = InputChain.getValue(1);
|
|
continue;
|
|
}
|
|
|
|
case OPC_EmitNodeXForm: {
|
|
unsigned XFormNo = MatcherTable[MatcherIndex++];
|
|
unsigned RecNo = MatcherTable[MatcherIndex++];
|
|
assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
|
|
SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
|
|
RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, (SDNode*) 0));
|
|
continue;
|
|
}
|
|
|
|
case OPC_EmitNode:
|
|
case OPC_MorphNodeTo: {
|
|
uint16_t TargetOpc = MatcherTable[MatcherIndex++];
|
|
TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
|
|
unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
|
|
// Get the result VT list.
|
|
unsigned NumVTs = MatcherTable[MatcherIndex++];
|
|
SmallVector<EVT, 4> VTs;
|
|
for (unsigned i = 0; i != NumVTs; ++i) {
|
|
MVT::SimpleValueType VT =
|
|
(MVT::SimpleValueType)MatcherTable[MatcherIndex++];
|
|
if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy;
|
|
VTs.push_back(VT);
|
|
}
|
|
|
|
if (EmitNodeInfo & OPFL_Chain)
|
|
VTs.push_back(MVT::Other);
|
|
if (EmitNodeInfo & OPFL_FlagOutput)
|
|
VTs.push_back(MVT::Flag);
|
|
|
|
// This is hot code, so optimize the two most common cases of 1 and 2
|
|
// results.
|
|
SDVTList VTList;
|
|
if (VTs.size() == 1)
|
|
VTList = CurDAG->getVTList(VTs[0]);
|
|
else if (VTs.size() == 2)
|
|
VTList = CurDAG->getVTList(VTs[0], VTs[1]);
|
|
else
|
|
VTList = CurDAG->getVTList(VTs.data(), VTs.size());
|
|
|
|
// Get the operand list.
|
|
unsigned NumOps = MatcherTable[MatcherIndex++];
|
|
SmallVector<SDValue, 8> Ops;
|
|
for (unsigned i = 0; i != NumOps; ++i) {
|
|
unsigned RecNo = MatcherTable[MatcherIndex++];
|
|
if (RecNo & 128)
|
|
RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
|
|
|
|
assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
|
|
Ops.push_back(RecordedNodes[RecNo].first);
|
|
}
|
|
|
|
// If there are variadic operands to add, handle them now.
|
|
if (EmitNodeInfo & OPFL_VariadicInfo) {
|
|
// Determine the start index to copy from.
|
|
unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
|
|
FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
|
|
assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
|
|
"Invalid variadic node");
|
|
// Copy all of the variadic operands, not including a potential flag
|
|
// input.
|
|
for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
|
|
i != e; ++i) {
|
|
SDValue V = NodeToMatch->getOperand(i);
|
|
if (V.getValueType() == MVT::Flag) break;
|
|
Ops.push_back(V);
|
|
}
|
|
}
|
|
|
|
// If this has chain/flag inputs, add them.
|
|
if (EmitNodeInfo & OPFL_Chain)
|
|
Ops.push_back(InputChain);
|
|
if ((EmitNodeInfo & OPFL_FlagInput) && InputFlag.getNode() != 0)
|
|
Ops.push_back(InputFlag);
|
|
|
|
// Create the node.
|
|
SDNode *Res = 0;
|
|
if (Opcode != OPC_MorphNodeTo) {
|
|
// If this is a normal EmitNode command, just create the new node and
|
|
// add the results to the RecordedNodes list.
|
|
Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(),
|
|
VTList, Ops.data(), Ops.size());
|
|
|
|
// Add all the non-flag/non-chain results to the RecordedNodes list.
|
|
for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
|
|
if (VTs[i] == MVT::Other || VTs[i] == MVT::Flag) break;
|
|
RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
|
|
(SDNode*) 0));
|
|
}
|
|
|
|
} else {
|
|
Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(),
|
|
EmitNodeInfo);
|
|
}
|
|
|
|
// If the node had chain/flag results, update our notion of the current
|
|
// chain and flag.
|
|
if (EmitNodeInfo & OPFL_FlagOutput) {
|
|
InputFlag = SDValue(Res, VTs.size()-1);
|
|
if (EmitNodeInfo & OPFL_Chain)
|
|
InputChain = SDValue(Res, VTs.size()-2);
|
|
} else if (EmitNodeInfo & OPFL_Chain)
|
|
InputChain = SDValue(Res, VTs.size()-1);
|
|
|
|
// If the OPFL_MemRefs flag is set on this node, slap all of the
|
|
// accumulated memrefs onto it.
|
|
//
|
|
// FIXME: This is vastly incorrect for patterns with multiple outputs
|
|
// instructions that access memory and for ComplexPatterns that match
|
|
// loads.
|
|
if (EmitNodeInfo & OPFL_MemRefs) {
|
|
MachineSDNode::mmo_iterator MemRefs =
|
|
MF->allocateMemRefsArray(MatchedMemRefs.size());
|
|
std::copy(MatchedMemRefs.begin(), MatchedMemRefs.end(), MemRefs);
|
|
cast<MachineSDNode>(Res)
|
|
->setMemRefs(MemRefs, MemRefs + MatchedMemRefs.size());
|
|
}
|
|
|
|
DEBUG(errs() << " "
|
|
<< (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created")
|
|
<< " node: "; Res->dump(CurDAG); errs() << "\n");
|
|
|
|
// If this was a MorphNodeTo then we're completely done!
|
|
if (Opcode == OPC_MorphNodeTo) {
|
|
// Update chain and flag uses.
|
|
UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
|
|
InputFlag, FlagResultNodesMatched, true);
|
|
return Res;
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
case OPC_MarkFlagResults: {
|
|
unsigned NumNodes = MatcherTable[MatcherIndex++];
|
|
|
|
// Read and remember all the flag-result nodes.
|
|
for (unsigned i = 0; i != NumNodes; ++i) {
|
|
unsigned RecNo = MatcherTable[MatcherIndex++];
|
|
if (RecNo & 128)
|
|
RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
|
|
|
|
assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
|
|
FlagResultNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
|
|
}
|
|
continue;
|
|
}
|
|
|
|
case OPC_CompleteMatch: {
|
|
// The match has been completed, and any new nodes (if any) have been
|
|
// created. Patch up references to the matched dag to use the newly
|
|
// created nodes.
|
|
unsigned NumResults = MatcherTable[MatcherIndex++];
|
|
|
|
for (unsigned i = 0; i != NumResults; ++i) {
|
|
unsigned ResSlot = MatcherTable[MatcherIndex++];
|
|
if (ResSlot & 128)
|
|
ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
|
|
|
|
assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame");
|
|
SDValue Res = RecordedNodes[ResSlot].first;
|
|
|
|
assert(i < NodeToMatch->getNumValues() &&
|
|
NodeToMatch->getValueType(i) != MVT::Other &&
|
|
NodeToMatch->getValueType(i) != MVT::Flag &&
|
|
"Invalid number of results to complete!");
|
|
assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
|
|
NodeToMatch->getValueType(i) == MVT::iPTR ||
|
|
Res.getValueType() == MVT::iPTR ||
|
|
NodeToMatch->getValueType(i).getSizeInBits() ==
|
|
Res.getValueType().getSizeInBits()) &&
|
|
"invalid replacement");
|
|
CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res);
|
|
}
|
|
|
|
// If the root node defines a flag, add it to the flag nodes to update
|
|
// list.
|
|
if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Flag)
|
|
FlagResultNodesMatched.push_back(NodeToMatch);
|
|
|
|
// Update chain and flag uses.
|
|
UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched,
|
|
InputFlag, FlagResultNodesMatched, false);
|
|
|
|
assert(NodeToMatch->use_empty() &&
|
|
"Didn't replace all uses of the node?");
|
|
|
|
// FIXME: We just return here, which interacts correctly with SelectRoot
|
|
// above. We should fix this to not return an SDNode* anymore.
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// If the code reached this point, then the match failed. See if there is
|
|
// another child to try in the current 'Scope', otherwise pop it until we
|
|
// find a case to check.
|
|
DEBUG(errs() << " Match failed at index " << CurrentOpcodeIndex << "\n");
|
|
++NumDAGIselRetries;
|
|
while (1) {
|
|
if (MatchScopes.empty()) {
|
|
CannotYetSelect(NodeToMatch);
|
|
return 0;
|
|
}
|
|
|
|
// Restore the interpreter state back to the point where the scope was
|
|
// formed.
|
|
MatchScope &LastScope = MatchScopes.back();
|
|
RecordedNodes.resize(LastScope.NumRecordedNodes);
|
|
NodeStack.clear();
|
|
NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
|
|
N = NodeStack.back();
|
|
|
|
if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
|
|
MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
|
|
MatcherIndex = LastScope.FailIndex;
|
|
|
|
DEBUG(errs() << " Continuing at " << MatcherIndex << "\n");
|
|
|
|
InputChain = LastScope.InputChain;
|
|
InputFlag = LastScope.InputFlag;
|
|
if (!LastScope.HasChainNodesMatched)
|
|
ChainNodesMatched.clear();
|
|
if (!LastScope.HasFlagResultNodesMatched)
|
|
FlagResultNodesMatched.clear();
|
|
|
|
// Check to see what the offset is at the new MatcherIndex. If it is zero
|
|
// we have reached the end of this scope, otherwise we have another child
|
|
// in the current scope to try.
|
|
unsigned NumToSkip = MatcherTable[MatcherIndex++];
|
|
if (NumToSkip & 128)
|
|
NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
|
|
|
|
// If we have another child in this scope to match, update FailIndex and
|
|
// try it.
|
|
if (NumToSkip != 0) {
|
|
LastScope.FailIndex = MatcherIndex+NumToSkip;
|
|
break;
|
|
}
|
|
|
|
// End of this scope, pop it and try the next child in the containing
|
|
// scope.
|
|
MatchScopes.pop_back();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void SelectionDAGISel::CannotYetSelect(SDNode *N) {
|
|
std::string msg;
|
|
raw_string_ostream Msg(msg);
|
|
Msg << "Cannot yet select: ";
|
|
|
|
if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
|
|
N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
|
|
N->getOpcode() != ISD::INTRINSIC_VOID) {
|
|
N->printrFull(Msg, CurDAG);
|
|
} else {
|
|
bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
|
|
unsigned iid =
|
|
cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
|
|
if (iid < Intrinsic::num_intrinsics)
|
|
Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid);
|
|
else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
|
|
Msg << "target intrinsic %" << TII->getName(iid);
|
|
else
|
|
Msg << "unknown intrinsic #" << iid;
|
|
}
|
|
report_fatal_error(Msg.str());
|
|
}
|
|
|
|
char SelectionDAGISel::ID = 0;
|