mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-25 16:31:33 +00:00
cffbb5174f
turns out not to point to a constant string but it forgot change the offset back. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@26242 91177308-0d34-0410-b5e6-96231b3b80d8
2191 lines
83 KiB
C++
2191 lines
83 KiB
C++
//===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This implements the SelectionDAGISel class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "isel"
|
|
#include "llvm/CodeGen/SelectionDAGISel.h"
|
|
#include "llvm/CodeGen/ScheduleDAG.h"
|
|
#include "llvm/CallingConv.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/GlobalVariable.h"
|
|
#include "llvm/InlineAsm.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Intrinsics.h"
|
|
#include "llvm/CodeGen/IntrinsicLowering.h"
|
|
#include "llvm/CodeGen/MachineDebugInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/SSARegMap.h"
|
|
#include "llvm/Target/MRegisterInfo.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Target/TargetFrameInfo.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include <map>
|
|
#include <set>
|
|
#include <iostream>
|
|
using namespace llvm;
|
|
|
|
#ifndef NDEBUG
|
|
static cl::opt<bool>
|
|
ViewISelDAGs("view-isel-dags", cl::Hidden,
|
|
cl::desc("Pop up a window to show isel dags as they are selected"));
|
|
static cl::opt<bool>
|
|
ViewSchedDAGs("view-sched-dags", cl::Hidden,
|
|
cl::desc("Pop up a window to show sched dags as they are processed"));
|
|
#else
|
|
static const bool ViewISelDAGs = 0;
|
|
static const bool ViewSchedDAGs = 0;
|
|
#endif
|
|
|
|
namespace {
|
|
cl::opt<SchedHeuristics>
|
|
ISHeuristic(
|
|
"sched",
|
|
cl::desc("Choose scheduling style"),
|
|
cl::init(defaultScheduling),
|
|
cl::values(
|
|
clEnumValN(defaultScheduling, "default",
|
|
"Target preferred scheduling style"),
|
|
clEnumValN(noScheduling, "none",
|
|
"No scheduling: breadth first sequencing"),
|
|
clEnumValN(simpleScheduling, "simple",
|
|
"Simple two pass scheduling: minimize critical path "
|
|
"and maximize processor utilization"),
|
|
clEnumValN(simpleNoItinScheduling, "simple-noitin",
|
|
"Simple two pass scheduling: Same as simple "
|
|
"except using generic latency"),
|
|
clEnumValN(listSchedulingBURR, "list-burr",
|
|
"Bottom up register reduction list scheduling"),
|
|
clEnumValEnd));
|
|
} // namespace
|
|
|
|
|
|
namespace llvm {
|
|
//===--------------------------------------------------------------------===//
|
|
/// FunctionLoweringInfo - This contains information that is global to a
|
|
/// function that is used when lowering a region of the function.
|
|
class FunctionLoweringInfo {
|
|
public:
|
|
TargetLowering &TLI;
|
|
Function &Fn;
|
|
MachineFunction &MF;
|
|
SSARegMap *RegMap;
|
|
|
|
FunctionLoweringInfo(TargetLowering &TLI, Function &Fn,MachineFunction &MF);
|
|
|
|
/// MBBMap - A mapping from LLVM basic blocks to their machine code entry.
|
|
std::map<const BasicBlock*, MachineBasicBlock *> MBBMap;
|
|
|
|
/// ValueMap - Since we emit code for the function a basic block at a time,
|
|
/// we must remember which virtual registers hold the values for
|
|
/// cross-basic-block values.
|
|
std::map<const Value*, unsigned> ValueMap;
|
|
|
|
/// StaticAllocaMap - Keep track of frame indices for fixed sized allocas in
|
|
/// the entry block. This allows the allocas to be efficiently referenced
|
|
/// anywhere in the function.
|
|
std::map<const AllocaInst*, int> StaticAllocaMap;
|
|
|
|
unsigned MakeReg(MVT::ValueType VT) {
|
|
return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
|
|
}
|
|
|
|
unsigned CreateRegForValue(const Value *V) {
|
|
MVT::ValueType VT = TLI.getValueType(V->getType());
|
|
// The common case is that we will only create one register for this
|
|
// value. If we have that case, create and return the virtual register.
|
|
unsigned NV = TLI.getNumElements(VT);
|
|
if (NV == 1) {
|
|
// If we are promoting this value, pick the next largest supported type.
|
|
return MakeReg(TLI.getTypeToTransformTo(VT));
|
|
}
|
|
|
|
// If this value is represented with multiple target registers, make sure
|
|
// to create enough consequtive registers of the right (smaller) type.
|
|
unsigned NT = VT-1; // Find the type to use.
|
|
while (TLI.getNumElements((MVT::ValueType)NT) != 1)
|
|
--NT;
|
|
|
|
unsigned R = MakeReg((MVT::ValueType)NT);
|
|
for (unsigned i = 1; i != NV; ++i)
|
|
MakeReg((MVT::ValueType)NT);
|
|
return R;
|
|
}
|
|
|
|
unsigned InitializeRegForValue(const Value *V) {
|
|
unsigned &R = ValueMap[V];
|
|
assert(R == 0 && "Already initialized this value register!");
|
|
return R = CreateRegForValue(V);
|
|
}
|
|
};
|
|
}
|
|
|
|
/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
|
|
/// PHI nodes or outside of the basic block that defines it.
|
|
static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
|
|
if (isa<PHINode>(I)) return true;
|
|
BasicBlock *BB = I->getParent();
|
|
for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
|
|
if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
|
|
/// entry block, return true.
|
|
static bool isOnlyUsedInEntryBlock(Argument *A) {
|
|
BasicBlock *Entry = A->getParent()->begin();
|
|
for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
|
|
if (cast<Instruction>(*UI)->getParent() != Entry)
|
|
return false; // Use not in entry block.
|
|
return true;
|
|
}
|
|
|
|
FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli,
|
|
Function &fn, MachineFunction &mf)
|
|
: TLI(tli), Fn(fn), MF(mf), RegMap(MF.getSSARegMap()) {
|
|
|
|
// Create a vreg for each argument register that is not dead and is used
|
|
// outside of the entry block for the function.
|
|
for (Function::arg_iterator AI = Fn.arg_begin(), E = Fn.arg_end();
|
|
AI != E; ++AI)
|
|
if (!isOnlyUsedInEntryBlock(AI))
|
|
InitializeRegForValue(AI);
|
|
|
|
// Initialize the mapping of values to registers. This is only set up for
|
|
// instruction values that are used outside of the block that defines
|
|
// them.
|
|
Function::iterator BB = Fn.begin(), EB = Fn.end();
|
|
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
|
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
|
|
if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(AI->getArraySize())) {
|
|
const Type *Ty = AI->getAllocatedType();
|
|
uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
|
|
unsigned Align =
|
|
std::max((unsigned)TLI.getTargetData().getTypeAlignment(Ty),
|
|
AI->getAlignment());
|
|
|
|
// If the alignment of the value is smaller than the size of the value,
|
|
// and if the size of the value is particularly small (<= 8 bytes),
|
|
// round up to the size of the value for potentially better performance.
|
|
//
|
|
// FIXME: This could be made better with a preferred alignment hook in
|
|
// TargetData. It serves primarily to 8-byte align doubles for X86.
|
|
if (Align < TySize && TySize <= 8) Align = TySize;
|
|
TySize *= CUI->getValue(); // Get total allocated size.
|
|
if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
|
|
StaticAllocaMap[AI] =
|
|
MF.getFrameInfo()->CreateStackObject((unsigned)TySize, Align);
|
|
}
|
|
|
|
for (; BB != EB; ++BB)
|
|
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
|
|
if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
|
|
if (!isa<AllocaInst>(I) ||
|
|
!StaticAllocaMap.count(cast<AllocaInst>(I)))
|
|
InitializeRegForValue(I);
|
|
|
|
// Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
|
|
// also creates the initial PHI MachineInstrs, though none of the input
|
|
// operands are populated.
|
|
for (BB = Fn.begin(), EB = Fn.end(); BB != EB; ++BB) {
|
|
MachineBasicBlock *MBB = new MachineBasicBlock(BB);
|
|
MBBMap[BB] = MBB;
|
|
MF.getBasicBlockList().push_back(MBB);
|
|
|
|
// Create Machine PHI nodes for LLVM PHI nodes, lowering them as
|
|
// appropriate.
|
|
PHINode *PN;
|
|
for (BasicBlock::iterator I = BB->begin();
|
|
(PN = dyn_cast<PHINode>(I)); ++I)
|
|
if (!PN->use_empty()) {
|
|
unsigned NumElements =
|
|
TLI.getNumElements(TLI.getValueType(PN->getType()));
|
|
unsigned PHIReg = ValueMap[PN];
|
|
assert(PHIReg &&"PHI node does not have an assigned virtual register!");
|
|
for (unsigned i = 0; i != NumElements; ++i)
|
|
BuildMI(MBB, TargetInstrInfo::PHI, PN->getNumOperands(), PHIReg+i);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// SelectionDAGLowering - This is the common target-independent lowering
|
|
/// implementation that is parameterized by a TargetLowering object.
|
|
/// Also, targets can overload any lowering method.
|
|
///
|
|
namespace llvm {
|
|
class SelectionDAGLowering {
|
|
MachineBasicBlock *CurMBB;
|
|
|
|
std::map<const Value*, SDOperand> NodeMap;
|
|
|
|
/// PendingLoads - Loads are not emitted to the program immediately. We bunch
|
|
/// them up and then emit token factor nodes when possible. This allows us to
|
|
/// get simple disambiguation between loads without worrying about alias
|
|
/// analysis.
|
|
std::vector<SDOperand> PendingLoads;
|
|
|
|
public:
|
|
// TLI - This is information that describes the available target features we
|
|
// need for lowering. This indicates when operations are unavailable,
|
|
// implemented with a libcall, etc.
|
|
TargetLowering &TLI;
|
|
SelectionDAG &DAG;
|
|
const TargetData &TD;
|
|
|
|
/// FuncInfo - Information about the function as a whole.
|
|
///
|
|
FunctionLoweringInfo &FuncInfo;
|
|
|
|
SelectionDAGLowering(SelectionDAG &dag, TargetLowering &tli,
|
|
FunctionLoweringInfo &funcinfo)
|
|
: TLI(tli), DAG(dag), TD(DAG.getTarget().getTargetData()),
|
|
FuncInfo(funcinfo) {
|
|
}
|
|
|
|
/// getRoot - Return the current virtual root of the Selection DAG.
|
|
///
|
|
SDOperand getRoot() {
|
|
if (PendingLoads.empty())
|
|
return DAG.getRoot();
|
|
|
|
if (PendingLoads.size() == 1) {
|
|
SDOperand Root = PendingLoads[0];
|
|
DAG.setRoot(Root);
|
|
PendingLoads.clear();
|
|
return Root;
|
|
}
|
|
|
|
// Otherwise, we have to make a token factor node.
|
|
SDOperand Root = DAG.getNode(ISD::TokenFactor, MVT::Other, PendingLoads);
|
|
PendingLoads.clear();
|
|
DAG.setRoot(Root);
|
|
return Root;
|
|
}
|
|
|
|
void visit(Instruction &I) { visit(I.getOpcode(), I); }
|
|
|
|
void visit(unsigned Opcode, User &I) {
|
|
switch (Opcode) {
|
|
default: assert(0 && "Unknown instruction type encountered!");
|
|
abort();
|
|
// Build the switch statement using the Instruction.def file.
|
|
#define HANDLE_INST(NUM, OPCODE, CLASS) \
|
|
case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
|
|
#include "llvm/Instruction.def"
|
|
}
|
|
}
|
|
|
|
void setCurrentBasicBlock(MachineBasicBlock *MBB) { CurMBB = MBB; }
|
|
|
|
|
|
SDOperand getIntPtrConstant(uint64_t Val) {
|
|
return DAG.getConstant(Val, TLI.getPointerTy());
|
|
}
|
|
|
|
SDOperand getValue(const Value *V) {
|
|
SDOperand &N = NodeMap[V];
|
|
if (N.Val) return N;
|
|
|
|
const Type *VTy = V->getType();
|
|
MVT::ValueType VT = TLI.getValueType(VTy);
|
|
if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)))
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
|
|
visit(CE->getOpcode(), *CE);
|
|
assert(N.Val && "visit didn't populate the ValueMap!");
|
|
return N;
|
|
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
|
|
return N = DAG.getGlobalAddress(GV, VT);
|
|
} else if (isa<ConstantPointerNull>(C)) {
|
|
return N = DAG.getConstant(0, TLI.getPointerTy());
|
|
} else if (isa<UndefValue>(C)) {
|
|
return N = DAG.getNode(ISD::UNDEF, VT);
|
|
} else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
|
|
return N = DAG.getConstantFP(CFP->getValue(), VT);
|
|
} else if (const PackedType *PTy = dyn_cast<PackedType>(VTy)) {
|
|
unsigned NumElements = PTy->getNumElements();
|
|
MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
|
|
MVT::ValueType TVT = MVT::getVectorType(PVT, NumElements);
|
|
|
|
// Now that we know the number and type of the elements, push a
|
|
// Constant or ConstantFP node onto the ops list for each element of
|
|
// the packed constant.
|
|
std::vector<SDOperand> Ops;
|
|
if (ConstantPacked *CP = dyn_cast<ConstantPacked>(C)) {
|
|
if (MVT::isFloatingPoint(PVT)) {
|
|
for (unsigned i = 0; i != NumElements; ++i) {
|
|
const ConstantFP *El = cast<ConstantFP>(CP->getOperand(i));
|
|
Ops.push_back(DAG.getConstantFP(El->getValue(), PVT));
|
|
}
|
|
} else {
|
|
for (unsigned i = 0; i != NumElements; ++i) {
|
|
const ConstantIntegral *El =
|
|
cast<ConstantIntegral>(CP->getOperand(i));
|
|
Ops.push_back(DAG.getConstant(El->getRawValue(), PVT));
|
|
}
|
|
}
|
|
} else {
|
|
assert(isa<ConstantAggregateZero>(C) && "Unknown packed constant!");
|
|
SDOperand Op;
|
|
if (MVT::isFloatingPoint(PVT))
|
|
Op = DAG.getConstantFP(0, PVT);
|
|
else
|
|
Op = DAG.getConstant(0, PVT);
|
|
Ops.assign(NumElements, Op);
|
|
}
|
|
|
|
// Handle the case where we have a 1-element vector, in which
|
|
// case we want to immediately turn it into a scalar constant.
|
|
if (Ops.size() == 1) {
|
|
return N = Ops[0];
|
|
} else if (TVT != MVT::Other && TLI.isTypeLegal(TVT)) {
|
|
return N = DAG.getNode(ISD::ConstantVec, TVT, Ops);
|
|
} else {
|
|
// If the packed type isn't legal, then create a ConstantVec node with
|
|
// generic Vector type instead.
|
|
return N = DAG.getNode(ISD::ConstantVec, MVT::Vector, Ops);
|
|
}
|
|
} else {
|
|
// Canonicalize all constant ints to be unsigned.
|
|
return N = DAG.getConstant(cast<ConstantIntegral>(C)->getRawValue(),VT);
|
|
}
|
|
|
|
if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
|
|
std::map<const AllocaInst*, int>::iterator SI =
|
|
FuncInfo.StaticAllocaMap.find(AI);
|
|
if (SI != FuncInfo.StaticAllocaMap.end())
|
|
return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
|
|
}
|
|
|
|
std::map<const Value*, unsigned>::const_iterator VMI =
|
|
FuncInfo.ValueMap.find(V);
|
|
assert(VMI != FuncInfo.ValueMap.end() && "Value not in map!");
|
|
|
|
unsigned InReg = VMI->second;
|
|
|
|
// If this type is not legal, make it so now.
|
|
MVT::ValueType DestVT = TLI.getTypeToTransformTo(VT);
|
|
|
|
N = DAG.getCopyFromReg(DAG.getEntryNode(), InReg, DestVT);
|
|
if (DestVT < VT) {
|
|
// Source must be expanded. This input value is actually coming from the
|
|
// register pair VMI->second and VMI->second+1.
|
|
N = DAG.getNode(ISD::BUILD_PAIR, VT, N,
|
|
DAG.getCopyFromReg(DAG.getEntryNode(), InReg+1, DestVT));
|
|
} else {
|
|
if (DestVT > VT) { // Promotion case
|
|
if (MVT::isFloatingPoint(VT))
|
|
N = DAG.getNode(ISD::FP_ROUND, VT, N);
|
|
else
|
|
N = DAG.getNode(ISD::TRUNCATE, VT, N);
|
|
}
|
|
}
|
|
|
|
return N;
|
|
}
|
|
|
|
const SDOperand &setValue(const Value *V, SDOperand NewN) {
|
|
SDOperand &N = NodeMap[V];
|
|
assert(N.Val == 0 && "Already set a value for this node!");
|
|
return N = NewN;
|
|
}
|
|
|
|
unsigned GetAvailableRegister(bool OutReg, bool InReg,
|
|
const std::vector<unsigned> &RegChoices,
|
|
std::set<unsigned> &OutputRegs,
|
|
std::set<unsigned> &InputRegs);
|
|
|
|
// Terminator instructions.
|
|
void visitRet(ReturnInst &I);
|
|
void visitBr(BranchInst &I);
|
|
void visitUnreachable(UnreachableInst &I) { /* noop */ }
|
|
|
|
// These all get lowered before this pass.
|
|
void visitExtractElement(ExtractElementInst &I) { assert(0 && "TODO"); }
|
|
void visitInsertElement(InsertElementInst &I) { assert(0 && "TODO"); }
|
|
void visitSwitch(SwitchInst &I) { assert(0 && "TODO"); }
|
|
void visitInvoke(InvokeInst &I) { assert(0 && "TODO"); }
|
|
void visitUnwind(UnwindInst &I) { assert(0 && "TODO"); }
|
|
|
|
//
|
|
void visitBinary(User &I, unsigned IntOp, unsigned FPOp, unsigned VecOp);
|
|
void visitShift(User &I, unsigned Opcode);
|
|
void visitAdd(User &I) {
|
|
visitBinary(I, ISD::ADD, ISD::FADD, ISD::VADD);
|
|
}
|
|
void visitSub(User &I);
|
|
void visitMul(User &I) {
|
|
visitBinary(I, ISD::MUL, ISD::FMUL, ISD::VMUL);
|
|
}
|
|
void visitDiv(User &I) {
|
|
const Type *Ty = I.getType();
|
|
visitBinary(I, Ty->isSigned() ? ISD::SDIV : ISD::UDIV, ISD::FDIV, 0);
|
|
}
|
|
void visitRem(User &I) {
|
|
const Type *Ty = I.getType();
|
|
visitBinary(I, Ty->isSigned() ? ISD::SREM : ISD::UREM, ISD::FREM, 0);
|
|
}
|
|
void visitAnd(User &I) { visitBinary(I, ISD::AND, 0, 0); }
|
|
void visitOr (User &I) { visitBinary(I, ISD::OR, 0, 0); }
|
|
void visitXor(User &I) { visitBinary(I, ISD::XOR, 0, 0); }
|
|
void visitShl(User &I) { visitShift(I, ISD::SHL); }
|
|
void visitShr(User &I) {
|
|
visitShift(I, I.getType()->isUnsigned() ? ISD::SRL : ISD::SRA);
|
|
}
|
|
|
|
void visitSetCC(User &I, ISD::CondCode SignedOpc, ISD::CondCode UnsignedOpc);
|
|
void visitSetEQ(User &I) { visitSetCC(I, ISD::SETEQ, ISD::SETEQ); }
|
|
void visitSetNE(User &I) { visitSetCC(I, ISD::SETNE, ISD::SETNE); }
|
|
void visitSetLE(User &I) { visitSetCC(I, ISD::SETLE, ISD::SETULE); }
|
|
void visitSetGE(User &I) { visitSetCC(I, ISD::SETGE, ISD::SETUGE); }
|
|
void visitSetLT(User &I) { visitSetCC(I, ISD::SETLT, ISD::SETULT); }
|
|
void visitSetGT(User &I) { visitSetCC(I, ISD::SETGT, ISD::SETUGT); }
|
|
|
|
void visitGetElementPtr(User &I);
|
|
void visitCast(User &I);
|
|
void visitSelect(User &I);
|
|
//
|
|
|
|
void visitMalloc(MallocInst &I);
|
|
void visitFree(FreeInst &I);
|
|
void visitAlloca(AllocaInst &I);
|
|
void visitLoad(LoadInst &I);
|
|
void visitStore(StoreInst &I);
|
|
void visitPHI(PHINode &I) { } // PHI nodes are handled specially.
|
|
void visitCall(CallInst &I);
|
|
void visitInlineAsm(CallInst &I);
|
|
const char *visitIntrinsicCall(CallInst &I, unsigned Intrinsic);
|
|
|
|
void visitVAStart(CallInst &I);
|
|
void visitVAArg(VAArgInst &I);
|
|
void visitVAEnd(CallInst &I);
|
|
void visitVACopy(CallInst &I);
|
|
void visitFrameReturnAddress(CallInst &I, bool isFrameAddress);
|
|
|
|
void visitMemIntrinsic(CallInst &I, unsigned Op);
|
|
|
|
void visitUserOp1(Instruction &I) {
|
|
assert(0 && "UserOp1 should not exist at instruction selection time!");
|
|
abort();
|
|
}
|
|
void visitUserOp2(Instruction &I) {
|
|
assert(0 && "UserOp2 should not exist at instruction selection time!");
|
|
abort();
|
|
}
|
|
};
|
|
} // end namespace llvm
|
|
|
|
void SelectionDAGLowering::visitRet(ReturnInst &I) {
|
|
if (I.getNumOperands() == 0) {
|
|
DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getRoot()));
|
|
return;
|
|
}
|
|
std::vector<SDOperand> NewValues;
|
|
NewValues.push_back(getRoot());
|
|
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
|
|
SDOperand RetOp = getValue(I.getOperand(i));
|
|
|
|
// If this is an integer return value, we need to promote it ourselves to
|
|
// the full width of a register, since LegalizeOp will use ANY_EXTEND rather
|
|
// than sign/zero.
|
|
if (MVT::isInteger(RetOp.getValueType()) &&
|
|
RetOp.getValueType() < MVT::i64) {
|
|
MVT::ValueType TmpVT;
|
|
if (TLI.getTypeAction(MVT::i32) == TargetLowering::Promote)
|
|
TmpVT = TLI.getTypeToTransformTo(MVT::i32);
|
|
else
|
|
TmpVT = MVT::i32;
|
|
|
|
if (I.getOperand(i)->getType()->isSigned())
|
|
RetOp = DAG.getNode(ISD::SIGN_EXTEND, TmpVT, RetOp);
|
|
else
|
|
RetOp = DAG.getNode(ISD::ZERO_EXTEND, TmpVT, RetOp);
|
|
}
|
|
NewValues.push_back(RetOp);
|
|
}
|
|
DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, NewValues));
|
|
}
|
|
|
|
void SelectionDAGLowering::visitBr(BranchInst &I) {
|
|
// Update machine-CFG edges.
|
|
MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
|
|
|
|
// Figure out which block is immediately after the current one.
|
|
MachineBasicBlock *NextBlock = 0;
|
|
MachineFunction::iterator BBI = CurMBB;
|
|
if (++BBI != CurMBB->getParent()->end())
|
|
NextBlock = BBI;
|
|
|
|
if (I.isUnconditional()) {
|
|
// If this is not a fall-through branch, emit the branch.
|
|
if (Succ0MBB != NextBlock)
|
|
DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getRoot(),
|
|
DAG.getBasicBlock(Succ0MBB)));
|
|
} else {
|
|
MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
|
|
|
|
SDOperand Cond = getValue(I.getCondition());
|
|
if (Succ1MBB == NextBlock) {
|
|
// If the condition is false, fall through. This means we should branch
|
|
// if the condition is true to Succ #0.
|
|
DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
|
|
Cond, DAG.getBasicBlock(Succ0MBB)));
|
|
} else if (Succ0MBB == NextBlock) {
|
|
// If the condition is true, fall through. This means we should branch if
|
|
// the condition is false to Succ #1. Invert the condition first.
|
|
SDOperand True = DAG.getConstant(1, Cond.getValueType());
|
|
Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
|
|
DAG.setRoot(DAG.getNode(ISD::BRCOND, MVT::Other, getRoot(),
|
|
Cond, DAG.getBasicBlock(Succ1MBB)));
|
|
} else {
|
|
std::vector<SDOperand> Ops;
|
|
Ops.push_back(getRoot());
|
|
// If the false case is the current basic block, then this is a self
|
|
// loop. We do not want to emit "Loop: ... brcond Out; br Loop", as it
|
|
// adds an extra instruction in the loop. Instead, invert the
|
|
// condition and emit "Loop: ... br!cond Loop; br Out.
|
|
if (CurMBB == Succ1MBB) {
|
|
std::swap(Succ0MBB, Succ1MBB);
|
|
SDOperand True = DAG.getConstant(1, Cond.getValueType());
|
|
Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
|
|
}
|
|
Ops.push_back(Cond);
|
|
Ops.push_back(DAG.getBasicBlock(Succ0MBB));
|
|
Ops.push_back(DAG.getBasicBlock(Succ1MBB));
|
|
DAG.setRoot(DAG.getNode(ISD::BRCONDTWOWAY, MVT::Other, Ops));
|
|
}
|
|
}
|
|
}
|
|
|
|
void SelectionDAGLowering::visitSub(User &I) {
|
|
// -0.0 - X --> fneg
|
|
if (I.getType()->isFloatingPoint()) {
|
|
if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
|
|
if (CFP->isExactlyValue(-0.0)) {
|
|
SDOperand Op2 = getValue(I.getOperand(1));
|
|
setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
|
|
return;
|
|
}
|
|
}
|
|
visitBinary(I, ISD::SUB, ISD::FSUB, ISD::VSUB);
|
|
}
|
|
|
|
void SelectionDAGLowering::visitBinary(User &I, unsigned IntOp, unsigned FPOp,
|
|
unsigned VecOp) {
|
|
const Type *Ty = I.getType();
|
|
SDOperand Op1 = getValue(I.getOperand(0));
|
|
SDOperand Op2 = getValue(I.getOperand(1));
|
|
|
|
if (Ty->isIntegral()) {
|
|
setValue(&I, DAG.getNode(IntOp, Op1.getValueType(), Op1, Op2));
|
|
} else if (Ty->isFloatingPoint()) {
|
|
setValue(&I, DAG.getNode(FPOp, Op1.getValueType(), Op1, Op2));
|
|
} else {
|
|
const PackedType *PTy = cast<PackedType>(Ty);
|
|
unsigned NumElements = PTy->getNumElements();
|
|
MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
|
|
MVT::ValueType TVT = MVT::getVectorType(PVT, NumElements);
|
|
|
|
// Immediately scalarize packed types containing only one element, so that
|
|
// the Legalize pass does not have to deal with them. Similarly, if the
|
|
// abstract vector is going to turn into one that the target natively
|
|
// supports, generate that type now so that Legalize doesn't have to deal
|
|
// with that either. These steps ensure that Legalize only has to handle
|
|
// vector types in its Expand case.
|
|
unsigned Opc = MVT::isFloatingPoint(PVT) ? FPOp : IntOp;
|
|
if (NumElements == 1) {
|
|
setValue(&I, DAG.getNode(Opc, PVT, Op1, Op2));
|
|
} else if (TVT != MVT::Other && TLI.isTypeLegal(TVT)) {
|
|
setValue(&I, DAG.getNode(Opc, TVT, Op1, Op2));
|
|
} else {
|
|
SDOperand Num = DAG.getConstant(NumElements, MVT::i32);
|
|
SDOperand Typ = DAG.getValueType(PVT);
|
|
setValue(&I, DAG.getNode(VecOp, MVT::Vector, Op1, Op2, Num, Typ));
|
|
}
|
|
}
|
|
}
|
|
|
|
void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
|
|
SDOperand Op1 = getValue(I.getOperand(0));
|
|
SDOperand Op2 = getValue(I.getOperand(1));
|
|
|
|
Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
|
|
|
|
setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
|
|
}
|
|
|
|
void SelectionDAGLowering::visitSetCC(User &I,ISD::CondCode SignedOpcode,
|
|
ISD::CondCode UnsignedOpcode) {
|
|
SDOperand Op1 = getValue(I.getOperand(0));
|
|
SDOperand Op2 = getValue(I.getOperand(1));
|
|
ISD::CondCode Opcode = SignedOpcode;
|
|
if (I.getOperand(0)->getType()->isUnsigned())
|
|
Opcode = UnsignedOpcode;
|
|
setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
|
|
}
|
|
|
|
void SelectionDAGLowering::visitSelect(User &I) {
|
|
SDOperand Cond = getValue(I.getOperand(0));
|
|
SDOperand TrueVal = getValue(I.getOperand(1));
|
|
SDOperand FalseVal = getValue(I.getOperand(2));
|
|
setValue(&I, DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
|
|
TrueVal, FalseVal));
|
|
}
|
|
|
|
void SelectionDAGLowering::visitCast(User &I) {
|
|
SDOperand N = getValue(I.getOperand(0));
|
|
MVT::ValueType SrcTy = TLI.getValueType(I.getOperand(0)->getType());
|
|
MVT::ValueType DestTy = TLI.getValueType(I.getType());
|
|
|
|
if (N.getValueType() == DestTy) {
|
|
setValue(&I, N); // noop cast.
|
|
} else if (DestTy == MVT::i1) {
|
|
// Cast to bool is a comparison against zero, not truncation to zero.
|
|
SDOperand Zero = isInteger(SrcTy) ? DAG.getConstant(0, N.getValueType()) :
|
|
DAG.getConstantFP(0.0, N.getValueType());
|
|
setValue(&I, DAG.getSetCC(MVT::i1, N, Zero, ISD::SETNE));
|
|
} else if (isInteger(SrcTy)) {
|
|
if (isInteger(DestTy)) { // Int -> Int cast
|
|
if (DestTy < SrcTy) // Truncating cast?
|
|
setValue(&I, DAG.getNode(ISD::TRUNCATE, DestTy, N));
|
|
else if (I.getOperand(0)->getType()->isSigned())
|
|
setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestTy, N));
|
|
else
|
|
setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestTy, N));
|
|
} else { // Int -> FP cast
|
|
if (I.getOperand(0)->getType()->isSigned())
|
|
setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestTy, N));
|
|
else
|
|
setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestTy, N));
|
|
}
|
|
} else {
|
|
assert(isFloatingPoint(SrcTy) && "Unknown value type!");
|
|
if (isFloatingPoint(DestTy)) { // FP -> FP cast
|
|
if (DestTy < SrcTy) // Rounding cast?
|
|
setValue(&I, DAG.getNode(ISD::FP_ROUND, DestTy, N));
|
|
else
|
|
setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestTy, N));
|
|
} else { // FP -> Int cast.
|
|
if (I.getType()->isSigned())
|
|
setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestTy, N));
|
|
else
|
|
setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestTy, N));
|
|
}
|
|
}
|
|
}
|
|
|
|
void SelectionDAGLowering::visitGetElementPtr(User &I) {
|
|
SDOperand N = getValue(I.getOperand(0));
|
|
const Type *Ty = I.getOperand(0)->getType();
|
|
const Type *UIntPtrTy = TD.getIntPtrType();
|
|
|
|
for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
|
|
OI != E; ++OI) {
|
|
Value *Idx = *OI;
|
|
if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
|
|
unsigned Field = cast<ConstantUInt>(Idx)->getValue();
|
|
if (Field) {
|
|
// N = N + Offset
|
|
uint64_t Offset = TD.getStructLayout(StTy)->MemberOffsets[Field];
|
|
N = DAG.getNode(ISD::ADD, N.getValueType(), N,
|
|
getIntPtrConstant(Offset));
|
|
}
|
|
Ty = StTy->getElementType(Field);
|
|
} else {
|
|
Ty = cast<SequentialType>(Ty)->getElementType();
|
|
|
|
// If this is a constant subscript, handle it quickly.
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
|
|
if (CI->getRawValue() == 0) continue;
|
|
|
|
uint64_t Offs;
|
|
if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CI))
|
|
Offs = (int64_t)TD.getTypeSize(Ty)*CSI->getValue();
|
|
else
|
|
Offs = TD.getTypeSize(Ty)*cast<ConstantUInt>(CI)->getValue();
|
|
N = DAG.getNode(ISD::ADD, N.getValueType(), N, getIntPtrConstant(Offs));
|
|
continue;
|
|
}
|
|
|
|
// N = N + Idx * ElementSize;
|
|
uint64_t ElementSize = TD.getTypeSize(Ty);
|
|
SDOperand IdxN = getValue(Idx);
|
|
|
|
// If the index is smaller or larger than intptr_t, truncate or extend
|
|
// it.
|
|
if (IdxN.getValueType() < N.getValueType()) {
|
|
if (Idx->getType()->isSigned())
|
|
IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
|
|
else
|
|
IdxN = DAG.getNode(ISD::ZERO_EXTEND, N.getValueType(), IdxN);
|
|
} else if (IdxN.getValueType() > N.getValueType())
|
|
IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
|
|
|
|
// If this is a multiply by a power of two, turn it into a shl
|
|
// immediately. This is a very common case.
|
|
if (isPowerOf2_64(ElementSize)) {
|
|
unsigned Amt = Log2_64(ElementSize);
|
|
IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
|
|
DAG.getConstant(Amt, TLI.getShiftAmountTy()));
|
|
N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
|
|
continue;
|
|
}
|
|
|
|
SDOperand Scale = getIntPtrConstant(ElementSize);
|
|
IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
|
|
N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
|
|
}
|
|
}
|
|
setValue(&I, N);
|
|
}
|
|
|
|
void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
|
|
// If this is a fixed sized alloca in the entry block of the function,
|
|
// allocate it statically on the stack.
|
|
if (FuncInfo.StaticAllocaMap.count(&I))
|
|
return; // getValue will auto-populate this.
|
|
|
|
const Type *Ty = I.getAllocatedType();
|
|
uint64_t TySize = TLI.getTargetData().getTypeSize(Ty);
|
|
unsigned Align = std::max((unsigned)TLI.getTargetData().getTypeAlignment(Ty),
|
|
I.getAlignment());
|
|
|
|
SDOperand AllocSize = getValue(I.getArraySize());
|
|
MVT::ValueType IntPtr = TLI.getPointerTy();
|
|
if (IntPtr < AllocSize.getValueType())
|
|
AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
|
|
else if (IntPtr > AllocSize.getValueType())
|
|
AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
|
|
|
|
AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
|
|
getIntPtrConstant(TySize));
|
|
|
|
// Handle alignment. If the requested alignment is less than or equal to the
|
|
// stack alignment, ignore it and round the size of the allocation up to the
|
|
// stack alignment size. If the size is greater than the stack alignment, we
|
|
// note this in the DYNAMIC_STACKALLOC node.
|
|
unsigned StackAlign =
|
|
TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
|
|
if (Align <= StackAlign) {
|
|
Align = 0;
|
|
// Add SA-1 to the size.
|
|
AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
|
|
getIntPtrConstant(StackAlign-1));
|
|
// Mask out the low bits for alignment purposes.
|
|
AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
|
|
getIntPtrConstant(~(uint64_t)(StackAlign-1)));
|
|
}
|
|
|
|
std::vector<MVT::ValueType> VTs;
|
|
VTs.push_back(AllocSize.getValueType());
|
|
VTs.push_back(MVT::Other);
|
|
std::vector<SDOperand> Ops;
|
|
Ops.push_back(getRoot());
|
|
Ops.push_back(AllocSize);
|
|
Ops.push_back(getIntPtrConstant(Align));
|
|
SDOperand DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, Ops);
|
|
DAG.setRoot(setValue(&I, DSA).getValue(1));
|
|
|
|
// Inform the Frame Information that we have just allocated a variable-sized
|
|
// object.
|
|
CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
|
|
}
|
|
|
|
/// getStringValue - Turn an LLVM constant pointer that eventually points to a
|
|
/// global into a string value. Return an empty string if we can't do it.
|
|
///
|
|
static std::string getStringValue(GlobalVariable *GV, unsigned Offset = 0) {
|
|
if (GV->hasInitializer() && isa<ConstantArray>(GV->getInitializer())) {
|
|
ConstantArray *Init = cast<ConstantArray>(GV->getInitializer());
|
|
if (Init->isString()) {
|
|
std::string Result = Init->getAsString();
|
|
if (Offset < Result.size()) {
|
|
// If we are pointing INTO The string, erase the beginning...
|
|
Result.erase(Result.begin(), Result.begin()+Offset);
|
|
return Result;
|
|
}
|
|
}
|
|
}
|
|
return "";
|
|
}
|
|
|
|
void SelectionDAGLowering::visitLoad(LoadInst &I) {
|
|
SDOperand Ptr = getValue(I.getOperand(0));
|
|
|
|
SDOperand Root;
|
|
if (I.isVolatile())
|
|
Root = getRoot();
|
|
else {
|
|
// Do not serialize non-volatile loads against each other.
|
|
Root = DAG.getRoot();
|
|
}
|
|
|
|
const Type *Ty = I.getType();
|
|
SDOperand L;
|
|
|
|
if (const PackedType *PTy = dyn_cast<PackedType>(Ty)) {
|
|
unsigned NumElements = PTy->getNumElements();
|
|
MVT::ValueType PVT = TLI.getValueType(PTy->getElementType());
|
|
MVT::ValueType TVT = MVT::getVectorType(PVT, NumElements);
|
|
|
|
// Immediately scalarize packed types containing only one element, so that
|
|
// the Legalize pass does not have to deal with them.
|
|
if (NumElements == 1) {
|
|
L = DAG.getLoad(PVT, Root, Ptr, DAG.getSrcValue(I.getOperand(0)));
|
|
} else if (TVT != MVT::Other && TLI.isTypeLegal(TVT)) {
|
|
L = DAG.getLoad(TVT, Root, Ptr, DAG.getSrcValue(I.getOperand(0)));
|
|
} else {
|
|
L = DAG.getVecLoad(NumElements, PVT, Root, Ptr,
|
|
DAG.getSrcValue(I.getOperand(0)));
|
|
}
|
|
} else {
|
|
L = DAG.getLoad(TLI.getValueType(Ty), Root, Ptr,
|
|
DAG.getSrcValue(I.getOperand(0)));
|
|
}
|
|
setValue(&I, L);
|
|
|
|
if (I.isVolatile())
|
|
DAG.setRoot(L.getValue(1));
|
|
else
|
|
PendingLoads.push_back(L.getValue(1));
|
|
}
|
|
|
|
|
|
void SelectionDAGLowering::visitStore(StoreInst &I) {
|
|
Value *SrcV = I.getOperand(0);
|
|
SDOperand Src = getValue(SrcV);
|
|
SDOperand Ptr = getValue(I.getOperand(1));
|
|
DAG.setRoot(DAG.getNode(ISD::STORE, MVT::Other, getRoot(), Src, Ptr,
|
|
DAG.getSrcValue(I.getOperand(1))));
|
|
}
|
|
|
|
/// visitIntrinsicCall - Lower the call to the specified intrinsic function. If
|
|
/// we want to emit this as a call to a named external function, return the name
|
|
/// otherwise lower it and return null.
|
|
const char *
|
|
SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
|
|
switch (Intrinsic) {
|
|
case Intrinsic::vastart: visitVAStart(I); return 0;
|
|
case Intrinsic::vaend: visitVAEnd(I); return 0;
|
|
case Intrinsic::vacopy: visitVACopy(I); return 0;
|
|
case Intrinsic::returnaddress: visitFrameReturnAddress(I, false); return 0;
|
|
case Intrinsic::frameaddress: visitFrameReturnAddress(I, true); return 0;
|
|
case Intrinsic::setjmp:
|
|
return "_setjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
|
|
break;
|
|
case Intrinsic::longjmp:
|
|
return "_longjmp"+!TLI.usesUnderscoreSetJmpLongJmp();
|
|
break;
|
|
case Intrinsic::memcpy: visitMemIntrinsic(I, ISD::MEMCPY); return 0;
|
|
case Intrinsic::memset: visitMemIntrinsic(I, ISD::MEMSET); return 0;
|
|
case Intrinsic::memmove: visitMemIntrinsic(I, ISD::MEMMOVE); return 0;
|
|
|
|
case Intrinsic::readport:
|
|
case Intrinsic::readio: {
|
|
std::vector<MVT::ValueType> VTs;
|
|
VTs.push_back(TLI.getValueType(I.getType()));
|
|
VTs.push_back(MVT::Other);
|
|
std::vector<SDOperand> Ops;
|
|
Ops.push_back(getRoot());
|
|
Ops.push_back(getValue(I.getOperand(1)));
|
|
SDOperand Tmp = DAG.getNode(Intrinsic == Intrinsic::readport ?
|
|
ISD::READPORT : ISD::READIO, VTs, Ops);
|
|
|
|
setValue(&I, Tmp);
|
|
DAG.setRoot(Tmp.getValue(1));
|
|
return 0;
|
|
}
|
|
case Intrinsic::writeport:
|
|
case Intrinsic::writeio:
|
|
DAG.setRoot(DAG.getNode(Intrinsic == Intrinsic::writeport ?
|
|
ISD::WRITEPORT : ISD::WRITEIO, MVT::Other,
|
|
getRoot(), getValue(I.getOperand(1)),
|
|
getValue(I.getOperand(2))));
|
|
return 0;
|
|
|
|
case Intrinsic::dbg_stoppoint: {
|
|
if (TLI.getTargetMachine().getIntrinsicLowering().EmitDebugFunctions())
|
|
return "llvm_debugger_stop";
|
|
|
|
MachineDebugInfo *DebugInfo = DAG.getMachineDebugInfo();
|
|
if (DebugInfo && DebugInfo->Verify(I.getOperand(4))) {
|
|
std::vector<SDOperand> Ops;
|
|
|
|
// Input Chain
|
|
Ops.push_back(getRoot());
|
|
|
|
// line number
|
|
Ops.push_back(getValue(I.getOperand(2)));
|
|
|
|
// column
|
|
Ops.push_back(getValue(I.getOperand(3)));
|
|
|
|
DebugInfoDesc *DD = DebugInfo->getDescFor(I.getOperand(4));
|
|
assert(DD && "Not a debug information descriptor");
|
|
CompileUnitDesc *CompileUnit = dyn_cast<CompileUnitDesc>(DD);
|
|
assert(CompileUnit && "Not a compile unit");
|
|
Ops.push_back(DAG.getString(CompileUnit->getFileName()));
|
|
Ops.push_back(DAG.getString(CompileUnit->getDirectory()));
|
|
|
|
if (Ops.size() == 5) // Found filename/workingdir.
|
|
DAG.setRoot(DAG.getNode(ISD::LOCATION, MVT::Other, Ops));
|
|
}
|
|
|
|
setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType())));
|
|
return 0;
|
|
}
|
|
case Intrinsic::dbg_region_start:
|
|
if (TLI.getTargetMachine().getIntrinsicLowering().EmitDebugFunctions())
|
|
return "llvm_dbg_region_start";
|
|
if (I.getType() != Type::VoidTy)
|
|
setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType())));
|
|
return 0;
|
|
case Intrinsic::dbg_region_end:
|
|
if (TLI.getTargetMachine().getIntrinsicLowering().EmitDebugFunctions())
|
|
return "llvm_dbg_region_end";
|
|
if (I.getType() != Type::VoidTy)
|
|
setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType())));
|
|
return 0;
|
|
case Intrinsic::dbg_func_start:
|
|
if (TLI.getTargetMachine().getIntrinsicLowering().EmitDebugFunctions())
|
|
return "llvm_dbg_subprogram";
|
|
if (I.getType() != Type::VoidTy)
|
|
setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType())));
|
|
return 0;
|
|
case Intrinsic::dbg_declare:
|
|
if (I.getType() != Type::VoidTy)
|
|
setValue(&I, DAG.getNode(ISD::UNDEF, TLI.getValueType(I.getType())));
|
|
return 0;
|
|
|
|
case Intrinsic::isunordered_f32:
|
|
case Intrinsic::isunordered_f64:
|
|
setValue(&I, DAG.getSetCC(MVT::i1,getValue(I.getOperand(1)),
|
|
getValue(I.getOperand(2)), ISD::SETUO));
|
|
return 0;
|
|
|
|
case Intrinsic::sqrt_f32:
|
|
case Intrinsic::sqrt_f64:
|
|
setValue(&I, DAG.getNode(ISD::FSQRT,
|
|
getValue(I.getOperand(1)).getValueType(),
|
|
getValue(I.getOperand(1))));
|
|
return 0;
|
|
case Intrinsic::pcmarker: {
|
|
SDOperand Tmp = getValue(I.getOperand(1));
|
|
DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
|
|
return 0;
|
|
}
|
|
case Intrinsic::readcyclecounter: {
|
|
std::vector<MVT::ValueType> VTs;
|
|
VTs.push_back(MVT::i64);
|
|
VTs.push_back(MVT::Other);
|
|
std::vector<SDOperand> Ops;
|
|
Ops.push_back(getRoot());
|
|
SDOperand Tmp = DAG.getNode(ISD::READCYCLECOUNTER, VTs, Ops);
|
|
setValue(&I, Tmp);
|
|
DAG.setRoot(Tmp.getValue(1));
|
|
return 0;
|
|
}
|
|
case Intrinsic::bswap_i16:
|
|
case Intrinsic::bswap_i32:
|
|
case Intrinsic::bswap_i64:
|
|
setValue(&I, DAG.getNode(ISD::BSWAP,
|
|
getValue(I.getOperand(1)).getValueType(),
|
|
getValue(I.getOperand(1))));
|
|
return 0;
|
|
case Intrinsic::cttz_i8:
|
|
case Intrinsic::cttz_i16:
|
|
case Intrinsic::cttz_i32:
|
|
case Intrinsic::cttz_i64:
|
|
setValue(&I, DAG.getNode(ISD::CTTZ,
|
|
getValue(I.getOperand(1)).getValueType(),
|
|
getValue(I.getOperand(1))));
|
|
return 0;
|
|
case Intrinsic::ctlz_i8:
|
|
case Intrinsic::ctlz_i16:
|
|
case Intrinsic::ctlz_i32:
|
|
case Intrinsic::ctlz_i64:
|
|
setValue(&I, DAG.getNode(ISD::CTLZ,
|
|
getValue(I.getOperand(1)).getValueType(),
|
|
getValue(I.getOperand(1))));
|
|
return 0;
|
|
case Intrinsic::ctpop_i8:
|
|
case Intrinsic::ctpop_i16:
|
|
case Intrinsic::ctpop_i32:
|
|
case Intrinsic::ctpop_i64:
|
|
setValue(&I, DAG.getNode(ISD::CTPOP,
|
|
getValue(I.getOperand(1)).getValueType(),
|
|
getValue(I.getOperand(1))));
|
|
return 0;
|
|
case Intrinsic::stacksave: {
|
|
std::vector<MVT::ValueType> VTs;
|
|
VTs.push_back(TLI.getPointerTy());
|
|
VTs.push_back(MVT::Other);
|
|
std::vector<SDOperand> Ops;
|
|
Ops.push_back(getRoot());
|
|
SDOperand Tmp = DAG.getNode(ISD::STACKSAVE, VTs, Ops);
|
|
setValue(&I, Tmp);
|
|
DAG.setRoot(Tmp.getValue(1));
|
|
return 0;
|
|
}
|
|
case Intrinsic::stackrestore: {
|
|
SDOperand Tmp = getValue(I.getOperand(1));
|
|
DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
|
|
return 0;
|
|
}
|
|
case Intrinsic::prefetch:
|
|
// FIXME: Currently discarding prefetches.
|
|
return 0;
|
|
default:
|
|
std::cerr << I;
|
|
assert(0 && "This intrinsic is not implemented yet!");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
void SelectionDAGLowering::visitCall(CallInst &I) {
|
|
const char *RenameFn = 0;
|
|
if (Function *F = I.getCalledFunction()) {
|
|
if (F->isExternal())
|
|
if (unsigned IID = F->getIntrinsicID()) {
|
|
RenameFn = visitIntrinsicCall(I, IID);
|
|
if (!RenameFn)
|
|
return;
|
|
} else { // Not an LLVM intrinsic.
|
|
const std::string &Name = F->getName();
|
|
if (Name[0] == 'f' && (Name == "fabs" || Name == "fabsf")) {
|
|
if (I.getNumOperands() == 2 && // Basic sanity checks.
|
|
I.getOperand(1)->getType()->isFloatingPoint() &&
|
|
I.getType() == I.getOperand(1)->getType()) {
|
|
SDOperand Tmp = getValue(I.getOperand(1));
|
|
setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
|
|
return;
|
|
}
|
|
} else if (Name[0] == 's' && (Name == "sin" || Name == "sinf")) {
|
|
if (I.getNumOperands() == 2 && // Basic sanity checks.
|
|
I.getOperand(1)->getType()->isFloatingPoint() &&
|
|
I.getType() == I.getOperand(1)->getType()) {
|
|
SDOperand Tmp = getValue(I.getOperand(1));
|
|
setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
|
|
return;
|
|
}
|
|
} else if (Name[0] == 'c' && (Name == "cos" || Name == "cosf")) {
|
|
if (I.getNumOperands() == 2 && // Basic sanity checks.
|
|
I.getOperand(1)->getType()->isFloatingPoint() &&
|
|
I.getType() == I.getOperand(1)->getType()) {
|
|
SDOperand Tmp = getValue(I.getOperand(1));
|
|
setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
} else if (isa<InlineAsm>(I.getOperand(0))) {
|
|
visitInlineAsm(I);
|
|
return;
|
|
}
|
|
|
|
SDOperand Callee;
|
|
if (!RenameFn)
|
|
Callee = getValue(I.getOperand(0));
|
|
else
|
|
Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
|
|
std::vector<std::pair<SDOperand, const Type*> > Args;
|
|
Args.reserve(I.getNumOperands());
|
|
for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
|
|
Value *Arg = I.getOperand(i);
|
|
SDOperand ArgNode = getValue(Arg);
|
|
Args.push_back(std::make_pair(ArgNode, Arg->getType()));
|
|
}
|
|
|
|
const PointerType *PT = cast<PointerType>(I.getCalledValue()->getType());
|
|
const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
|
|
|
|
std::pair<SDOperand,SDOperand> Result =
|
|
TLI.LowerCallTo(getRoot(), I.getType(), FTy->isVarArg(), I.getCallingConv(),
|
|
I.isTailCall(), Callee, Args, DAG);
|
|
if (I.getType() != Type::VoidTy)
|
|
setValue(&I, Result.first);
|
|
DAG.setRoot(Result.second);
|
|
}
|
|
|
|
/// GetAvailableRegister - Pick a register from RegChoices that is available
|
|
/// for input and/or output as specified by isOutReg/isInReg. If an allocatable
|
|
/// register is found, it is returned and added to the specified set of used
|
|
/// registers. If not, zero is returned.
|
|
unsigned SelectionDAGLowering::
|
|
GetAvailableRegister(bool isOutReg, bool isInReg,
|
|
const std::vector<unsigned> &RegChoices,
|
|
std::set<unsigned> &OutputRegs,
|
|
std::set<unsigned> &InputRegs) {
|
|
const MRegisterInfo *MRI = DAG.getTarget().getRegisterInfo();
|
|
MachineFunction &MF = *CurMBB->getParent();
|
|
for (unsigned i = 0, e = RegChoices.size(); i != e; ++i) {
|
|
unsigned Reg = RegChoices[i];
|
|
// See if this register is available.
|
|
if (isOutReg && OutputRegs.count(Reg)) continue; // Already used.
|
|
if (isInReg && InputRegs.count(Reg)) continue; // Already used.
|
|
|
|
// Check to see if this register is allocatable (i.e. don't give out the
|
|
// stack pointer).
|
|
bool Found = false;
|
|
for (MRegisterInfo::regclass_iterator RC = MRI->regclass_begin(),
|
|
E = MRI->regclass_end(); !Found && RC != E; ++RC) {
|
|
// NOTE: This isn't ideal. In particular, this might allocate the
|
|
// frame pointer in functions that need it (due to them not being taken
|
|
// out of allocation, because a variable sized allocation hasn't been seen
|
|
// yet). This is a slight code pessimization, but should still work.
|
|
for (TargetRegisterClass::iterator I = (*RC)->allocation_order_begin(MF),
|
|
E = (*RC)->allocation_order_end(MF); I != E; ++I)
|
|
if (*I == Reg) {
|
|
Found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!Found) continue;
|
|
|
|
// Okay, this register is good, return it.
|
|
if (isOutReg) OutputRegs.insert(Reg); // Mark used.
|
|
if (isInReg) InputRegs.insert(Reg); // Mark used.
|
|
return Reg;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// visitInlineAsm - Handle a call to an InlineAsm object.
|
|
///
|
|
void SelectionDAGLowering::visitInlineAsm(CallInst &I) {
|
|
InlineAsm *IA = cast<InlineAsm>(I.getOperand(0));
|
|
|
|
SDOperand AsmStr = DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
|
|
MVT::Other);
|
|
|
|
// Note, we treat inline asms both with and without side-effects as the same.
|
|
// If an inline asm doesn't have side effects and doesn't access memory, we
|
|
// could not choose to not chain it.
|
|
bool hasSideEffects = IA->hasSideEffects();
|
|
|
|
std::vector<InlineAsm::ConstraintInfo> Constraints = IA->ParseConstraints();
|
|
|
|
/// AsmNodeOperands - A list of pairs. The first element is a register, the
|
|
/// second is a bitfield where bit #0 is set if it is a use and bit #1 is set
|
|
/// if it is a def of that register.
|
|
std::vector<SDOperand> AsmNodeOperands;
|
|
AsmNodeOperands.push_back(SDOperand()); // reserve space for input chain
|
|
AsmNodeOperands.push_back(AsmStr);
|
|
|
|
SDOperand Chain = getRoot();
|
|
SDOperand Flag;
|
|
|
|
// Loop over all of the inputs, copying the operand values into the
|
|
// appropriate registers and processing the output regs.
|
|
unsigned RetValReg = 0;
|
|
std::vector<std::pair<unsigned, Value*> > IndirectStoresToEmit;
|
|
unsigned OpNum = 1;
|
|
bool FoundOutputConstraint = false;
|
|
|
|
// We fully assign registers here at isel time. This is not optimal, but
|
|
// should work. For register classes that correspond to LLVM classes, we
|
|
// could let the LLVM RA do its thing, but we currently don't. Do a prepass
|
|
// over the constraints, collecting fixed registers that we know we can't use.
|
|
std::set<unsigned> OutputRegs, InputRegs;
|
|
for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
|
|
assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
|
|
std::string &ConstraintCode = Constraints[i].Codes[0];
|
|
|
|
std::vector<unsigned> Regs =
|
|
TLI.getRegForInlineAsmConstraint(ConstraintCode);
|
|
if (Regs.size() != 1) continue; // Not assigned a fixed reg.
|
|
unsigned TheReg = Regs[0];
|
|
|
|
switch (Constraints[i].Type) {
|
|
case InlineAsm::isOutput:
|
|
// We can't assign any other output to this register.
|
|
OutputRegs.insert(TheReg);
|
|
// If this is an early-clobber output, it cannot be assigned to the same
|
|
// value as the input reg.
|
|
if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
|
|
InputRegs.insert(TheReg);
|
|
break;
|
|
case InlineAsm::isClobber:
|
|
// Clobbered regs cannot be used as inputs or outputs.
|
|
InputRegs.insert(TheReg);
|
|
OutputRegs.insert(TheReg);
|
|
break;
|
|
case InlineAsm::isInput:
|
|
// We can't assign any other input to this register.
|
|
InputRegs.insert(TheReg);
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
|
|
assert(Constraints[i].Codes.size() == 1 && "Only handles one code so far!");
|
|
std::string &ConstraintCode = Constraints[i].Codes[0];
|
|
switch (Constraints[i].Type) {
|
|
case InlineAsm::isOutput: {
|
|
// Copy the output from the appropriate register.
|
|
std::vector<unsigned> Regs =
|
|
TLI.getRegForInlineAsmConstraint(ConstraintCode);
|
|
|
|
// Find a regsister that we can use.
|
|
unsigned DestReg;
|
|
if (Regs.size() == 1)
|
|
DestReg = Regs[0];
|
|
else {
|
|
bool UsesInputRegister = false;
|
|
// If this is an early-clobber output, or if there is an input
|
|
// constraint that matches this, we need to reserve the input register
|
|
// so no other inputs allocate to it.
|
|
if (Constraints[i].isEarlyClobber || Constraints[i].hasMatchingInput)
|
|
UsesInputRegister = true;
|
|
DestReg = GetAvailableRegister(true, UsesInputRegister,
|
|
Regs, OutputRegs, InputRegs);
|
|
}
|
|
|
|
assert(DestReg && "Couldn't allocate output reg!");
|
|
|
|
const Type *OpTy;
|
|
if (!Constraints[i].isIndirectOutput) {
|
|
assert(!FoundOutputConstraint &&
|
|
"Cannot have multiple output constraints yet!");
|
|
FoundOutputConstraint = true;
|
|
assert(I.getType() != Type::VoidTy && "Bad inline asm!");
|
|
|
|
RetValReg = DestReg;
|
|
OpTy = I.getType();
|
|
} else {
|
|
IndirectStoresToEmit.push_back(std::make_pair(DestReg,
|
|
I.getOperand(OpNum)));
|
|
OpTy = I.getOperand(OpNum)->getType();
|
|
OpTy = cast<PointerType>(OpTy)->getElementType();
|
|
OpNum++; // Consumes a call operand.
|
|
}
|
|
|
|
// Add information to the INLINEASM node to know that this register is
|
|
// set.
|
|
AsmNodeOperands.push_back(DAG.getRegister(DestReg,
|
|
TLI.getValueType(OpTy)));
|
|
AsmNodeOperands.push_back(DAG.getConstant(2, MVT::i32)); // ISDEF
|
|
|
|
break;
|
|
}
|
|
case InlineAsm::isInput: {
|
|
Value *Operand = I.getOperand(OpNum);
|
|
const Type *OpTy = Operand->getType();
|
|
OpNum++; // Consumes a call operand.
|
|
|
|
unsigned SrcReg;
|
|
SDOperand ResOp;
|
|
unsigned ResOpType;
|
|
SDOperand InOperandVal = getValue(Operand);
|
|
|
|
if (isdigit(ConstraintCode[0])) { // Matching constraint?
|
|
// If this is required to match an output register we have already set,
|
|
// just use its register.
|
|
unsigned OperandNo = atoi(ConstraintCode.c_str());
|
|
SrcReg = cast<RegisterSDNode>(AsmNodeOperands[OperandNo*2+2])->getReg();
|
|
ResOp = DAG.getRegister(SrcReg, TLI.getValueType(OpTy));
|
|
ResOpType = 1;
|
|
|
|
Chain = DAG.getCopyToReg(Chain, SrcReg, InOperandVal, Flag);
|
|
Flag = Chain.getValue(1);
|
|
} else {
|
|
TargetLowering::ConstraintType CTy = TargetLowering::C_RegisterClass;
|
|
if (ConstraintCode.size() == 1) // not a physreg name.
|
|
CTy = TLI.getConstraintType(ConstraintCode[0]);
|
|
|
|
switch (CTy) {
|
|
default: assert(0 && "Unknown constraint type! FAIL!");
|
|
case TargetLowering::C_RegisterClass: {
|
|
// Copy the input into the appropriate register.
|
|
std::vector<unsigned> Regs =
|
|
TLI.getRegForInlineAsmConstraint(ConstraintCode);
|
|
if (Regs.size() == 1)
|
|
SrcReg = Regs[0];
|
|
else
|
|
SrcReg = GetAvailableRegister(false, true, Regs,
|
|
OutputRegs, InputRegs);
|
|
// FIXME: should be match fail.
|
|
assert(SrcReg && "Wasn't able to allocate register!");
|
|
Chain = DAG.getCopyToReg(Chain, SrcReg, InOperandVal, Flag);
|
|
Flag = Chain.getValue(1);
|
|
|
|
ResOp = DAG.getRegister(SrcReg, TLI.getValueType(OpTy));
|
|
ResOpType = 1;
|
|
break;
|
|
}
|
|
case TargetLowering::C_Other:
|
|
if (!TLI.isOperandValidForConstraint(InOperandVal, ConstraintCode[0]))
|
|
assert(0 && "MATCH FAIL!");
|
|
ResOp = InOperandVal;
|
|
ResOpType = 3;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Add information to the INLINEASM node to know about this input.
|
|
AsmNodeOperands.push_back(ResOp);
|
|
AsmNodeOperands.push_back(DAG.getConstant(ResOpType, MVT::i32));
|
|
break;
|
|
}
|
|
case InlineAsm::isClobber:
|
|
// Nothing to do.
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Finish up input operands.
|
|
AsmNodeOperands[0] = Chain;
|
|
if (Flag.Val) AsmNodeOperands.push_back(Flag);
|
|
|
|
std::vector<MVT::ValueType> VTs;
|
|
VTs.push_back(MVT::Other);
|
|
VTs.push_back(MVT::Flag);
|
|
Chain = DAG.getNode(ISD::INLINEASM, VTs, AsmNodeOperands);
|
|
Flag = Chain.getValue(1);
|
|
|
|
// If this asm returns a register value, copy the result from that register
|
|
// and set it as the value of the call.
|
|
if (RetValReg) {
|
|
SDOperand Val = DAG.getCopyFromReg(Chain, RetValReg,
|
|
TLI.getValueType(I.getType()), Flag);
|
|
Chain = Val.getValue(1);
|
|
Flag = Val.getValue(2);
|
|
setValue(&I, Val);
|
|
}
|
|
|
|
std::vector<std::pair<SDOperand, Value*> > StoresToEmit;
|
|
|
|
// Process indirect outputs, first output all of the flagged copies out of
|
|
// physregs.
|
|
for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
|
|
Value *Ptr = IndirectStoresToEmit[i].second;
|
|
const Type *Ty = cast<PointerType>(Ptr->getType())->getElementType();
|
|
SDOperand Val = DAG.getCopyFromReg(Chain, IndirectStoresToEmit[i].first,
|
|
TLI.getValueType(Ty), Flag);
|
|
Chain = Val.getValue(1);
|
|
Flag = Val.getValue(2);
|
|
StoresToEmit.push_back(std::make_pair(Val, Ptr));
|
|
}
|
|
|
|
// Emit the non-flagged stores from the physregs.
|
|
std::vector<SDOperand> OutChains;
|
|
for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
|
|
OutChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
|
|
StoresToEmit[i].first,
|
|
getValue(StoresToEmit[i].second),
|
|
DAG.getSrcValue(StoresToEmit[i].second)));
|
|
if (!OutChains.empty())
|
|
Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains);
|
|
DAG.setRoot(Chain);
|
|
}
|
|
|
|
|
|
void SelectionDAGLowering::visitMalloc(MallocInst &I) {
|
|
SDOperand Src = getValue(I.getOperand(0));
|
|
|
|
MVT::ValueType IntPtr = TLI.getPointerTy();
|
|
|
|
if (IntPtr < Src.getValueType())
|
|
Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
|
|
else if (IntPtr > Src.getValueType())
|
|
Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
|
|
|
|
// Scale the source by the type size.
|
|
uint64_t ElementSize = TD.getTypeSize(I.getType()->getElementType());
|
|
Src = DAG.getNode(ISD::MUL, Src.getValueType(),
|
|
Src, getIntPtrConstant(ElementSize));
|
|
|
|
std::vector<std::pair<SDOperand, const Type*> > Args;
|
|
Args.push_back(std::make_pair(Src, TLI.getTargetData().getIntPtrType()));
|
|
|
|
std::pair<SDOperand,SDOperand> Result =
|
|
TLI.LowerCallTo(getRoot(), I.getType(), false, CallingConv::C, true,
|
|
DAG.getExternalSymbol("malloc", IntPtr),
|
|
Args, DAG);
|
|
setValue(&I, Result.first); // Pointers always fit in registers
|
|
DAG.setRoot(Result.second);
|
|
}
|
|
|
|
void SelectionDAGLowering::visitFree(FreeInst &I) {
|
|
std::vector<std::pair<SDOperand, const Type*> > Args;
|
|
Args.push_back(std::make_pair(getValue(I.getOperand(0)),
|
|
TLI.getTargetData().getIntPtrType()));
|
|
MVT::ValueType IntPtr = TLI.getPointerTy();
|
|
std::pair<SDOperand,SDOperand> Result =
|
|
TLI.LowerCallTo(getRoot(), Type::VoidTy, false, CallingConv::C, true,
|
|
DAG.getExternalSymbol("free", IntPtr), Args, DAG);
|
|
DAG.setRoot(Result.second);
|
|
}
|
|
|
|
// InsertAtEndOfBasicBlock - This method should be implemented by targets that
|
|
// mark instructions with the 'usesCustomDAGSchedInserter' flag. These
|
|
// instructions are special in various ways, which require special support to
|
|
// insert. The specified MachineInstr is created but not inserted into any
|
|
// basic blocks, and the scheduler passes ownership of it to this method.
|
|
MachineBasicBlock *TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
|
|
MachineBasicBlock *MBB) {
|
|
std::cerr << "If a target marks an instruction with "
|
|
"'usesCustomDAGSchedInserter', it must implement "
|
|
"TargetLowering::InsertAtEndOfBasicBlock!\n";
|
|
abort();
|
|
return 0;
|
|
}
|
|
|
|
void SelectionDAGLowering::visitVAStart(CallInst &I) {
|
|
DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
|
|
getValue(I.getOperand(1)),
|
|
DAG.getSrcValue(I.getOperand(1))));
|
|
}
|
|
|
|
void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
|
|
SDOperand V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
|
|
getValue(I.getOperand(0)),
|
|
DAG.getSrcValue(I.getOperand(0)));
|
|
setValue(&I, V);
|
|
DAG.setRoot(V.getValue(1));
|
|
}
|
|
|
|
void SelectionDAGLowering::visitVAEnd(CallInst &I) {
|
|
DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
|
|
getValue(I.getOperand(1)),
|
|
DAG.getSrcValue(I.getOperand(1))));
|
|
}
|
|
|
|
void SelectionDAGLowering::visitVACopy(CallInst &I) {
|
|
DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
|
|
getValue(I.getOperand(1)),
|
|
getValue(I.getOperand(2)),
|
|
DAG.getSrcValue(I.getOperand(1)),
|
|
DAG.getSrcValue(I.getOperand(2))));
|
|
}
|
|
|
|
// It is always conservatively correct for llvm.returnaddress and
|
|
// llvm.frameaddress to return 0.
|
|
std::pair<SDOperand, SDOperand>
|
|
TargetLowering::LowerFrameReturnAddress(bool isFrameAddr, SDOperand Chain,
|
|
unsigned Depth, SelectionDAG &DAG) {
|
|
return std::make_pair(DAG.getConstant(0, getPointerTy()), Chain);
|
|
}
|
|
|
|
SDOperand TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
|
|
assert(0 && "LowerOperation not implemented for this target!");
|
|
abort();
|
|
return SDOperand();
|
|
}
|
|
|
|
SDOperand TargetLowering::CustomPromoteOperation(SDOperand Op,
|
|
SelectionDAG &DAG) {
|
|
assert(0 && "CustomPromoteOperation not implemented for this target!");
|
|
abort();
|
|
return SDOperand();
|
|
}
|
|
|
|
void SelectionDAGLowering::visitFrameReturnAddress(CallInst &I, bool isFrame) {
|
|
unsigned Depth = (unsigned)cast<ConstantUInt>(I.getOperand(1))->getValue();
|
|
std::pair<SDOperand,SDOperand> Result =
|
|
TLI.LowerFrameReturnAddress(isFrame, getRoot(), Depth, DAG);
|
|
setValue(&I, Result.first);
|
|
DAG.setRoot(Result.second);
|
|
}
|
|
|
|
/// getMemsetValue - Vectorized representation of the memset value
|
|
/// operand.
|
|
static SDOperand getMemsetValue(SDOperand Value, MVT::ValueType VT,
|
|
SelectionDAG &DAG) {
|
|
MVT::ValueType CurVT = VT;
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
|
|
uint64_t Val = C->getValue() & 255;
|
|
unsigned Shift = 8;
|
|
while (CurVT != MVT::i8) {
|
|
Val = (Val << Shift) | Val;
|
|
Shift <<= 1;
|
|
CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
|
|
}
|
|
return DAG.getConstant(Val, VT);
|
|
} else {
|
|
Value = DAG.getNode(ISD::ZERO_EXTEND, VT, Value);
|
|
unsigned Shift = 8;
|
|
while (CurVT != MVT::i8) {
|
|
Value =
|
|
DAG.getNode(ISD::OR, VT,
|
|
DAG.getNode(ISD::SHL, VT, Value,
|
|
DAG.getConstant(Shift, MVT::i8)), Value);
|
|
Shift <<= 1;
|
|
CurVT = (MVT::ValueType)((unsigned)CurVT - 1);
|
|
}
|
|
|
|
return Value;
|
|
}
|
|
}
|
|
|
|
/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
|
|
/// used when a memcpy is turned into a memset when the source is a constant
|
|
/// string ptr.
|
|
static SDOperand getMemsetStringVal(MVT::ValueType VT,
|
|
SelectionDAG &DAG, TargetLowering &TLI,
|
|
std::string &Str, unsigned Offset) {
|
|
MVT::ValueType CurVT = VT;
|
|
uint64_t Val = 0;
|
|
unsigned MSB = getSizeInBits(VT) / 8;
|
|
if (TLI.isLittleEndian())
|
|
Offset = Offset + MSB - 1;
|
|
for (unsigned i = 0; i != MSB; ++i) {
|
|
Val = (Val << 8) | Str[Offset];
|
|
Offset += TLI.isLittleEndian() ? -1 : 1;
|
|
}
|
|
return DAG.getConstant(Val, VT);
|
|
}
|
|
|
|
/// getMemBasePlusOffset - Returns base and offset node for the
|
|
static SDOperand getMemBasePlusOffset(SDOperand Base, unsigned Offset,
|
|
SelectionDAG &DAG, TargetLowering &TLI) {
|
|
MVT::ValueType VT = Base.getValueType();
|
|
return DAG.getNode(ISD::ADD, VT, Base, DAG.getConstant(Offset, VT));
|
|
}
|
|
|
|
/// MeetsMaxMemopRequirement - Determines if the number of memory ops required
|
|
/// to replace the memset / memcpy is below the threshold. It also returns the
|
|
/// types of the sequence of memory ops to perform memset / memcpy.
|
|
static bool MeetsMaxMemopRequirement(std::vector<MVT::ValueType> &MemOps,
|
|
unsigned Limit, uint64_t Size,
|
|
unsigned Align, TargetLowering &TLI) {
|
|
MVT::ValueType VT;
|
|
|
|
if (TLI.allowsUnalignedMemoryAccesses()) {
|
|
VT = MVT::i64;
|
|
} else {
|
|
switch (Align & 7) {
|
|
case 0:
|
|
VT = MVT::i64;
|
|
break;
|
|
case 4:
|
|
VT = MVT::i32;
|
|
break;
|
|
case 2:
|
|
VT = MVT::i16;
|
|
break;
|
|
default:
|
|
VT = MVT::i8;
|
|
break;
|
|
}
|
|
}
|
|
|
|
MVT::ValueType LVT = MVT::i64;
|
|
while (!TLI.isTypeLegal(LVT))
|
|
LVT = (MVT::ValueType)((unsigned)LVT - 1);
|
|
assert(MVT::isInteger(LVT));
|
|
|
|
if (VT > LVT)
|
|
VT = LVT;
|
|
|
|
unsigned NumMemOps = 0;
|
|
while (Size != 0) {
|
|
unsigned VTSize = getSizeInBits(VT) / 8;
|
|
while (VTSize > Size) {
|
|
VT = (MVT::ValueType)((unsigned)VT - 1);
|
|
VTSize >>= 1;
|
|
}
|
|
assert(MVT::isInteger(VT));
|
|
|
|
if (++NumMemOps > Limit)
|
|
return false;
|
|
MemOps.push_back(VT);
|
|
Size -= VTSize;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void SelectionDAGLowering::visitMemIntrinsic(CallInst &I, unsigned Op) {
|
|
SDOperand Op1 = getValue(I.getOperand(1));
|
|
SDOperand Op2 = getValue(I.getOperand(2));
|
|
SDOperand Op3 = getValue(I.getOperand(3));
|
|
SDOperand Op4 = getValue(I.getOperand(4));
|
|
unsigned Align = (unsigned)cast<ConstantSDNode>(Op4)->getValue();
|
|
if (Align == 0) Align = 1;
|
|
|
|
if (ConstantSDNode *Size = dyn_cast<ConstantSDNode>(Op3)) {
|
|
std::vector<MVT::ValueType> MemOps;
|
|
|
|
// Expand memset / memcpy to a series of load / store ops
|
|
// if the size operand falls below a certain threshold.
|
|
std::vector<SDOperand> OutChains;
|
|
switch (Op) {
|
|
default: break; // Do nothing for now.
|
|
case ISD::MEMSET: {
|
|
if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemset(),
|
|
Size->getValue(), Align, TLI)) {
|
|
unsigned NumMemOps = MemOps.size();
|
|
unsigned Offset = 0;
|
|
for (unsigned i = 0; i < NumMemOps; i++) {
|
|
MVT::ValueType VT = MemOps[i];
|
|
unsigned VTSize = getSizeInBits(VT) / 8;
|
|
SDOperand Value = getMemsetValue(Op2, VT, DAG);
|
|
SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, getRoot(),
|
|
Value,
|
|
getMemBasePlusOffset(Op1, Offset, DAG, TLI),
|
|
DAG.getSrcValue(I.getOperand(1), Offset));
|
|
OutChains.push_back(Store);
|
|
Offset += VTSize;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case ISD::MEMCPY: {
|
|
if (MeetsMaxMemopRequirement(MemOps, TLI.getMaxStoresPerMemcpy(),
|
|
Size->getValue(), Align, TLI)) {
|
|
unsigned NumMemOps = MemOps.size();
|
|
unsigned SrcOff = 0, DstOff = 0, SrcDelta = 0;
|
|
GlobalAddressSDNode *G = NULL;
|
|
std::string Str;
|
|
bool CopyFromStr = false;
|
|
|
|
if (Op2.getOpcode() == ISD::GlobalAddress)
|
|
G = cast<GlobalAddressSDNode>(Op2);
|
|
else if (Op2.getOpcode() == ISD::ADD &&
|
|
Op2.getOperand(0).getOpcode() == ISD::GlobalAddress &&
|
|
Op2.getOperand(1).getOpcode() == ISD::Constant) {
|
|
G = cast<GlobalAddressSDNode>(Op2.getOperand(0));
|
|
SrcDelta = cast<ConstantSDNode>(Op2.getOperand(1))->getValue();
|
|
}
|
|
if (G) {
|
|
GlobalVariable *GV = dyn_cast<GlobalVariable>(G->getGlobal());
|
|
if (GV) {
|
|
Str = getStringValue(GV);
|
|
if (!Str.empty()) {
|
|
CopyFromStr = true;
|
|
SrcOff += SrcDelta;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (unsigned i = 0; i < NumMemOps; i++) {
|
|
MVT::ValueType VT = MemOps[i];
|
|
unsigned VTSize = getSizeInBits(VT) / 8;
|
|
SDOperand Value, Chain, Store;
|
|
|
|
if (CopyFromStr) {
|
|
Value = getMemsetStringVal(VT, DAG, TLI, Str, SrcOff);
|
|
Chain = getRoot();
|
|
Store =
|
|
DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
|
|
getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
|
|
DAG.getSrcValue(I.getOperand(1), DstOff));
|
|
} else {
|
|
Value = DAG.getLoad(VT, getRoot(),
|
|
getMemBasePlusOffset(Op2, SrcOff, DAG, TLI),
|
|
DAG.getSrcValue(I.getOperand(2), SrcOff));
|
|
Chain = Value.getValue(1);
|
|
Store =
|
|
DAG.getNode(ISD::STORE, MVT::Other, Chain, Value,
|
|
getMemBasePlusOffset(Op1, DstOff, DAG, TLI),
|
|
DAG.getSrcValue(I.getOperand(1), DstOff));
|
|
}
|
|
OutChains.push_back(Store);
|
|
SrcOff += VTSize;
|
|
DstOff += VTSize;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!OutChains.empty()) {
|
|
DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, OutChains));
|
|
return;
|
|
}
|
|
}
|
|
|
|
std::vector<SDOperand> Ops;
|
|
Ops.push_back(getRoot());
|
|
Ops.push_back(Op1);
|
|
Ops.push_back(Op2);
|
|
Ops.push_back(Op3);
|
|
Ops.push_back(Op4);
|
|
DAG.setRoot(DAG.getNode(Op, MVT::Other, Ops));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SelectionDAGISel code
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
unsigned SelectionDAGISel::MakeReg(MVT::ValueType VT) {
|
|
return RegMap->createVirtualRegister(TLI.getRegClassFor(VT));
|
|
}
|
|
|
|
void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
// FIXME: we only modify the CFG to split critical edges. This
|
|
// updates dom and loop info.
|
|
}
|
|
|
|
|
|
/// InsertGEPComputeCode - Insert code into BB to compute Ptr+PtrOffset,
|
|
/// casting to the type of GEPI.
|
|
static Value *InsertGEPComputeCode(Value *&V, BasicBlock *BB, Instruction *GEPI,
|
|
Value *Ptr, Value *PtrOffset) {
|
|
if (V) return V; // Already computed.
|
|
|
|
BasicBlock::iterator InsertPt;
|
|
if (BB == GEPI->getParent()) {
|
|
// If insert into the GEP's block, insert right after the GEP.
|
|
InsertPt = GEPI;
|
|
++InsertPt;
|
|
} else {
|
|
// Otherwise, insert at the top of BB, after any PHI nodes
|
|
InsertPt = BB->begin();
|
|
while (isa<PHINode>(InsertPt)) ++InsertPt;
|
|
}
|
|
|
|
// If Ptr is itself a cast, but in some other BB, emit a copy of the cast into
|
|
// BB so that there is only one value live across basic blocks (the cast
|
|
// operand).
|
|
if (CastInst *CI = dyn_cast<CastInst>(Ptr))
|
|
if (CI->getParent() != BB && isa<PointerType>(CI->getOperand(0)->getType()))
|
|
Ptr = new CastInst(CI->getOperand(0), CI->getType(), "", InsertPt);
|
|
|
|
// Add the offset, cast it to the right type.
|
|
Ptr = BinaryOperator::createAdd(Ptr, PtrOffset, "", InsertPt);
|
|
Ptr = new CastInst(Ptr, GEPI->getType(), "", InsertPt);
|
|
return V = Ptr;
|
|
}
|
|
|
|
|
|
/// OptimizeGEPExpression - Since we are doing basic-block-at-a-time instruction
|
|
/// selection, we want to be a bit careful about some things. In particular, if
|
|
/// we have a GEP instruction that is used in a different block than it is
|
|
/// defined, the addressing expression of the GEP cannot be folded into loads or
|
|
/// stores that use it. In this case, decompose the GEP and move constant
|
|
/// indices into blocks that use it.
|
|
static void OptimizeGEPExpression(GetElementPtrInst *GEPI,
|
|
const TargetData &TD) {
|
|
// If this GEP is only used inside the block it is defined in, there is no
|
|
// need to rewrite it.
|
|
bool isUsedOutsideDefBB = false;
|
|
BasicBlock *DefBB = GEPI->getParent();
|
|
for (Value::use_iterator UI = GEPI->use_begin(), E = GEPI->use_end();
|
|
UI != E; ++UI) {
|
|
if (cast<Instruction>(*UI)->getParent() != DefBB) {
|
|
isUsedOutsideDefBB = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!isUsedOutsideDefBB) return;
|
|
|
|
// If this GEP has no non-zero constant indices, there is nothing we can do,
|
|
// ignore it.
|
|
bool hasConstantIndex = false;
|
|
for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
|
|
E = GEPI->op_end(); OI != E; ++OI) {
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(*OI))
|
|
if (CI->getRawValue()) {
|
|
hasConstantIndex = true;
|
|
break;
|
|
}
|
|
}
|
|
// If this is a GEP &Alloca, 0, 0, forward subst the frame index into uses.
|
|
if (!hasConstantIndex && !isa<AllocaInst>(GEPI->getOperand(0))) return;
|
|
|
|
// Otherwise, decompose the GEP instruction into multiplies and adds. Sum the
|
|
// constant offset (which we now know is non-zero) and deal with it later.
|
|
uint64_t ConstantOffset = 0;
|
|
const Type *UIntPtrTy = TD.getIntPtrType();
|
|
Value *Ptr = new CastInst(GEPI->getOperand(0), UIntPtrTy, "", GEPI);
|
|
const Type *Ty = GEPI->getOperand(0)->getType();
|
|
|
|
for (GetElementPtrInst::op_iterator OI = GEPI->op_begin()+1,
|
|
E = GEPI->op_end(); OI != E; ++OI) {
|
|
Value *Idx = *OI;
|
|
if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
|
|
unsigned Field = cast<ConstantUInt>(Idx)->getValue();
|
|
if (Field)
|
|
ConstantOffset += TD.getStructLayout(StTy)->MemberOffsets[Field];
|
|
Ty = StTy->getElementType(Field);
|
|
} else {
|
|
Ty = cast<SequentialType>(Ty)->getElementType();
|
|
|
|
// Handle constant subscripts.
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
|
|
if (CI->getRawValue() == 0) continue;
|
|
|
|
if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CI))
|
|
ConstantOffset += (int64_t)TD.getTypeSize(Ty)*CSI->getValue();
|
|
else
|
|
ConstantOffset+=TD.getTypeSize(Ty)*cast<ConstantUInt>(CI)->getValue();
|
|
continue;
|
|
}
|
|
|
|
// Ptr = Ptr + Idx * ElementSize;
|
|
|
|
// Cast Idx to UIntPtrTy if needed.
|
|
Idx = new CastInst(Idx, UIntPtrTy, "", GEPI);
|
|
|
|
uint64_t ElementSize = TD.getTypeSize(Ty);
|
|
// Mask off bits that should not be set.
|
|
ElementSize &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
|
|
Constant *SizeCst = ConstantUInt::get(UIntPtrTy, ElementSize);
|
|
|
|
// Multiply by the element size and add to the base.
|
|
Idx = BinaryOperator::createMul(Idx, SizeCst, "", GEPI);
|
|
Ptr = BinaryOperator::createAdd(Ptr, Idx, "", GEPI);
|
|
}
|
|
}
|
|
|
|
// Make sure that the offset fits in uintptr_t.
|
|
ConstantOffset &= ~0ULL >> (64-UIntPtrTy->getPrimitiveSizeInBits());
|
|
Constant *PtrOffset = ConstantUInt::get(UIntPtrTy, ConstantOffset);
|
|
|
|
// Okay, we have now emitted all of the variable index parts to the BB that
|
|
// the GEP is defined in. Loop over all of the using instructions, inserting
|
|
// an "add Ptr, ConstantOffset" into each block that uses it and update the
|
|
// instruction to use the newly computed value, making GEPI dead. When the
|
|
// user is a load or store instruction address, we emit the add into the user
|
|
// block, otherwise we use a canonical version right next to the gep (these
|
|
// won't be foldable as addresses, so we might as well share the computation).
|
|
|
|
std::map<BasicBlock*,Value*> InsertedExprs;
|
|
while (!GEPI->use_empty()) {
|
|
Instruction *User = cast<Instruction>(GEPI->use_back());
|
|
|
|
// If this use is not foldable into the addressing mode, use a version
|
|
// emitted in the GEP block.
|
|
Value *NewVal;
|
|
if (!isa<LoadInst>(User) &&
|
|
(!isa<StoreInst>(User) || User->getOperand(0) == GEPI)) {
|
|
NewVal = InsertGEPComputeCode(InsertedExprs[DefBB], DefBB, GEPI,
|
|
Ptr, PtrOffset);
|
|
} else {
|
|
// Otherwise, insert the code in the User's block so it can be folded into
|
|
// any users in that block.
|
|
NewVal = InsertGEPComputeCode(InsertedExprs[User->getParent()],
|
|
User->getParent(), GEPI,
|
|
Ptr, PtrOffset);
|
|
}
|
|
User->replaceUsesOfWith(GEPI, NewVal);
|
|
}
|
|
|
|
// Finally, the GEP is dead, remove it.
|
|
GEPI->eraseFromParent();
|
|
}
|
|
|
|
bool SelectionDAGISel::runOnFunction(Function &Fn) {
|
|
MachineFunction &MF = MachineFunction::construct(&Fn, TLI.getTargetMachine());
|
|
RegMap = MF.getSSARegMap();
|
|
DEBUG(std::cerr << "\n\n\n=== " << Fn.getName() << "\n");
|
|
|
|
// First, split all critical edges for PHI nodes with incoming values that are
|
|
// constants, this way the load of the constant into a vreg will not be placed
|
|
// into MBBs that are used some other way.
|
|
//
|
|
// In this pass we also look for GEP instructions that are used across basic
|
|
// blocks and rewrites them to improve basic-block-at-a-time selection.
|
|
//
|
|
for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
|
|
PHINode *PN;
|
|
BasicBlock::iterator BBI;
|
|
for (BBI = BB->begin(); (PN = dyn_cast<PHINode>(BBI)); ++BBI)
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
|
if (isa<Constant>(PN->getIncomingValue(i)))
|
|
SplitCriticalEdge(PN->getIncomingBlock(i), BB);
|
|
|
|
for (BasicBlock::iterator E = BB->end(); BBI != E; )
|
|
if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(BBI++))
|
|
OptimizeGEPExpression(GEPI, TLI.getTargetData());
|
|
}
|
|
|
|
FunctionLoweringInfo FuncInfo(TLI, Fn, MF);
|
|
|
|
for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
|
|
SelectBasicBlock(I, MF, FuncInfo);
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
SDOperand SelectionDAGISel::
|
|
CopyValueToVirtualRegister(SelectionDAGLowering &SDL, Value *V, unsigned Reg) {
|
|
SDOperand Op = SDL.getValue(V);
|
|
assert((Op.getOpcode() != ISD::CopyFromReg ||
|
|
cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
|
|
"Copy from a reg to the same reg!");
|
|
|
|
// If this type is not legal, we must make sure to not create an invalid
|
|
// register use.
|
|
MVT::ValueType SrcVT = Op.getValueType();
|
|
MVT::ValueType DestVT = TLI.getTypeToTransformTo(SrcVT);
|
|
SelectionDAG &DAG = SDL.DAG;
|
|
if (SrcVT == DestVT) {
|
|
return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
|
|
} else if (SrcVT < DestVT) {
|
|
// The src value is promoted to the register.
|
|
if (MVT::isFloatingPoint(SrcVT))
|
|
Op = DAG.getNode(ISD::FP_EXTEND, DestVT, Op);
|
|
else
|
|
Op = DAG.getNode(ISD::ANY_EXTEND, DestVT, Op);
|
|
return DAG.getCopyToReg(SDL.getRoot(), Reg, Op);
|
|
} else {
|
|
// The src value is expanded into multiple registers.
|
|
SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
|
|
Op, DAG.getConstant(0, MVT::i32));
|
|
SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DestVT,
|
|
Op, DAG.getConstant(1, MVT::i32));
|
|
Op = DAG.getCopyToReg(SDL.getRoot(), Reg, Lo);
|
|
return DAG.getCopyToReg(Op, Reg+1, Hi);
|
|
}
|
|
}
|
|
|
|
void SelectionDAGISel::
|
|
LowerArguments(BasicBlock *BB, SelectionDAGLowering &SDL,
|
|
std::vector<SDOperand> &UnorderedChains) {
|
|
// If this is the entry block, emit arguments.
|
|
Function &F = *BB->getParent();
|
|
FunctionLoweringInfo &FuncInfo = SDL.FuncInfo;
|
|
SDOperand OldRoot = SDL.DAG.getRoot();
|
|
std::vector<SDOperand> Args = TLI.LowerArguments(F, SDL.DAG);
|
|
|
|
unsigned a = 0;
|
|
for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
|
|
AI != E; ++AI, ++a)
|
|
if (!AI->use_empty()) {
|
|
SDL.setValue(AI, Args[a]);
|
|
|
|
// If this argument is live outside of the entry block, insert a copy from
|
|
// whereever we got it to the vreg that other BB's will reference it as.
|
|
if (FuncInfo.ValueMap.count(AI)) {
|
|
SDOperand Copy =
|
|
CopyValueToVirtualRegister(SDL, AI, FuncInfo.ValueMap[AI]);
|
|
UnorderedChains.push_back(Copy);
|
|
}
|
|
}
|
|
|
|
// Next, if the function has live ins that need to be copied into vregs,
|
|
// emit the copies now, into the top of the block.
|
|
MachineFunction &MF = SDL.DAG.getMachineFunction();
|
|
if (MF.livein_begin() != MF.livein_end()) {
|
|
SSARegMap *RegMap = MF.getSSARegMap();
|
|
const MRegisterInfo &MRI = *MF.getTarget().getRegisterInfo();
|
|
for (MachineFunction::livein_iterator LI = MF.livein_begin(),
|
|
E = MF.livein_end(); LI != E; ++LI)
|
|
if (LI->second)
|
|
MRI.copyRegToReg(*MF.begin(), MF.begin()->end(), LI->second,
|
|
LI->first, RegMap->getRegClass(LI->second));
|
|
}
|
|
|
|
// Finally, if the target has anything special to do, allow it to do so.
|
|
EmitFunctionEntryCode(F, SDL.DAG.getMachineFunction());
|
|
}
|
|
|
|
|
|
void SelectionDAGISel::BuildSelectionDAG(SelectionDAG &DAG, BasicBlock *LLVMBB,
|
|
std::vector<std::pair<MachineInstr*, unsigned> > &PHINodesToUpdate,
|
|
FunctionLoweringInfo &FuncInfo) {
|
|
SelectionDAGLowering SDL(DAG, TLI, FuncInfo);
|
|
|
|
std::vector<SDOperand> UnorderedChains;
|
|
|
|
// Lower any arguments needed in this block if this is the entry block.
|
|
if (LLVMBB == &LLVMBB->getParent()->front())
|
|
LowerArguments(LLVMBB, SDL, UnorderedChains);
|
|
|
|
BB = FuncInfo.MBBMap[LLVMBB];
|
|
SDL.setCurrentBasicBlock(BB);
|
|
|
|
// Lower all of the non-terminator instructions.
|
|
for (BasicBlock::iterator I = LLVMBB->begin(), E = --LLVMBB->end();
|
|
I != E; ++I)
|
|
SDL.visit(*I);
|
|
|
|
// Ensure that all instructions which are used outside of their defining
|
|
// blocks are available as virtual registers.
|
|
for (BasicBlock::iterator I = LLVMBB->begin(), E = LLVMBB->end(); I != E;++I)
|
|
if (!I->use_empty() && !isa<PHINode>(I)) {
|
|
std::map<const Value*, unsigned>::iterator VMI =FuncInfo.ValueMap.find(I);
|
|
if (VMI != FuncInfo.ValueMap.end())
|
|
UnorderedChains.push_back(
|
|
CopyValueToVirtualRegister(SDL, I, VMI->second));
|
|
}
|
|
|
|
// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
|
|
// ensure constants are generated when needed. Remember the virtual registers
|
|
// that need to be added to the Machine PHI nodes as input. We cannot just
|
|
// directly add them, because expansion might result in multiple MBB's for one
|
|
// BB. As such, the start of the BB might correspond to a different MBB than
|
|
// the end.
|
|
//
|
|
|
|
// Emit constants only once even if used by multiple PHI nodes.
|
|
std::map<Constant*, unsigned> ConstantsOut;
|
|
|
|
// Check successor nodes PHI nodes that expect a constant to be available from
|
|
// this block.
|
|
TerminatorInst *TI = LLVMBB->getTerminator();
|
|
for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
|
|
BasicBlock *SuccBB = TI->getSuccessor(succ);
|
|
MachineBasicBlock::iterator MBBI = FuncInfo.MBBMap[SuccBB]->begin();
|
|
PHINode *PN;
|
|
|
|
// At this point we know that there is a 1-1 correspondence between LLVM PHI
|
|
// nodes and Machine PHI nodes, but the incoming operands have not been
|
|
// emitted yet.
|
|
for (BasicBlock::iterator I = SuccBB->begin();
|
|
(PN = dyn_cast<PHINode>(I)); ++I)
|
|
if (!PN->use_empty()) {
|
|
unsigned Reg;
|
|
Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
|
|
if (Constant *C = dyn_cast<Constant>(PHIOp)) {
|
|
unsigned &RegOut = ConstantsOut[C];
|
|
if (RegOut == 0) {
|
|
RegOut = FuncInfo.CreateRegForValue(C);
|
|
UnorderedChains.push_back(
|
|
CopyValueToVirtualRegister(SDL, C, RegOut));
|
|
}
|
|
Reg = RegOut;
|
|
} else {
|
|
Reg = FuncInfo.ValueMap[PHIOp];
|
|
if (Reg == 0) {
|
|
assert(isa<AllocaInst>(PHIOp) &&
|
|
FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
|
|
"Didn't codegen value into a register!??");
|
|
Reg = FuncInfo.CreateRegForValue(PHIOp);
|
|
UnorderedChains.push_back(
|
|
CopyValueToVirtualRegister(SDL, PHIOp, Reg));
|
|
}
|
|
}
|
|
|
|
// Remember that this register needs to added to the machine PHI node as
|
|
// the input for this MBB.
|
|
unsigned NumElements =
|
|
TLI.getNumElements(TLI.getValueType(PN->getType()));
|
|
for (unsigned i = 0, e = NumElements; i != e; ++i)
|
|
PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
|
|
}
|
|
}
|
|
ConstantsOut.clear();
|
|
|
|
// Turn all of the unordered chains into one factored node.
|
|
if (!UnorderedChains.empty()) {
|
|
SDOperand Root = SDL.getRoot();
|
|
if (Root.getOpcode() != ISD::EntryToken) {
|
|
unsigned i = 0, e = UnorderedChains.size();
|
|
for (; i != e; ++i) {
|
|
assert(UnorderedChains[i].Val->getNumOperands() > 1);
|
|
if (UnorderedChains[i].Val->getOperand(0) == Root)
|
|
break; // Don't add the root if we already indirectly depend on it.
|
|
}
|
|
|
|
if (i == e)
|
|
UnorderedChains.push_back(Root);
|
|
}
|
|
DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, UnorderedChains));
|
|
}
|
|
|
|
// Lower the terminator after the copies are emitted.
|
|
SDL.visit(*LLVMBB->getTerminator());
|
|
|
|
// Make sure the root of the DAG is up-to-date.
|
|
DAG.setRoot(SDL.getRoot());
|
|
}
|
|
|
|
void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, MachineFunction &MF,
|
|
FunctionLoweringInfo &FuncInfo) {
|
|
SelectionDAG DAG(TLI, MF, getAnalysisToUpdate<MachineDebugInfo>());
|
|
CurDAG = &DAG;
|
|
std::vector<std::pair<MachineInstr*, unsigned> > PHINodesToUpdate;
|
|
|
|
// First step, lower LLVM code to some DAG. This DAG may use operations and
|
|
// types that are not supported by the target.
|
|
BuildSelectionDAG(DAG, LLVMBB, PHINodesToUpdate, FuncInfo);
|
|
|
|
// Run the DAG combiner in pre-legalize mode.
|
|
DAG.Combine(false);
|
|
|
|
DEBUG(std::cerr << "Lowered selection DAG:\n");
|
|
DEBUG(DAG.dump());
|
|
|
|
// Second step, hack on the DAG until it only uses operations and types that
|
|
// the target supports.
|
|
DAG.Legalize();
|
|
|
|
DEBUG(std::cerr << "Legalized selection DAG:\n");
|
|
DEBUG(DAG.dump());
|
|
|
|
// Run the DAG combiner in post-legalize mode.
|
|
DAG.Combine(true);
|
|
|
|
if (ViewISelDAGs) DAG.viewGraph();
|
|
|
|
// Third, instruction select all of the operations to machine code, adding the
|
|
// code to the MachineBasicBlock.
|
|
InstructionSelectBasicBlock(DAG);
|
|
|
|
DEBUG(std::cerr << "Selected machine code:\n");
|
|
DEBUG(BB->dump());
|
|
|
|
// Next, now that we know what the last MBB the LLVM BB expanded is, update
|
|
// PHI nodes in successors.
|
|
for (unsigned i = 0, e = PHINodesToUpdate.size(); i != e; ++i) {
|
|
MachineInstr *PHI = PHINodesToUpdate[i].first;
|
|
assert(PHI->getOpcode() == TargetInstrInfo::PHI &&
|
|
"This is not a machine PHI node that we are updating!");
|
|
PHI->addRegOperand(PHINodesToUpdate[i].second);
|
|
PHI->addMachineBasicBlockOperand(BB);
|
|
}
|
|
|
|
// Finally, add the CFG edges from the last selected MBB to the successor
|
|
// MBBs.
|
|
TerminatorInst *TI = LLVMBB->getTerminator();
|
|
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
|
|
MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[TI->getSuccessor(i)];
|
|
BB->addSuccessor(Succ0MBB);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
|
|
/// target node in the graph.
|
|
void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &DAG) {
|
|
if (ViewSchedDAGs) DAG.viewGraph();
|
|
ScheduleDAG *SL = NULL;
|
|
|
|
switch (ISHeuristic) {
|
|
default: assert(0 && "Unrecognized scheduling heuristic");
|
|
case defaultScheduling:
|
|
if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency)
|
|
SL = createSimpleDAGScheduler(noScheduling, DAG, BB);
|
|
else /* TargetLowering::SchedulingForRegPressure */
|
|
SL = createBURRListDAGScheduler(DAG, BB);
|
|
break;
|
|
case noScheduling:
|
|
case simpleScheduling:
|
|
case simpleNoItinScheduling:
|
|
SL = createSimpleDAGScheduler(ISHeuristic, DAG, BB);
|
|
break;
|
|
case listSchedulingBURR:
|
|
SL = createBURRListDAGScheduler(DAG, BB);
|
|
}
|
|
BB = SL->Run();
|
|
delete SL;
|
|
}
|