mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	No clients are iterating over interference overlaps. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137350 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			592 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			592 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- RegAllocBasic.cpp - basic register allocator ----------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file defines the RABasic function pass, which provides a minimal
 | |
| // implementation of the basic register allocator.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #define DEBUG_TYPE "regalloc"
 | |
| #include "RegAllocBase.h"
 | |
| #include "LiveDebugVariables.h"
 | |
| #include "LiveIntervalUnion.h"
 | |
| #include "LiveRangeEdit.h"
 | |
| #include "RenderMachineFunction.h"
 | |
| #include "Spiller.h"
 | |
| #include "VirtRegMap.h"
 | |
| #include "llvm/ADT/OwningPtr.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/PassAnalysisSupport.h"
 | |
| #include "llvm/CodeGen/CalcSpillWeights.h"
 | |
| #include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | |
| #include "llvm/CodeGen/LiveStackAnalysis.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "llvm/CodeGen/MachineLoopInfo.h"
 | |
| #include "llvm/CodeGen/MachineRegisterInfo.h"
 | |
| #include "llvm/CodeGen/Passes.h"
 | |
| #include "llvm/CodeGen/RegAllocRegistry.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetOptions.h"
 | |
| #include "llvm/Target/TargetRegisterInfo.h"
 | |
| #ifndef NDEBUG
 | |
| #include "llvm/ADT/SparseBitVector.h"
 | |
| #endif
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/ErrorHandling.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Support/Timer.h"
 | |
| 
 | |
| #include <cstdlib>
 | |
| #include <queue>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| STATISTIC(NumAssigned     , "Number of registers assigned");
 | |
| STATISTIC(NumUnassigned   , "Number of registers unassigned");
 | |
| STATISTIC(NumNewQueued    , "Number of new live ranges queued");
 | |
| 
 | |
| static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator",
 | |
|                                       createBasicRegisterAllocator);
 | |
| 
 | |
| // Temporary verification option until we can put verification inside
 | |
| // MachineVerifier.
 | |
| static cl::opt<bool, true>
 | |
| VerifyRegAlloc("verify-regalloc", cl::location(RegAllocBase::VerifyEnabled),
 | |
|                cl::desc("Verify during register allocation"));
 | |
| 
 | |
| const char *RegAllocBase::TimerGroupName = "Register Allocation";
 | |
| bool RegAllocBase::VerifyEnabled = false;
 | |
| 
 | |
| namespace {
 | |
|   struct CompSpillWeight {
 | |
|     bool operator()(LiveInterval *A, LiveInterval *B) const {
 | |
|       return A->weight < B->weight;
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| /// RABasic provides a minimal implementation of the basic register allocation
 | |
| /// algorithm. It prioritizes live virtual registers by spill weight and spills
 | |
| /// whenever a register is unavailable. This is not practical in production but
 | |
| /// provides a useful baseline both for measuring other allocators and comparing
 | |
| /// the speed of the basic algorithm against other styles of allocators.
 | |
| class RABasic : public MachineFunctionPass, public RegAllocBase
 | |
| {
 | |
|   // context
 | |
|   MachineFunction *MF;
 | |
| 
 | |
|   // analyses
 | |
|   LiveStacks *LS;
 | |
|   RenderMachineFunction *RMF;
 | |
| 
 | |
|   // state
 | |
|   std::auto_ptr<Spiller> SpillerInstance;
 | |
|   std::priority_queue<LiveInterval*, std::vector<LiveInterval*>,
 | |
|                       CompSpillWeight> Queue;
 | |
| public:
 | |
|   RABasic();
 | |
| 
 | |
|   /// Return the pass name.
 | |
|   virtual const char* getPassName() const {
 | |
|     return "Basic Register Allocator";
 | |
|   }
 | |
| 
 | |
|   /// RABasic analysis usage.
 | |
|   virtual void getAnalysisUsage(AnalysisUsage &AU) const;
 | |
| 
 | |
|   virtual void releaseMemory();
 | |
| 
 | |
|   virtual Spiller &spiller() { return *SpillerInstance; }
 | |
| 
 | |
|   virtual float getPriority(LiveInterval *LI) { return LI->weight; }
 | |
| 
 | |
|   virtual void enqueue(LiveInterval *LI) {
 | |
|     Queue.push(LI);
 | |
|   }
 | |
| 
 | |
|   virtual LiveInterval *dequeue() {
 | |
|     if (Queue.empty())
 | |
|       return 0;
 | |
|     LiveInterval *LI = Queue.top();
 | |
|     Queue.pop();
 | |
|     return LI;
 | |
|   }
 | |
| 
 | |
|   virtual unsigned selectOrSplit(LiveInterval &VirtReg,
 | |
|                                  SmallVectorImpl<LiveInterval*> &SplitVRegs);
 | |
| 
 | |
|   /// Perform register allocation.
 | |
|   virtual bool runOnMachineFunction(MachineFunction &mf);
 | |
| 
 | |
|   static char ID;
 | |
| };
 | |
| 
 | |
| char RABasic::ID = 0;
 | |
| 
 | |
| } // end anonymous namespace
 | |
| 
 | |
| RABasic::RABasic(): MachineFunctionPass(ID) {
 | |
|   initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry());
 | |
|   initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
 | |
|   initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
 | |
|   initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
 | |
|   initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
 | |
|   initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
 | |
|   initializeLiveStacksPass(*PassRegistry::getPassRegistry());
 | |
|   initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
 | |
|   initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
 | |
|   initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
 | |
|   initializeRenderMachineFunctionPass(*PassRegistry::getPassRegistry());
 | |
| }
 | |
| 
 | |
| void RABasic::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.setPreservesCFG();
 | |
|   AU.addRequired<AliasAnalysis>();
 | |
|   AU.addPreserved<AliasAnalysis>();
 | |
|   AU.addRequired<LiveIntervals>();
 | |
|   AU.addPreserved<SlotIndexes>();
 | |
|   AU.addRequired<LiveDebugVariables>();
 | |
|   AU.addPreserved<LiveDebugVariables>();
 | |
|   if (StrongPHIElim)
 | |
|     AU.addRequiredID(StrongPHIEliminationID);
 | |
|   AU.addRequiredTransitiveID(RegisterCoalescerPassID);
 | |
|   AU.addRequired<CalculateSpillWeights>();
 | |
|   AU.addRequired<LiveStacks>();
 | |
|   AU.addPreserved<LiveStacks>();
 | |
|   AU.addRequiredID(MachineDominatorsID);
 | |
|   AU.addPreservedID(MachineDominatorsID);
 | |
|   AU.addRequired<MachineLoopInfo>();
 | |
|   AU.addPreserved<MachineLoopInfo>();
 | |
|   AU.addRequired<VirtRegMap>();
 | |
|   AU.addPreserved<VirtRegMap>();
 | |
|   DEBUG(AU.addRequired<RenderMachineFunction>());
 | |
|   MachineFunctionPass::getAnalysisUsage(AU);
 | |
| }
 | |
| 
 | |
| void RABasic::releaseMemory() {
 | |
|   SpillerInstance.reset(0);
 | |
|   RegAllocBase::releaseMemory();
 | |
| }
 | |
| 
 | |
| #ifndef NDEBUG
 | |
| // Verify each LiveIntervalUnion.
 | |
| void RegAllocBase::verify() {
 | |
|   LiveVirtRegBitSet VisitedVRegs;
 | |
|   OwningArrayPtr<LiveVirtRegBitSet>
 | |
|     unionVRegs(new LiveVirtRegBitSet[PhysReg2LiveUnion.numRegs()]);
 | |
| 
 | |
|   // Verify disjoint unions.
 | |
|   for (unsigned PhysReg = 0; PhysReg < PhysReg2LiveUnion.numRegs(); ++PhysReg) {
 | |
|     DEBUG(PhysReg2LiveUnion[PhysReg].print(dbgs(), TRI));
 | |
|     LiveVirtRegBitSet &VRegs = unionVRegs[PhysReg];
 | |
|     PhysReg2LiveUnion[PhysReg].verify(VRegs);
 | |
|     // Union + intersection test could be done efficiently in one pass, but
 | |
|     // don't add a method to SparseBitVector unless we really need it.
 | |
|     assert(!VisitedVRegs.intersects(VRegs) && "vreg in multiple unions");
 | |
|     VisitedVRegs |= VRegs;
 | |
|   }
 | |
| 
 | |
|   // Verify vreg coverage.
 | |
|   for (LiveIntervals::iterator liItr = LIS->begin(), liEnd = LIS->end();
 | |
|        liItr != liEnd; ++liItr) {
 | |
|     unsigned reg = liItr->first;
 | |
|     if (TargetRegisterInfo::isPhysicalRegister(reg)) continue;
 | |
|     if (!VRM->hasPhys(reg)) continue; // spilled?
 | |
|     unsigned PhysReg = VRM->getPhys(reg);
 | |
|     if (!unionVRegs[PhysReg].test(reg)) {
 | |
|       dbgs() << "LiveVirtReg " << reg << " not in union " <<
 | |
|         TRI->getName(PhysReg) << "\n";
 | |
|       llvm_unreachable("unallocated live vreg");
 | |
|     }
 | |
|   }
 | |
|   // FIXME: I'm not sure how to verify spilled intervals.
 | |
| }
 | |
| #endif //!NDEBUG
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         RegAllocBase Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Instantiate a LiveIntervalUnion for each physical register.
 | |
| void RegAllocBase::LiveUnionArray::init(LiveIntervalUnion::Allocator &allocator,
 | |
|                                         unsigned NRegs) {
 | |
|   NumRegs = NRegs;
 | |
|   Array =
 | |
|     static_cast<LiveIntervalUnion*>(malloc(sizeof(LiveIntervalUnion)*NRegs));
 | |
|   for (unsigned r = 0; r != NRegs; ++r)
 | |
|     new(Array + r) LiveIntervalUnion(r, allocator);
 | |
| }
 | |
| 
 | |
| void RegAllocBase::init(VirtRegMap &vrm, LiveIntervals &lis) {
 | |
|   NamedRegionTimer T("Initialize", TimerGroupName, TimePassesIsEnabled);
 | |
|   TRI = &vrm.getTargetRegInfo();
 | |
|   MRI = &vrm.getRegInfo();
 | |
|   VRM = &vrm;
 | |
|   LIS = &lis;
 | |
|   RegClassInfo.runOnMachineFunction(vrm.getMachineFunction());
 | |
| 
 | |
|   const unsigned NumRegs = TRI->getNumRegs();
 | |
|   if (NumRegs != PhysReg2LiveUnion.numRegs()) {
 | |
|     PhysReg2LiveUnion.init(UnionAllocator, NumRegs);
 | |
|     // Cache an interferece query for each physical reg
 | |
|     Queries.reset(new LiveIntervalUnion::Query[PhysReg2LiveUnion.numRegs()]);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RegAllocBase::LiveUnionArray::clear() {
 | |
|   if (!Array)
 | |
|     return;
 | |
|   for (unsigned r = 0; r != NumRegs; ++r)
 | |
|     Array[r].~LiveIntervalUnion();
 | |
|   free(Array);
 | |
|   NumRegs =  0;
 | |
|   Array = 0;
 | |
| }
 | |
| 
 | |
| void RegAllocBase::releaseMemory() {
 | |
|   for (unsigned r = 0, e = PhysReg2LiveUnion.numRegs(); r != e; ++r)
 | |
|     PhysReg2LiveUnion[r].clear();
 | |
| }
 | |
| 
 | |
| // Visit all the live registers. If they are already assigned to a physical
 | |
| // register, unify them with the corresponding LiveIntervalUnion, otherwise push
 | |
| // them on the priority queue for later assignment.
 | |
| void RegAllocBase::seedLiveRegs() {
 | |
|   NamedRegionTimer T("Seed Live Regs", TimerGroupName, TimePassesIsEnabled);
 | |
|   for (LiveIntervals::iterator I = LIS->begin(), E = LIS->end(); I != E; ++I) {
 | |
|     unsigned RegNum = I->first;
 | |
|     LiveInterval &VirtReg = *I->second;
 | |
|     if (TargetRegisterInfo::isPhysicalRegister(RegNum))
 | |
|       PhysReg2LiveUnion[RegNum].unify(VirtReg);
 | |
|     else
 | |
|       enqueue(&VirtReg);
 | |
|   }
 | |
| }
 | |
| 
 | |
| void RegAllocBase::assign(LiveInterval &VirtReg, unsigned PhysReg) {
 | |
|   DEBUG(dbgs() << "assigning " << PrintReg(VirtReg.reg, TRI)
 | |
|                << " to " << PrintReg(PhysReg, TRI) << '\n');
 | |
|   assert(!VRM->hasPhys(VirtReg.reg) && "Duplicate VirtReg assignment");
 | |
|   VRM->assignVirt2Phys(VirtReg.reg, PhysReg);
 | |
|   MRI->setPhysRegUsed(PhysReg);
 | |
|   PhysReg2LiveUnion[PhysReg].unify(VirtReg);
 | |
|   ++NumAssigned;
 | |
| }
 | |
| 
 | |
| void RegAllocBase::unassign(LiveInterval &VirtReg, unsigned PhysReg) {
 | |
|   DEBUG(dbgs() << "unassigning " << PrintReg(VirtReg.reg, TRI)
 | |
|                << " from " << PrintReg(PhysReg, TRI) << '\n');
 | |
|   assert(VRM->getPhys(VirtReg.reg) == PhysReg && "Inconsistent unassign");
 | |
|   PhysReg2LiveUnion[PhysReg].extract(VirtReg);
 | |
|   VRM->clearVirt(VirtReg.reg);
 | |
|   ++NumUnassigned;
 | |
| }
 | |
| 
 | |
| // Top-level driver to manage the queue of unassigned VirtRegs and call the
 | |
| // selectOrSplit implementation.
 | |
| void RegAllocBase::allocatePhysRegs() {
 | |
|   seedLiveRegs();
 | |
| 
 | |
|   // Continue assigning vregs one at a time to available physical registers.
 | |
|   while (LiveInterval *VirtReg = dequeue()) {
 | |
|     assert(!VRM->hasPhys(VirtReg->reg) && "Register already assigned");
 | |
| 
 | |
|     // Unused registers can appear when the spiller coalesces snippets.
 | |
|     if (MRI->reg_nodbg_empty(VirtReg->reg)) {
 | |
|       DEBUG(dbgs() << "Dropping unused " << *VirtReg << '\n');
 | |
|       LIS->removeInterval(VirtReg->reg);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Invalidate all interference queries, live ranges could have changed.
 | |
|     invalidateVirtRegs();
 | |
| 
 | |
|     // selectOrSplit requests the allocator to return an available physical
 | |
|     // register if possible and populate a list of new live intervals that
 | |
|     // result from splitting.
 | |
|     DEBUG(dbgs() << "\nselectOrSplit "
 | |
|                  << MRI->getRegClass(VirtReg->reg)->getName()
 | |
|                  << ':' << *VirtReg << '\n');
 | |
|     typedef SmallVector<LiveInterval*, 4> VirtRegVec;
 | |
|     VirtRegVec SplitVRegs;
 | |
|     unsigned AvailablePhysReg = selectOrSplit(*VirtReg, SplitVRegs);
 | |
| 
 | |
|     if (AvailablePhysReg == ~0u) {
 | |
|       // selectOrSplit failed to find a register!
 | |
|       const char *Msg = "ran out of registers during register allocation";
 | |
|       // Probably caused by an inline asm.
 | |
|       MachineInstr *MI;
 | |
|       for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(VirtReg->reg);
 | |
|            (MI = I.skipInstruction());)
 | |
|         if (MI->isInlineAsm())
 | |
|           break;
 | |
|       if (MI)
 | |
|         MI->emitError(Msg);
 | |
|       else
 | |
|         report_fatal_error(Msg);
 | |
|       // Keep going after reporting the error.
 | |
|       VRM->assignVirt2Phys(VirtReg->reg,
 | |
|                  RegClassInfo.getOrder(MRI->getRegClass(VirtReg->reg)).front());
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     if (AvailablePhysReg)
 | |
|       assign(*VirtReg, AvailablePhysReg);
 | |
| 
 | |
|     for (VirtRegVec::iterator I = SplitVRegs.begin(), E = SplitVRegs.end();
 | |
|          I != E; ++I) {
 | |
|       LiveInterval *SplitVirtReg = *I;
 | |
|       assert(!VRM->hasPhys(SplitVirtReg->reg) && "Register already assigned");
 | |
|       if (MRI->reg_nodbg_empty(SplitVirtReg->reg)) {
 | |
|         DEBUG(dbgs() << "not queueing unused  " << *SplitVirtReg << '\n');
 | |
|         LIS->removeInterval(SplitVirtReg->reg);
 | |
|         continue;
 | |
|       }
 | |
|       DEBUG(dbgs() << "queuing new interval: " << *SplitVirtReg << "\n");
 | |
|       assert(TargetRegisterInfo::isVirtualRegister(SplitVirtReg->reg) &&
 | |
|              "expect split value in virtual register");
 | |
|       enqueue(SplitVirtReg);
 | |
|       ++NumNewQueued;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Check if this live virtual register interferes with a physical register. If
 | |
| // not, then check for interference on each register that aliases with the
 | |
| // physical register. Return the interfering register.
 | |
| unsigned RegAllocBase::checkPhysRegInterference(LiveInterval &VirtReg,
 | |
|                                                 unsigned PhysReg) {
 | |
|   for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI)
 | |
|     if (query(VirtReg, *AliasI).checkInterference())
 | |
|       return *AliasI;
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // Helper for spillInteferences() that spills all interfering vregs currently
 | |
| // assigned to this physical register.
 | |
| void RegAllocBase::spillReg(LiveInterval& VirtReg, unsigned PhysReg,
 | |
|                             SmallVectorImpl<LiveInterval*> &SplitVRegs) {
 | |
|   LiveIntervalUnion::Query &Q = query(VirtReg, PhysReg);
 | |
|   assert(Q.seenAllInterferences() && "need collectInterferences()");
 | |
|   const SmallVectorImpl<LiveInterval*> &PendingSpills = Q.interferingVRegs();
 | |
| 
 | |
|   for (SmallVectorImpl<LiveInterval*>::const_iterator I = PendingSpills.begin(),
 | |
|          E = PendingSpills.end(); I != E; ++I) {
 | |
|     LiveInterval &SpilledVReg = **I;
 | |
|     DEBUG(dbgs() << "extracting from " <<
 | |
|           TRI->getName(PhysReg) << " " << SpilledVReg << '\n');
 | |
| 
 | |
|     // Deallocate the interfering vreg by removing it from the union.
 | |
|     // A LiveInterval instance may not be in a union during modification!
 | |
|     unassign(SpilledVReg, PhysReg);
 | |
| 
 | |
|     // Spill the extracted interval.
 | |
|     LiveRangeEdit LRE(SpilledVReg, SplitVRegs, 0, &PendingSpills);
 | |
|     spiller().spill(LRE);
 | |
|   }
 | |
|   // After extracting segments, the query's results are invalid. But keep the
 | |
|   // contents valid until we're done accessing pendingSpills.
 | |
|   Q.clear();
 | |
| }
 | |
| 
 | |
| // Spill or split all live virtual registers currently unified under PhysReg
 | |
| // that interfere with VirtReg. The newly spilled or split live intervals are
 | |
| // returned by appending them to SplitVRegs.
 | |
| bool
 | |
| RegAllocBase::spillInterferences(LiveInterval &VirtReg, unsigned PhysReg,
 | |
|                                  SmallVectorImpl<LiveInterval*> &SplitVRegs) {
 | |
|   // Record each interference and determine if all are spillable before mutating
 | |
|   // either the union or live intervals.
 | |
|   unsigned NumInterferences = 0;
 | |
|   // Collect interferences assigned to any alias of the physical register.
 | |
|   for (const unsigned *asI = TRI->getOverlaps(PhysReg); *asI; ++asI) {
 | |
|     LiveIntervalUnion::Query &QAlias = query(VirtReg, *asI);
 | |
|     NumInterferences += QAlias.collectInterferingVRegs();
 | |
|     if (QAlias.seenUnspillableVReg()) {
 | |
|       return false;
 | |
|     }
 | |
|   }
 | |
|   DEBUG(dbgs() << "spilling " << TRI->getName(PhysReg) <<
 | |
|         " interferences with " << VirtReg << "\n");
 | |
|   assert(NumInterferences > 0 && "expect interference");
 | |
| 
 | |
|   // Spill each interfering vreg allocated to PhysReg or an alias.
 | |
|   for (const unsigned *AliasI = TRI->getOverlaps(PhysReg); *AliasI; ++AliasI)
 | |
|     spillReg(VirtReg, *AliasI, SplitVRegs);
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // Add newly allocated physical registers to the MBB live in sets.
 | |
| void RegAllocBase::addMBBLiveIns(MachineFunction *MF) {
 | |
|   NamedRegionTimer T("MBB Live Ins", TimerGroupName, TimePassesIsEnabled);
 | |
|   SlotIndexes *Indexes = LIS->getSlotIndexes();
 | |
|   if (MF->size() <= 1)
 | |
|     return;
 | |
| 
 | |
|   LiveIntervalUnion::SegmentIter SI;
 | |
|   for (unsigned PhysReg = 0; PhysReg < PhysReg2LiveUnion.numRegs(); ++PhysReg) {
 | |
|     LiveIntervalUnion &LiveUnion = PhysReg2LiveUnion[PhysReg];
 | |
|     if (LiveUnion.empty())
 | |
|       continue;
 | |
|     DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " live-in:");
 | |
|     MachineFunction::iterator MBB = llvm::next(MF->begin());
 | |
|     MachineFunction::iterator MFE = MF->end();
 | |
|     SlotIndex Start, Stop;
 | |
|     tie(Start, Stop) = Indexes->getMBBRange(MBB);
 | |
|     SI.setMap(LiveUnion.getMap());
 | |
|     SI.find(Start);
 | |
|     while (SI.valid()) {
 | |
|       if (SI.start() <= Start) {
 | |
|         if (!MBB->isLiveIn(PhysReg))
 | |
|           MBB->addLiveIn(PhysReg);
 | |
|         DEBUG(dbgs() << "\tBB#" << MBB->getNumber() << ':'
 | |
|                      << PrintReg(SI.value()->reg, TRI));
 | |
|       } else if (SI.start() > Stop)
 | |
|         MBB = Indexes->getMBBFromIndex(SI.start().getPrevIndex());
 | |
|       if (++MBB == MFE)
 | |
|         break;
 | |
|       tie(Start, Stop) = Indexes->getMBBRange(MBB);
 | |
|       SI.advanceTo(Start);
 | |
|     }
 | |
|     DEBUG(dbgs() << '\n');
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                         RABasic Implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Driver for the register assignment and splitting heuristics.
 | |
| // Manages iteration over the LiveIntervalUnions.
 | |
| //
 | |
| // This is a minimal implementation of register assignment and splitting that
 | |
| // spills whenever we run out of registers.
 | |
| //
 | |
| // selectOrSplit can only be called once per live virtual register. We then do a
 | |
| // single interference test for each register the correct class until we find an
 | |
| // available register. So, the number of interference tests in the worst case is
 | |
| // |vregs| * |machineregs|. And since the number of interference tests is
 | |
| // minimal, there is no value in caching them outside the scope of
 | |
| // selectOrSplit().
 | |
| unsigned RABasic::selectOrSplit(LiveInterval &VirtReg,
 | |
|                                 SmallVectorImpl<LiveInterval*> &SplitVRegs) {
 | |
|   // Populate a list of physical register spill candidates.
 | |
|   SmallVector<unsigned, 8> PhysRegSpillCands;
 | |
| 
 | |
|   // Check for an available register in this class.
 | |
|   ArrayRef<unsigned> Order =
 | |
|     RegClassInfo.getOrder(MRI->getRegClass(VirtReg.reg));
 | |
|   for (ArrayRef<unsigned>::iterator I = Order.begin(), E = Order.end(); I != E;
 | |
|        ++I) {
 | |
|     unsigned PhysReg = *I;
 | |
| 
 | |
|     // Check interference and as a side effect, intialize queries for this
 | |
|     // VirtReg and its aliases.
 | |
|     unsigned interfReg = checkPhysRegInterference(VirtReg, PhysReg);
 | |
|     if (interfReg == 0) {
 | |
|       // Found an available register.
 | |
|       return PhysReg;
 | |
|     }
 | |
|     Queries[interfReg].collectInterferingVRegs(1);
 | |
|     LiveInterval *interferingVirtReg =
 | |
|       Queries[interfReg].interferingVRegs().front();
 | |
| 
 | |
|     // The current VirtReg must either be spillable, or one of its interferences
 | |
|     // must have less spill weight.
 | |
|     if (interferingVirtReg->weight < VirtReg.weight ) {
 | |
|       PhysRegSpillCands.push_back(PhysReg);
 | |
|     }
 | |
|   }
 | |
|   // Try to spill another interfering reg with less spill weight.
 | |
|   for (SmallVectorImpl<unsigned>::iterator PhysRegI = PhysRegSpillCands.begin(),
 | |
|          PhysRegE = PhysRegSpillCands.end(); PhysRegI != PhysRegE; ++PhysRegI) {
 | |
| 
 | |
|     if (!spillInterferences(VirtReg, *PhysRegI, SplitVRegs)) continue;
 | |
| 
 | |
|     assert(checkPhysRegInterference(VirtReg, *PhysRegI) == 0 &&
 | |
|            "Interference after spill.");
 | |
|     // Tell the caller to allocate to this newly freed physical register.
 | |
|     return *PhysRegI;
 | |
|   }
 | |
| 
 | |
|   // No other spill candidates were found, so spill the current VirtReg.
 | |
|   DEBUG(dbgs() << "spilling: " << VirtReg << '\n');
 | |
|   if (!VirtReg.isSpillable())
 | |
|     return ~0u;
 | |
|   LiveRangeEdit LRE(VirtReg, SplitVRegs);
 | |
|   spiller().spill(LRE);
 | |
| 
 | |
|   // The live virtual register requesting allocation was spilled, so tell
 | |
|   // the caller not to allocate anything during this round.
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| bool RABasic::runOnMachineFunction(MachineFunction &mf) {
 | |
|   DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n"
 | |
|                << "********** Function: "
 | |
|                << ((Value*)mf.getFunction())->getName() << '\n');
 | |
| 
 | |
|   MF = &mf;
 | |
|   DEBUG(RMF = &getAnalysis<RenderMachineFunction>());
 | |
| 
 | |
|   RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>());
 | |
|   SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
 | |
| 
 | |
|   allocatePhysRegs();
 | |
| 
 | |
|   addMBBLiveIns(MF);
 | |
| 
 | |
|   // Diagnostic output before rewriting
 | |
|   DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *VRM << "\n");
 | |
| 
 | |
|   // optional HTML output
 | |
|   DEBUG(RMF->renderMachineFunction("After basic register allocation.", VRM));
 | |
| 
 | |
|   // FIXME: Verification currently must run before VirtRegRewriter. We should
 | |
|   // make the rewriter a separate pass and override verifyAnalysis instead. When
 | |
|   // that happens, verification naturally falls under VerifyMachineCode.
 | |
| #ifndef NDEBUG
 | |
|   if (VerifyEnabled) {
 | |
|     // Verify accuracy of LiveIntervals. The standard machine code verifier
 | |
|     // ensures that each LiveIntervals covers all uses of the virtual reg.
 | |
| 
 | |
|     // FIXME: MachineVerifier is badly broken when using the standard
 | |
|     // spiller. Always use -spiller=inline with -verify-regalloc. Even with the
 | |
|     // inline spiller, some tests fail to verify because the coalescer does not
 | |
|     // always generate verifiable code.
 | |
|     MF->verify(this, "In RABasic::verify");
 | |
| 
 | |
|     // Verify that LiveIntervals are partitioned into unions and disjoint within
 | |
|     // the unions.
 | |
|     verify();
 | |
|   }
 | |
| #endif // !NDEBUG
 | |
| 
 | |
|   // Run rewriter
 | |
|   VRM->rewrite(LIS->getSlotIndexes());
 | |
| 
 | |
|   // Write out new DBG_VALUE instructions.
 | |
|   getAnalysis<LiveDebugVariables>().emitDebugValues(VRM);
 | |
| 
 | |
|   // The pass output is in VirtRegMap. Release all the transient data.
 | |
|   releaseMemory();
 | |
| 
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| FunctionPass* llvm::createBasicRegisterAllocator()
 | |
| {
 | |
|   return new RABasic();
 | |
| }
 |