mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208839 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			729 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			729 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/LazyCallGraph.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/IR/CallSite.h"
 | |
| #include "llvm/IR/InstVisitor.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/PassManager.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| #define DEBUG_TYPE "lcg"
 | |
| 
 | |
| static void findCallees(
 | |
|     SmallVectorImpl<Constant *> &Worklist, SmallPtrSetImpl<Constant *> &Visited,
 | |
|     SmallVectorImpl<PointerUnion<Function *, LazyCallGraph::Node *>> &Callees,
 | |
|     DenseMap<Function *, size_t> &CalleeIndexMap) {
 | |
|   while (!Worklist.empty()) {
 | |
|     Constant *C = Worklist.pop_back_val();
 | |
| 
 | |
|     if (Function *F = dyn_cast<Function>(C)) {
 | |
|       // Note that we consider *any* function with a definition to be a viable
 | |
|       // edge. Even if the function's definition is subject to replacement by
 | |
|       // some other module (say, a weak definition) there may still be
 | |
|       // optimizations which essentially speculate based on the definition and
 | |
|       // a way to check that the specific definition is in fact the one being
 | |
|       // used. For example, this could be done by moving the weak definition to
 | |
|       // a strong (internal) definition and making the weak definition be an
 | |
|       // alias. Then a test of the address of the weak function against the new
 | |
|       // strong definition's address would be an effective way to determine the
 | |
|       // safety of optimizing a direct call edge.
 | |
|       if (!F->isDeclaration() &&
 | |
|           CalleeIndexMap.insert(std::make_pair(F, Callees.size())).second) {
 | |
|         DEBUG(dbgs() << "    Added callable function: " << F->getName()
 | |
|                      << "\n");
 | |
|         Callees.push_back(F);
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     for (Value *Op : C->operand_values())
 | |
|       if (Visited.insert(cast<Constant>(Op)))
 | |
|         Worklist.push_back(cast<Constant>(Op));
 | |
|   }
 | |
| }
 | |
| 
 | |
| LazyCallGraph::Node::Node(LazyCallGraph &G, Function &F)
 | |
|     : G(&G), F(F), DFSNumber(0), LowLink(0) {
 | |
|   DEBUG(dbgs() << "  Adding functions called by '" << F.getName()
 | |
|                << "' to the graph.\n");
 | |
| 
 | |
|   SmallVector<Constant *, 16> Worklist;
 | |
|   SmallPtrSet<Constant *, 16> Visited;
 | |
|   // Find all the potential callees in this function. First walk the
 | |
|   // instructions and add every operand which is a constant to the worklist.
 | |
|   for (BasicBlock &BB : F)
 | |
|     for (Instruction &I : BB)
 | |
|       for (Value *Op : I.operand_values())
 | |
|         if (Constant *C = dyn_cast<Constant>(Op))
 | |
|           if (Visited.insert(C))
 | |
|             Worklist.push_back(C);
 | |
| 
 | |
|   // We've collected all the constant (and thus potentially function or
 | |
|   // function containing) operands to all of the instructions in the function.
 | |
|   // Process them (recursively) collecting every function found.
 | |
|   findCallees(Worklist, Visited, Callees, CalleeIndexMap);
 | |
| }
 | |
| 
 | |
| void LazyCallGraph::Node::insertEdgeInternal(Function &Callee) {
 | |
|   if (Node *N = G->lookup(Callee))
 | |
|     return insertEdgeInternal(*N);
 | |
| 
 | |
|   CalleeIndexMap.insert(std::make_pair(&Callee, Callees.size()));
 | |
|   Callees.push_back(&Callee);
 | |
| }
 | |
| 
 | |
| void LazyCallGraph::Node::insertEdgeInternal(Node &CalleeN) {
 | |
|   CalleeIndexMap.insert(std::make_pair(&CalleeN.getFunction(), Callees.size()));
 | |
|   Callees.push_back(&CalleeN);
 | |
| }
 | |
| 
 | |
| void LazyCallGraph::Node::removeEdgeInternal(Function &Callee) {
 | |
|   auto IndexMapI = CalleeIndexMap.find(&Callee);
 | |
|   assert(IndexMapI != CalleeIndexMap.end() &&
 | |
|          "Callee not in the callee set for this caller?");
 | |
| 
 | |
|   Callees[IndexMapI->second] = nullptr;
 | |
|   CalleeIndexMap.erase(IndexMapI);
 | |
| }
 | |
| 
 | |
| LazyCallGraph::LazyCallGraph(Module &M) : NextDFSNumber(0) {
 | |
|   DEBUG(dbgs() << "Building CG for module: " << M.getModuleIdentifier()
 | |
|                << "\n");
 | |
|   for (Function &F : M)
 | |
|     if (!F.isDeclaration() && !F.hasLocalLinkage())
 | |
|       if (EntryIndexMap.insert(std::make_pair(&F, EntryNodes.size())).second) {
 | |
|         DEBUG(dbgs() << "  Adding '" << F.getName()
 | |
|                      << "' to entry set of the graph.\n");
 | |
|         EntryNodes.push_back(&F);
 | |
|       }
 | |
| 
 | |
|   // Now add entry nodes for functions reachable via initializers to globals.
 | |
|   SmallVector<Constant *, 16> Worklist;
 | |
|   SmallPtrSet<Constant *, 16> Visited;
 | |
|   for (GlobalVariable &GV : M.globals())
 | |
|     if (GV.hasInitializer())
 | |
|       if (Visited.insert(GV.getInitializer()))
 | |
|         Worklist.push_back(GV.getInitializer());
 | |
| 
 | |
|   DEBUG(dbgs() << "  Adding functions referenced by global initializers to the "
 | |
|                   "entry set.\n");
 | |
|   findCallees(Worklist, Visited, EntryNodes, EntryIndexMap);
 | |
| 
 | |
|   for (auto &Entry : EntryNodes) {
 | |
|     assert(!Entry.isNull() &&
 | |
|            "We can't have removed edges before we finish the constructor!");
 | |
|     if (Function *F = Entry.dyn_cast<Function *>())
 | |
|       SCCEntryNodes.push_back(F);
 | |
|     else
 | |
|       SCCEntryNodes.push_back(&Entry.get<Node *>()->getFunction());
 | |
|   }
 | |
| }
 | |
| 
 | |
| LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
 | |
|     : BPA(std::move(G.BPA)), NodeMap(std::move(G.NodeMap)),
 | |
|       EntryNodes(std::move(G.EntryNodes)),
 | |
|       EntryIndexMap(std::move(G.EntryIndexMap)), SCCBPA(std::move(G.SCCBPA)),
 | |
|       SCCMap(std::move(G.SCCMap)), LeafSCCs(std::move(G.LeafSCCs)),
 | |
|       DFSStack(std::move(G.DFSStack)),
 | |
|       SCCEntryNodes(std::move(G.SCCEntryNodes)),
 | |
|       NextDFSNumber(G.NextDFSNumber) {
 | |
|   updateGraphPtrs();
 | |
| }
 | |
| 
 | |
| LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
 | |
|   BPA = std::move(G.BPA);
 | |
|   NodeMap = std::move(G.NodeMap);
 | |
|   EntryNodes = std::move(G.EntryNodes);
 | |
|   EntryIndexMap = std::move(G.EntryIndexMap);
 | |
|   SCCBPA = std::move(G.SCCBPA);
 | |
|   SCCMap = std::move(G.SCCMap);
 | |
|   LeafSCCs = std::move(G.LeafSCCs);
 | |
|   DFSStack = std::move(G.DFSStack);
 | |
|   SCCEntryNodes = std::move(G.SCCEntryNodes);
 | |
|   NextDFSNumber = G.NextDFSNumber;
 | |
|   updateGraphPtrs();
 | |
|   return *this;
 | |
| }
 | |
| 
 | |
| void LazyCallGraph::SCC::insert(Node &N) {
 | |
|   N.DFSNumber = N.LowLink = -1;
 | |
|   Nodes.push_back(&N);
 | |
|   G->SCCMap[&N] = this;
 | |
| }
 | |
| 
 | |
| bool LazyCallGraph::SCC::isDescendantOf(const SCC &C) const {
 | |
|   // Walk up the parents of this SCC and verify that we eventually find C.
 | |
|   SmallVector<const SCC *, 4> AncestorWorklist;
 | |
|   AncestorWorklist.push_back(this);
 | |
|   do {
 | |
|     const SCC *AncestorC = AncestorWorklist.pop_back_val();
 | |
|     if (AncestorC->isChildOf(C))
 | |
|       return true;
 | |
|     for (const SCC *ParentC : AncestorC->ParentSCCs)
 | |
|       AncestorWorklist.push_back(ParentC);
 | |
|   } while (!AncestorWorklist.empty());
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void LazyCallGraph::SCC::insertIntraSCCEdge(Node &CallerN, Node &CalleeN) {
 | |
|   // First insert it into the caller.
 | |
|   CallerN.insertEdgeInternal(CalleeN);
 | |
| 
 | |
|   assert(G->SCCMap.lookup(&CallerN) == this && "Caller must be in this SCC.");
 | |
|   assert(G->SCCMap.lookup(&CalleeN) == this && "Callee must be in this SCC.");
 | |
| 
 | |
|   // Nothing changes about this SCC or any other.
 | |
| }
 | |
| 
 | |
| void LazyCallGraph::SCC::insertOutgoingEdge(Node &CallerN, Node &CalleeN) {
 | |
|   // First insert it into the caller.
 | |
|   CallerN.insertEdgeInternal(CalleeN);
 | |
| 
 | |
|   assert(G->SCCMap.lookup(&CallerN) == this && "Caller must be in this SCC.");
 | |
| 
 | |
|   SCC &CalleeC = *G->SCCMap.lookup(&CalleeN);
 | |
|   assert(&CalleeC != this && "Callee must not be in this SCC.");
 | |
|   assert(CalleeC.isDescendantOf(*this) &&
 | |
|          "Callee must be a descendant of the Caller.");
 | |
| 
 | |
|   // The only change required is to add this SCC to the parent set of the callee.
 | |
|   CalleeC.ParentSCCs.insert(this);
 | |
| }
 | |
| 
 | |
| SmallVector<LazyCallGraph::SCC *, 1>
 | |
| LazyCallGraph::SCC::insertIncomingEdge(Node &CallerN, Node &CalleeN) {
 | |
|   // First insert it into the caller.
 | |
|   CallerN.insertEdgeInternal(CalleeN);
 | |
| 
 | |
|   assert(G->SCCMap.lookup(&CalleeN) == this && "Callee must be in this SCC.");
 | |
| 
 | |
|   SCC &CallerC = *G->SCCMap.lookup(&CallerN);
 | |
|   assert(&CallerC != this && "Caller must not be in this SCC.");
 | |
|   assert(CallerC.isDescendantOf(*this) &&
 | |
|          "Caller must be a descendant of the Callee.");
 | |
| 
 | |
|   // The algorithm we use for merging SCCs based on the cycle introduced here
 | |
|   // is to walk the SCC inverted DAG formed by the parent SCC sets. The inverse
 | |
|   // graph has the same cycle properties as the actual DAG of the SCCs, and
 | |
|   // when forming SCCs lazily by a DFS, the bottom of the graph won't exist in
 | |
|   // many cases which should prune the search space.
 | |
|   //
 | |
|   // FIXME: We can get this pruning behavior even after the incremental SCC
 | |
|   // formation by leaving behind (conservative) DFS numberings in the nodes,
 | |
|   // and pruning the search with them. These would need to be cleverly updated
 | |
|   // during the removal of intra-SCC edges, but could be preserved
 | |
|   // conservatively.
 | |
| 
 | |
|   // The set of SCCs that are connected to the caller, and thus will
 | |
|   // participate in the merged connected component.
 | |
|   SmallPtrSet<SCC *, 8> ConnectedSCCs;
 | |
|   ConnectedSCCs.insert(this);
 | |
|   ConnectedSCCs.insert(&CallerC);
 | |
| 
 | |
|   // We build up a DFS stack of the parents chains.
 | |
|   SmallVector<std::pair<SCC *, SCC::parent_iterator>, 8> DFSSCCs;
 | |
|   SmallPtrSet<SCC *, 8> VisitedSCCs;
 | |
|   int ConnectedDepth = -1;
 | |
|   SCC *C = this;
 | |
|   parent_iterator I = parent_begin(), E = parent_end();
 | |
|   for (;;) {
 | |
|     while (I != E) {
 | |
|       SCC &ParentSCC = *I++;
 | |
| 
 | |
|       // If we have already processed this parent SCC, skip it, and remember
 | |
|       // whether it was connected so we don't have to check the rest of the
 | |
|       // stack. This also handles when we reach a child of the 'this' SCC (the
 | |
|       // callee) which terminates the search.
 | |
|       if (ConnectedSCCs.count(&ParentSCC)) {
 | |
|         ConnectedDepth = std::max<int>(ConnectedDepth, DFSSCCs.size());
 | |
|         continue;
 | |
|       }
 | |
|       if (VisitedSCCs.count(&ParentSCC))
 | |
|         continue;
 | |
| 
 | |
|       // We fully explore the depth-first space, adding nodes to the connected
 | |
|       // set only as we pop them off, so "recurse" by rotating to the parent.
 | |
|       DFSSCCs.push_back(std::make_pair(C, I));
 | |
|       C = &ParentSCC;
 | |
|       I = ParentSCC.parent_begin();
 | |
|       E = ParentSCC.parent_end();
 | |
|     }
 | |
| 
 | |
|     // If we've found a connection anywhere below this point on the stack (and
 | |
|     // thus up the parent graph from the caller), the current node needs to be
 | |
|     // added to the connected set now that we've processed all of its parents.
 | |
|     if ((int)DFSSCCs.size() == ConnectedDepth) {
 | |
|       --ConnectedDepth; // We're finished with this connection.
 | |
|       ConnectedSCCs.insert(C);
 | |
|     } else {
 | |
|       // Otherwise remember that its parents don't ever connect.
 | |
|       assert(ConnectedDepth < (int)DFSSCCs.size() &&
 | |
|              "Cannot have a connected depth greater than the DFS depth!");
 | |
|       VisitedSCCs.insert(C);
 | |
|     }
 | |
| 
 | |
|     if (DFSSCCs.empty())
 | |
|       break; // We've walked all the parents of the caller transitively.
 | |
| 
 | |
|     // Pop off the prior node and position to unwind the depth first recursion.
 | |
|     std::tie(C, I) = DFSSCCs.pop_back_val();
 | |
|     E = C->parent_end();
 | |
|   }
 | |
| 
 | |
|   // Now that we have identified all of the SCCs which need to be merged into
 | |
|   // a connected set with the inserted edge, merge all of them into this SCC.
 | |
|   // FIXME: This operation currently creates ordering stability problems
 | |
|   // because we don't use stably ordered containers for the parent SCCs or the
 | |
|   // connected SCCs.
 | |
|   unsigned NewNodeBeginIdx = Nodes.size();
 | |
|   for (SCC *C : ConnectedSCCs) {
 | |
|     if (C == this)
 | |
|       continue;
 | |
|     for (SCC *ParentC : C->ParentSCCs)
 | |
|       if (!ConnectedSCCs.count(ParentC))
 | |
|         ParentSCCs.insert(ParentC);
 | |
|     C->ParentSCCs.clear();
 | |
| 
 | |
|     for (Node *N : *C) {
 | |
|       for (Node &ChildN : *N) {
 | |
|         SCC &ChildC = *G->SCCMap.lookup(&ChildN);
 | |
|         if (&ChildC != C)
 | |
|           ChildC.ParentSCCs.erase(C);
 | |
|       }
 | |
|       G->SCCMap[N] = this;
 | |
|       Nodes.push_back(N);
 | |
|     }
 | |
|     C->Nodes.clear();
 | |
|   }
 | |
|   for (auto I = Nodes.begin() + NewNodeBeginIdx, E = Nodes.end(); I != E; ++I)
 | |
|     for (Node &ChildN : **I) {
 | |
|       SCC &ChildC = *G->SCCMap.lookup(&ChildN);
 | |
|       if (&ChildC != this)
 | |
|         ChildC.ParentSCCs.insert(this);
 | |
|     }
 | |
| 
 | |
|   // We return the list of SCCs which were merged so that callers can
 | |
|   // invalidate any data they have associated with those SCCs. Note that these
 | |
|   // SCCs are no longer in an interesting state (they are totally empty) but
 | |
|   // the pointers will remain stable for the life of the graph itself.
 | |
|   return SmallVector<SCC *, 1>(ConnectedSCCs.begin(), ConnectedSCCs.end());
 | |
| }
 | |
| 
 | |
| void LazyCallGraph::SCC::removeInterSCCEdge(Node &CallerN, Node &CalleeN) {
 | |
|   // First remove it from the node.
 | |
|   CallerN.removeEdgeInternal(CalleeN.getFunction());
 | |
| 
 | |
|   assert(G->SCCMap.lookup(&CallerN) == this &&
 | |
|          "The caller must be a member of this SCC.");
 | |
| 
 | |
|   SCC &CalleeC = *G->SCCMap.lookup(&CalleeN);
 | |
|   assert(&CalleeC != this &&
 | |
|          "This API only supports the rmoval of inter-SCC edges.");
 | |
| 
 | |
|   assert(std::find(G->LeafSCCs.begin(), G->LeafSCCs.end(), this) ==
 | |
|              G->LeafSCCs.end() &&
 | |
|          "Cannot have a leaf SCC caller with a different SCC callee.");
 | |
| 
 | |
|   bool HasOtherCallToCalleeC = false;
 | |
|   bool HasOtherCallOutsideSCC = false;
 | |
|   for (Node *N : *this) {
 | |
|     for (Node &OtherCalleeN : *N) {
 | |
|       SCC &OtherCalleeC = *G->SCCMap.lookup(&OtherCalleeN);
 | |
|       if (&OtherCalleeC == &CalleeC) {
 | |
|         HasOtherCallToCalleeC = true;
 | |
|         break;
 | |
|       }
 | |
|       if (&OtherCalleeC != this)
 | |
|         HasOtherCallOutsideSCC = true;
 | |
|     }
 | |
|     if (HasOtherCallToCalleeC)
 | |
|       break;
 | |
|   }
 | |
|   // Because the SCCs form a DAG, deleting such an edge cannot change the set
 | |
|   // of SCCs in the graph. However, it may cut an edge of the SCC DAG, making
 | |
|   // the caller no longer a parent of the callee. Walk the other call edges
 | |
|   // in the caller to tell.
 | |
|   if (!HasOtherCallToCalleeC) {
 | |
|     bool Removed = CalleeC.ParentSCCs.erase(this);
 | |
|     (void)Removed;
 | |
|     assert(Removed &&
 | |
|            "Did not find the caller SCC in the callee SCC's parent list!");
 | |
| 
 | |
|     // It may orphan an SCC if it is the last edge reaching it, but that does
 | |
|     // not violate any invariants of the graph.
 | |
|     if (CalleeC.ParentSCCs.empty())
 | |
|       DEBUG(dbgs() << "LCG: Update removing " << CallerN.getFunction().getName()
 | |
|                    << " -> " << CalleeN.getFunction().getName()
 | |
|                    << " edge orphaned the callee's SCC!\n");
 | |
|   }
 | |
| 
 | |
|   // It may make the Caller SCC a leaf SCC.
 | |
|   if (!HasOtherCallOutsideSCC)
 | |
|     G->LeafSCCs.push_back(this);
 | |
| }
 | |
| 
 | |
| void LazyCallGraph::SCC::internalDFS(
 | |
|     SmallVectorImpl<std::pair<Node *, Node::iterator>> &DFSStack,
 | |
|     SmallVectorImpl<Node *> &PendingSCCStack, Node *N,
 | |
|     SmallVectorImpl<SCC *> &ResultSCCs) {
 | |
|   Node::iterator I = N->begin();
 | |
|   N->LowLink = N->DFSNumber = 1;
 | |
|   int NextDFSNumber = 2;
 | |
|   for (;;) {
 | |
|     assert(N->DFSNumber != 0 && "We should always assign a DFS number "
 | |
|                                 "before processing a node.");
 | |
| 
 | |
|     // We simulate recursion by popping out of the nested loop and continuing.
 | |
|     Node::iterator E = N->end();
 | |
|     while (I != E) {
 | |
|       Node &ChildN = *I;
 | |
|       if (SCC *ChildSCC = G->SCCMap.lookup(&ChildN)) {
 | |
|         // Check if we have reached a node in the new (known connected) set of
 | |
|         // this SCC. If so, the entire stack is necessarily in that set and we
 | |
|         // can re-start.
 | |
|         if (ChildSCC == this) {
 | |
|           insert(*N);
 | |
|           while (!PendingSCCStack.empty())
 | |
|             insert(*PendingSCCStack.pop_back_val());
 | |
|           while (!DFSStack.empty())
 | |
|             insert(*DFSStack.pop_back_val().first);
 | |
|           return;
 | |
|         }
 | |
| 
 | |
|         // If this child isn't currently in this SCC, no need to process it.
 | |
|         // However, we do need to remove this SCC from its SCC's parent set.
 | |
|         ChildSCC->ParentSCCs.erase(this);
 | |
|         ++I;
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       if (ChildN.DFSNumber == 0) {
 | |
|         // Mark that we should start at this child when next this node is the
 | |
|         // top of the stack. We don't start at the next child to ensure this
 | |
|         // child's lowlink is reflected.
 | |
|         DFSStack.push_back(std::make_pair(N, I));
 | |
| 
 | |
|         // Continue, resetting to the child node.
 | |
|         ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
 | |
|         N = &ChildN;
 | |
|         I = ChildN.begin();
 | |
|         E = ChildN.end();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Track the lowest link of the children, if any are still in the stack.
 | |
|       // Any child not on the stack will have a LowLink of -1.
 | |
|       assert(ChildN.LowLink != 0 &&
 | |
|              "Low-link must not be zero with a non-zero DFS number.");
 | |
|       if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
 | |
|         N->LowLink = ChildN.LowLink;
 | |
|       ++I;
 | |
|     }
 | |
| 
 | |
|     if (N->LowLink == N->DFSNumber) {
 | |
|       ResultSCCs.push_back(G->formSCC(N, PendingSCCStack));
 | |
|       if (DFSStack.empty())
 | |
|         return;
 | |
|     } else {
 | |
|       // At this point we know that N cannot ever be an SCC root. Its low-link
 | |
|       // is not its dfs-number, and we've processed all of its children. It is
 | |
|       // just sitting here waiting until some node further down the stack gets
 | |
|       // low-link == dfs-number and pops it off as well. Move it to the pending
 | |
|       // stack which is pulled into the next SCC to be formed.
 | |
|       PendingSCCStack.push_back(N);
 | |
| 
 | |
|       assert(!DFSStack.empty() && "We shouldn't have an empty stack!");
 | |
|     }
 | |
| 
 | |
|     N = DFSStack.back().first;
 | |
|     I = DFSStack.back().second;
 | |
|     DFSStack.pop_back();
 | |
|   }
 | |
| }
 | |
| 
 | |
| SmallVector<LazyCallGraph::SCC *, 1>
 | |
| LazyCallGraph::SCC::removeIntraSCCEdge(Node &CallerN,
 | |
|                                        Node &CalleeN) {
 | |
|   // First remove it from the node.
 | |
|   CallerN.removeEdgeInternal(CalleeN.getFunction());
 | |
| 
 | |
|   // We return a list of the resulting *new* SCCs in postorder.
 | |
|   SmallVector<SCC *, 1> ResultSCCs;
 | |
| 
 | |
|   // Direct recursion doesn't impact the SCC graph at all.
 | |
|   if (&CallerN == &CalleeN)
 | |
|     return ResultSCCs;
 | |
| 
 | |
|   // The worklist is every node in the original SCC.
 | |
|   SmallVector<Node *, 1> Worklist;
 | |
|   Worklist.swap(Nodes);
 | |
|   for (Node *N : Worklist) {
 | |
|     // The nodes formerly in this SCC are no longer in any SCC.
 | |
|     N->DFSNumber = 0;
 | |
|     N->LowLink = 0;
 | |
|     G->SCCMap.erase(N);
 | |
|   }
 | |
|   assert(Worklist.size() > 1 && "We have to have at least two nodes to have an "
 | |
|                                 "edge between them that is within the SCC.");
 | |
| 
 | |
|   // The callee can already reach every node in this SCC (by definition). It is
 | |
|   // the only node we know will stay inside this SCC. Everything which
 | |
|   // transitively reaches Callee will also remain in the SCC. To model this we
 | |
|   // incrementally add any chain of nodes which reaches something in the new
 | |
|   // node set to the new node set. This short circuits one side of the Tarjan's
 | |
|   // walk.
 | |
|   insert(CalleeN);
 | |
| 
 | |
|   // We're going to do a full mini-Tarjan's walk using a local stack here.
 | |
|   SmallVector<std::pair<Node *, Node::iterator>, 4> DFSStack;
 | |
|   SmallVector<Node *, 4> PendingSCCStack;
 | |
|   do {
 | |
|     Node *N = Worklist.pop_back_val();
 | |
|     if (N->DFSNumber == 0)
 | |
|       internalDFS(DFSStack, PendingSCCStack, N, ResultSCCs);
 | |
| 
 | |
|     assert(DFSStack.empty() && "Didn't flush the entire DFS stack!");
 | |
|     assert(PendingSCCStack.empty() && "Didn't flush all pending SCC nodes!");
 | |
|   } while (!Worklist.empty());
 | |
| 
 | |
|   // Now we need to reconnect the current SCC to the graph.
 | |
|   bool IsLeafSCC = true;
 | |
|   for (Node *N : Nodes) {
 | |
|     for (Node &ChildN : *N) {
 | |
|       SCC &ChildSCC = *G->SCCMap.lookup(&ChildN);
 | |
|       if (&ChildSCC == this)
 | |
|         continue;
 | |
|       ChildSCC.ParentSCCs.insert(this);
 | |
|       IsLeafSCC = false;
 | |
|     }
 | |
|   }
 | |
| #ifndef NDEBUG
 | |
|   if (!ResultSCCs.empty())
 | |
|     assert(!IsLeafSCC && "This SCC cannot be a leaf as we have split out new "
 | |
|                          "SCCs by removing this edge.");
 | |
|   if (!std::any_of(G->LeafSCCs.begin(), G->LeafSCCs.end(),
 | |
|                    [&](SCC *C) { return C == this; }))
 | |
|     assert(!IsLeafSCC && "This SCC cannot be a leaf as it already had child "
 | |
|                          "SCCs before we removed this edge.");
 | |
| #endif
 | |
|   // If this SCC stopped being a leaf through this edge removal, remove it from
 | |
|   // the leaf SCC list.
 | |
|   if (!IsLeafSCC && !ResultSCCs.empty())
 | |
|     G->LeafSCCs.erase(std::remove(G->LeafSCCs.begin(), G->LeafSCCs.end(), this),
 | |
|                      G->LeafSCCs.end());
 | |
| 
 | |
|   // Return the new list of SCCs.
 | |
|   return ResultSCCs;
 | |
| }
 | |
| 
 | |
| void LazyCallGraph::insertEdge(Node &CallerN, Function &Callee) {
 | |
|   assert(SCCMap.empty() && DFSStack.empty() &&
 | |
|          "This method cannot be called after SCCs have been formed!");
 | |
| 
 | |
|   return CallerN.insertEdgeInternal(Callee);
 | |
| }
 | |
| 
 | |
| void LazyCallGraph::removeEdge(Node &CallerN, Function &Callee) {
 | |
|   assert(SCCMap.empty() && DFSStack.empty() &&
 | |
|          "This method cannot be called after SCCs have been formed!");
 | |
| 
 | |
|   return CallerN.removeEdgeInternal(Callee);
 | |
| }
 | |
| 
 | |
| LazyCallGraph::Node &LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
 | |
|   return *new (MappedN = BPA.Allocate()) Node(*this, F);
 | |
| }
 | |
| 
 | |
| void LazyCallGraph::updateGraphPtrs() {
 | |
|   // Process all nodes updating the graph pointers.
 | |
|   {
 | |
|     SmallVector<Node *, 16> Worklist;
 | |
|     for (auto &Entry : EntryNodes)
 | |
|       if (Node *EntryN = Entry.dyn_cast<Node *>())
 | |
|         Worklist.push_back(EntryN);
 | |
| 
 | |
|     while (!Worklist.empty()) {
 | |
|       Node *N = Worklist.pop_back_val();
 | |
|       N->G = this;
 | |
|       for (auto &Callee : N->Callees)
 | |
|         if (!Callee.isNull())
 | |
|           if (Node *CalleeN = Callee.dyn_cast<Node *>())
 | |
|             Worklist.push_back(CalleeN);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Process all SCCs updating the graph pointers.
 | |
|   {
 | |
|     SmallVector<SCC *, 16> Worklist(LeafSCCs.begin(), LeafSCCs.end());
 | |
| 
 | |
|     while (!Worklist.empty()) {
 | |
|       SCC *C = Worklist.pop_back_val();
 | |
|       C->G = this;
 | |
|       Worklist.insert(Worklist.end(), C->ParentSCCs.begin(),
 | |
|                       C->ParentSCCs.end());
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| LazyCallGraph::SCC *LazyCallGraph::formSCC(Node *RootN,
 | |
|                                            SmallVectorImpl<Node *> &NodeStack) {
 | |
|   // The tail of the stack is the new SCC. Allocate the SCC and pop the stack
 | |
|   // into it.
 | |
|   SCC *NewSCC = new (SCCBPA.Allocate()) SCC(*this);
 | |
| 
 | |
|   while (!NodeStack.empty() && NodeStack.back()->DFSNumber > RootN->DFSNumber) {
 | |
|     assert(NodeStack.back()->LowLink >= RootN->LowLink &&
 | |
|            "We cannot have a low link in an SCC lower than its root on the "
 | |
|            "stack!");
 | |
|     NewSCC->insert(*NodeStack.pop_back_val());
 | |
|   }
 | |
|   NewSCC->insert(*RootN);
 | |
| 
 | |
|   // A final pass over all edges in the SCC (this remains linear as we only
 | |
|   // do this once when we build the SCC) to connect it to the parent sets of
 | |
|   // its children.
 | |
|   bool IsLeafSCC = true;
 | |
|   for (Node *SCCN : NewSCC->Nodes)
 | |
|     for (Node &SCCChildN : *SCCN) {
 | |
|       SCC &ChildSCC = *SCCMap.lookup(&SCCChildN);
 | |
|       if (&ChildSCC == NewSCC)
 | |
|         continue;
 | |
|       ChildSCC.ParentSCCs.insert(NewSCC);
 | |
|       IsLeafSCC = false;
 | |
|     }
 | |
| 
 | |
|   // For the SCCs where we fine no child SCCs, add them to the leaf list.
 | |
|   if (IsLeafSCC)
 | |
|     LeafSCCs.push_back(NewSCC);
 | |
| 
 | |
|   return NewSCC;
 | |
| }
 | |
| 
 | |
| LazyCallGraph::SCC *LazyCallGraph::getNextSCCInPostOrder() {
 | |
|   Node *N;
 | |
|   Node::iterator I;
 | |
|   if (!DFSStack.empty()) {
 | |
|     N = DFSStack.back().first;
 | |
|     I = DFSStack.back().second;
 | |
|     DFSStack.pop_back();
 | |
|   } else {
 | |
|     // If we've handled all candidate entry nodes to the SCC forest, we're done.
 | |
|     do {
 | |
|       if (SCCEntryNodes.empty())
 | |
|         return nullptr;
 | |
| 
 | |
|       N = &get(*SCCEntryNodes.pop_back_val());
 | |
|     } while (N->DFSNumber != 0);
 | |
|     I = N->begin();
 | |
|     N->LowLink = N->DFSNumber = 1;
 | |
|     NextDFSNumber = 2;
 | |
|   }
 | |
| 
 | |
|   for (;;) {
 | |
|     assert(N->DFSNumber != 0 && "We should always assign a DFS number "
 | |
|                                 "before placing a node onto the stack.");
 | |
| 
 | |
|     Node::iterator E = N->end();
 | |
|     while (I != E) {
 | |
|       Node &ChildN = *I;
 | |
|       if (ChildN.DFSNumber == 0) {
 | |
|         // Mark that we should start at this child when next this node is the
 | |
|         // top of the stack. We don't start at the next child to ensure this
 | |
|         // child's lowlink is reflected.
 | |
|         DFSStack.push_back(std::make_pair(N, N->begin()));
 | |
| 
 | |
|         // Recurse onto this node via a tail call.
 | |
|         assert(!SCCMap.count(&ChildN) &&
 | |
|                "Found a node with 0 DFS number but already in an SCC!");
 | |
|         ChildN.LowLink = ChildN.DFSNumber = NextDFSNumber++;
 | |
|         N = &ChildN;
 | |
|         I = ChildN.begin();
 | |
|         E = ChildN.end();
 | |
|         continue;
 | |
|       }
 | |
| 
 | |
|       // Track the lowest link of the children, if any are still in the stack.
 | |
|       assert(ChildN.LowLink != 0 &&
 | |
|              "Low-link must not be zero with a non-zero DFS number.");
 | |
|       if (ChildN.LowLink >= 0 && ChildN.LowLink < N->LowLink)
 | |
|         N->LowLink = ChildN.LowLink;
 | |
|       ++I;
 | |
|     }
 | |
| 
 | |
|     if (N->LowLink == N->DFSNumber)
 | |
|       // Form the new SCC out of the top of the DFS stack.
 | |
|       return formSCC(N, PendingSCCStack);
 | |
| 
 | |
|     // At this point we know that N cannot ever be an SCC root. Its low-link
 | |
|     // is not its dfs-number, and we've processed all of its children. It is
 | |
|     // just sitting here waiting until some node further down the stack gets
 | |
|     // low-link == dfs-number and pops it off as well. Move it to the pending
 | |
|     // stack which is pulled into the next SCC to be formed.
 | |
|     PendingSCCStack.push_back(N);
 | |
| 
 | |
|     assert(!DFSStack.empty() && "We never found a viable root!");
 | |
|     N = DFSStack.back().first;
 | |
|     I = DFSStack.back().second;
 | |
|     DFSStack.pop_back();
 | |
|   }
 | |
| }
 | |
| 
 | |
| char LazyCallGraphAnalysis::PassID;
 | |
| 
 | |
| LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
 | |
| 
 | |
| static void printNodes(raw_ostream &OS, LazyCallGraph::Node &N,
 | |
|                        SmallPtrSetImpl<LazyCallGraph::Node *> &Printed) {
 | |
|   // Recurse depth first through the nodes.
 | |
|   for (LazyCallGraph::Node &ChildN : N)
 | |
|     if (Printed.insert(&ChildN))
 | |
|       printNodes(OS, ChildN, Printed);
 | |
| 
 | |
|   OS << "  Call edges in function: " << N.getFunction().getName() << "\n";
 | |
|   for (LazyCallGraph::iterator I = N.begin(), E = N.end(); I != E; ++I)
 | |
|     OS << "    -> " << I->getFunction().getName() << "\n";
 | |
| 
 | |
|   OS << "\n";
 | |
| }
 | |
| 
 | |
| static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &SCC) {
 | |
|   ptrdiff_t SCCSize = std::distance(SCC.begin(), SCC.end());
 | |
|   OS << "  SCC with " << SCCSize << " functions:\n";
 | |
| 
 | |
|   for (LazyCallGraph::Node *N : SCC)
 | |
|     OS << "    " << N->getFunction().getName() << "\n";
 | |
| 
 | |
|   OS << "\n";
 | |
| }
 | |
| 
 | |
| PreservedAnalyses LazyCallGraphPrinterPass::run(Module *M,
 | |
|                                                 ModuleAnalysisManager *AM) {
 | |
|   LazyCallGraph &G = AM->getResult<LazyCallGraphAnalysis>(M);
 | |
| 
 | |
|   OS << "Printing the call graph for module: " << M->getModuleIdentifier()
 | |
|      << "\n\n";
 | |
| 
 | |
|   SmallPtrSet<LazyCallGraph::Node *, 16> Printed;
 | |
|   for (LazyCallGraph::Node &N : G)
 | |
|     if (Printed.insert(&N))
 | |
|       printNodes(OS, N, Printed);
 | |
| 
 | |
|   for (LazyCallGraph::SCC &SCC : G.postorder_sccs())
 | |
|     printSCC(OS, SCC);
 | |
| 
 | |
|   return PreservedAnalyses::all();
 | |
| 
 | |
| }
 |