mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	it isn't really an AliasAnalysis concept, and ValueTracking has similar things that it could plausibly share code with some day. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174027 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			558 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			558 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation -==//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the generic AliasAnalysis interface which is used as the
 | |
| // common interface used by all clients and implementations of alias analysis.
 | |
| //
 | |
| // This file also implements the default version of the AliasAnalysis interface
 | |
| // that is to be used when no other implementation is specified.  This does some
 | |
| // simple tests that detect obvious cases: two different global pointers cannot
 | |
| // alias, a global cannot alias a malloc, two different mallocs cannot alias,
 | |
| // etc.
 | |
| //
 | |
| // This alias analysis implementation really isn't very good for anything, but
 | |
| // it is very fast, and makes a nice clean default implementation.  Because it
 | |
| // handles lots of little corner cases, other, more complex, alias analysis
 | |
| // implementations may choose to rely on this pass to resolve these simple and
 | |
| // easy cases.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/AliasAnalysis.h"
 | |
| #include "llvm/Analysis/CaptureTracking.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/IR/BasicBlock.h"
 | |
| #include "llvm/IR/DataLayout.h"
 | |
| #include "llvm/IR/Function.h"
 | |
| #include "llvm/IR/Instructions.h"
 | |
| #include "llvm/IR/IntrinsicInst.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Type.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Target/TargetLibraryInfo.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| // Register the AliasAnalysis interface, providing a nice name to refer to.
 | |
| INITIALIZE_ANALYSIS_GROUP(AliasAnalysis, "Alias Analysis", NoAA)
 | |
| char AliasAnalysis::ID = 0;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Default chaining methods
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| AliasAnalysis::AliasResult
 | |
| AliasAnalysis::alias(const Location &LocA, const Location &LocB) {
 | |
|   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
 | |
|   return AA->alias(LocA, LocB);
 | |
| }
 | |
| 
 | |
| bool AliasAnalysis::pointsToConstantMemory(const Location &Loc,
 | |
|                                            bool OrLocal) {
 | |
|   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
 | |
|   return AA->pointsToConstantMemory(Loc, OrLocal);
 | |
| }
 | |
| 
 | |
| void AliasAnalysis::deleteValue(Value *V) {
 | |
|   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
 | |
|   AA->deleteValue(V);
 | |
| }
 | |
| 
 | |
| void AliasAnalysis::copyValue(Value *From, Value *To) {
 | |
|   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
 | |
|   AA->copyValue(From, To);
 | |
| }
 | |
| 
 | |
| void AliasAnalysis::addEscapingUse(Use &U) {
 | |
|   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
 | |
|   AA->addEscapingUse(U);
 | |
| }
 | |
| 
 | |
| 
 | |
| AliasAnalysis::ModRefResult
 | |
| AliasAnalysis::getModRefInfo(ImmutableCallSite CS,
 | |
|                              const Location &Loc) {
 | |
|   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
 | |
| 
 | |
|   ModRefBehavior MRB = getModRefBehavior(CS);
 | |
|   if (MRB == DoesNotAccessMemory)
 | |
|     return NoModRef;
 | |
| 
 | |
|   ModRefResult Mask = ModRef;
 | |
|   if (onlyReadsMemory(MRB))
 | |
|     Mask = Ref;
 | |
| 
 | |
|   if (onlyAccessesArgPointees(MRB)) {
 | |
|     bool doesAlias = false;
 | |
|     if (doesAccessArgPointees(MRB)) {
 | |
|       MDNode *CSTag = CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa);
 | |
|       for (ImmutableCallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
 | |
|            AI != AE; ++AI) {
 | |
|         const Value *Arg = *AI;
 | |
|         if (!Arg->getType()->isPointerTy())
 | |
|           continue;
 | |
|         Location CSLoc(Arg, UnknownSize, CSTag);
 | |
|         if (!isNoAlias(CSLoc, Loc)) {
 | |
|           doesAlias = true;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     if (!doesAlias)
 | |
|       return NoModRef;
 | |
|   }
 | |
| 
 | |
|   // If Loc is a constant memory location, the call definitely could not
 | |
|   // modify the memory location.
 | |
|   if ((Mask & Mod) && pointsToConstantMemory(Loc))
 | |
|     Mask = ModRefResult(Mask & ~Mod);
 | |
| 
 | |
|   // If this is the end of the chain, don't forward.
 | |
|   if (!AA) return Mask;
 | |
| 
 | |
|   // Otherwise, fall back to the next AA in the chain. But we can merge
 | |
|   // in any mask we've managed to compute.
 | |
|   return ModRefResult(AA->getModRefInfo(CS, Loc) & Mask);
 | |
| }
 | |
| 
 | |
| AliasAnalysis::ModRefResult
 | |
| AliasAnalysis::getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) {
 | |
|   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
 | |
| 
 | |
|   // If CS1 or CS2 are readnone, they don't interact.
 | |
|   ModRefBehavior CS1B = getModRefBehavior(CS1);
 | |
|   if (CS1B == DoesNotAccessMemory) return NoModRef;
 | |
| 
 | |
|   ModRefBehavior CS2B = getModRefBehavior(CS2);
 | |
|   if (CS2B == DoesNotAccessMemory) return NoModRef;
 | |
| 
 | |
|   // If they both only read from memory, there is no dependence.
 | |
|   if (onlyReadsMemory(CS1B) && onlyReadsMemory(CS2B))
 | |
|     return NoModRef;
 | |
| 
 | |
|   AliasAnalysis::ModRefResult Mask = ModRef;
 | |
| 
 | |
|   // If CS1 only reads memory, the only dependence on CS2 can be
 | |
|   // from CS1 reading memory written by CS2.
 | |
|   if (onlyReadsMemory(CS1B))
 | |
|     Mask = ModRefResult(Mask & Ref);
 | |
| 
 | |
|   // If CS2 only access memory through arguments, accumulate the mod/ref
 | |
|   // information from CS1's references to the memory referenced by
 | |
|   // CS2's arguments.
 | |
|   if (onlyAccessesArgPointees(CS2B)) {
 | |
|     AliasAnalysis::ModRefResult R = NoModRef;
 | |
|     if (doesAccessArgPointees(CS2B)) {
 | |
|       MDNode *CS2Tag = CS2.getInstruction()->getMetadata(LLVMContext::MD_tbaa);
 | |
|       for (ImmutableCallSite::arg_iterator
 | |
|            I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) {
 | |
|         const Value *Arg = *I;
 | |
|         if (!Arg->getType()->isPointerTy())
 | |
|           continue;
 | |
|         Location CS2Loc(Arg, UnknownSize, CS2Tag);
 | |
|         R = ModRefResult((R | getModRefInfo(CS1, CS2Loc)) & Mask);
 | |
|         if (R == Mask)
 | |
|           break;
 | |
|       }
 | |
|     }
 | |
|     return R;
 | |
|   }
 | |
| 
 | |
|   // If CS1 only accesses memory through arguments, check if CS2 references
 | |
|   // any of the memory referenced by CS1's arguments. If not, return NoModRef.
 | |
|   if (onlyAccessesArgPointees(CS1B)) {
 | |
|     AliasAnalysis::ModRefResult R = NoModRef;
 | |
|     if (doesAccessArgPointees(CS1B)) {
 | |
|       MDNode *CS1Tag = CS1.getInstruction()->getMetadata(LLVMContext::MD_tbaa);
 | |
|       for (ImmutableCallSite::arg_iterator
 | |
|            I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I) {
 | |
|         const Value *Arg = *I;
 | |
|         if (!Arg->getType()->isPointerTy())
 | |
|           continue;
 | |
|         Location CS1Loc(Arg, UnknownSize, CS1Tag);
 | |
|         if (getModRefInfo(CS2, CS1Loc) != NoModRef) {
 | |
|           R = Mask;
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     if (R == NoModRef)
 | |
|       return R;
 | |
|   }
 | |
| 
 | |
|   // If this is the end of the chain, don't forward.
 | |
|   if (!AA) return Mask;
 | |
| 
 | |
|   // Otherwise, fall back to the next AA in the chain. But we can merge
 | |
|   // in any mask we've managed to compute.
 | |
|   return ModRefResult(AA->getModRefInfo(CS1, CS2) & Mask);
 | |
| }
 | |
| 
 | |
| AliasAnalysis::ModRefBehavior
 | |
| AliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
 | |
|   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
 | |
| 
 | |
|   ModRefBehavior Min = UnknownModRefBehavior;
 | |
| 
 | |
|   // Call back into the alias analysis with the other form of getModRefBehavior
 | |
|   // to see if it can give a better response.
 | |
|   if (const Function *F = CS.getCalledFunction())
 | |
|     Min = getModRefBehavior(F);
 | |
| 
 | |
|   // If this is the end of the chain, don't forward.
 | |
|   if (!AA) return Min;
 | |
| 
 | |
|   // Otherwise, fall back to the next AA in the chain. But we can merge
 | |
|   // in any result we've managed to compute.
 | |
|   return ModRefBehavior(AA->getModRefBehavior(CS) & Min);
 | |
| }
 | |
| 
 | |
| AliasAnalysis::ModRefBehavior
 | |
| AliasAnalysis::getModRefBehavior(const Function *F) {
 | |
|   assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!");
 | |
|   return AA->getModRefBehavior(F);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // AliasAnalysis non-virtual helper method implementation
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| AliasAnalysis::Location AliasAnalysis::getLocation(const LoadInst *LI) {
 | |
|   return Location(LI->getPointerOperand(),
 | |
|                   getTypeStoreSize(LI->getType()),
 | |
|                   LI->getMetadata(LLVMContext::MD_tbaa));
 | |
| }
 | |
| 
 | |
| AliasAnalysis::Location AliasAnalysis::getLocation(const StoreInst *SI) {
 | |
|   return Location(SI->getPointerOperand(),
 | |
|                   getTypeStoreSize(SI->getValueOperand()->getType()),
 | |
|                   SI->getMetadata(LLVMContext::MD_tbaa));
 | |
| }
 | |
| 
 | |
| AliasAnalysis::Location AliasAnalysis::getLocation(const VAArgInst *VI) {
 | |
|   return Location(VI->getPointerOperand(),
 | |
|                   UnknownSize,
 | |
|                   VI->getMetadata(LLVMContext::MD_tbaa));
 | |
| }
 | |
| 
 | |
| AliasAnalysis::Location
 | |
| AliasAnalysis::getLocation(const AtomicCmpXchgInst *CXI) {
 | |
|   return Location(CXI->getPointerOperand(),
 | |
|                   getTypeStoreSize(CXI->getCompareOperand()->getType()),
 | |
|                   CXI->getMetadata(LLVMContext::MD_tbaa));
 | |
| }
 | |
| 
 | |
| AliasAnalysis::Location
 | |
| AliasAnalysis::getLocation(const AtomicRMWInst *RMWI) {
 | |
|   return Location(RMWI->getPointerOperand(),
 | |
|                   getTypeStoreSize(RMWI->getValOperand()->getType()),
 | |
|                   RMWI->getMetadata(LLVMContext::MD_tbaa));
 | |
| }
 | |
| 
 | |
| AliasAnalysis::Location 
 | |
| AliasAnalysis::getLocationForSource(const MemTransferInst *MTI) {
 | |
|   uint64_t Size = UnknownSize;
 | |
|   if (ConstantInt *C = dyn_cast<ConstantInt>(MTI->getLength()))
 | |
|     Size = C->getValue().getZExtValue();
 | |
| 
 | |
|   // memcpy/memmove can have TBAA tags. For memcpy, they apply
 | |
|   // to both the source and the destination.
 | |
|   MDNode *TBAATag = MTI->getMetadata(LLVMContext::MD_tbaa);
 | |
| 
 | |
|   return Location(MTI->getRawSource(), Size, TBAATag);
 | |
| }
 | |
| 
 | |
| AliasAnalysis::Location 
 | |
| AliasAnalysis::getLocationForDest(const MemIntrinsic *MTI) {
 | |
|   uint64_t Size = UnknownSize;
 | |
|   if (ConstantInt *C = dyn_cast<ConstantInt>(MTI->getLength()))
 | |
|     Size = C->getValue().getZExtValue();
 | |
| 
 | |
|   // memcpy/memmove can have TBAA tags. For memcpy, they apply
 | |
|   // to both the source and the destination.
 | |
|   MDNode *TBAATag = MTI->getMetadata(LLVMContext::MD_tbaa);
 | |
|   
 | |
|   return Location(MTI->getRawDest(), Size, TBAATag);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| AliasAnalysis::ModRefResult
 | |
| AliasAnalysis::getModRefInfo(const LoadInst *L, const Location &Loc) {
 | |
|   // Be conservative in the face of volatile/atomic.
 | |
|   if (!L->isUnordered())
 | |
|     return ModRef;
 | |
| 
 | |
|   // If the load address doesn't alias the given address, it doesn't read
 | |
|   // or write the specified memory.
 | |
|   if (!alias(getLocation(L), Loc))
 | |
|     return NoModRef;
 | |
| 
 | |
|   // Otherwise, a load just reads.
 | |
|   return Ref;
 | |
| }
 | |
| 
 | |
| AliasAnalysis::ModRefResult
 | |
| AliasAnalysis::getModRefInfo(const StoreInst *S, const Location &Loc) {
 | |
|   // Be conservative in the face of volatile/atomic.
 | |
|   if (!S->isUnordered())
 | |
|     return ModRef;
 | |
| 
 | |
|   // If the store address cannot alias the pointer in question, then the
 | |
|   // specified memory cannot be modified by the store.
 | |
|   if (!alias(getLocation(S), Loc))
 | |
|     return NoModRef;
 | |
| 
 | |
|   // If the pointer is a pointer to constant memory, then it could not have been
 | |
|   // modified by this store.
 | |
|   if (pointsToConstantMemory(Loc))
 | |
|     return NoModRef;
 | |
| 
 | |
|   // Otherwise, a store just writes.
 | |
|   return Mod;
 | |
| }
 | |
| 
 | |
| AliasAnalysis::ModRefResult
 | |
| AliasAnalysis::getModRefInfo(const VAArgInst *V, const Location &Loc) {
 | |
|   // If the va_arg address cannot alias the pointer in question, then the
 | |
|   // specified memory cannot be accessed by the va_arg.
 | |
|   if (!alias(getLocation(V), Loc))
 | |
|     return NoModRef;
 | |
| 
 | |
|   // If the pointer is a pointer to constant memory, then it could not have been
 | |
|   // modified by this va_arg.
 | |
|   if (pointsToConstantMemory(Loc))
 | |
|     return NoModRef;
 | |
| 
 | |
|   // Otherwise, a va_arg reads and writes.
 | |
|   return ModRef;
 | |
| }
 | |
| 
 | |
| AliasAnalysis::ModRefResult
 | |
| AliasAnalysis::getModRefInfo(const AtomicCmpXchgInst *CX, const Location &Loc) {
 | |
|   // Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
 | |
|   if (CX->getOrdering() > Monotonic)
 | |
|     return ModRef;
 | |
| 
 | |
|   // If the cmpxchg address does not alias the location, it does not access it.
 | |
|   if (!alias(getLocation(CX), Loc))
 | |
|     return NoModRef;
 | |
| 
 | |
|   return ModRef;
 | |
| }
 | |
| 
 | |
| AliasAnalysis::ModRefResult
 | |
| AliasAnalysis::getModRefInfo(const AtomicRMWInst *RMW, const Location &Loc) {
 | |
|   // Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
 | |
|   if (RMW->getOrdering() > Monotonic)
 | |
|     return ModRef;
 | |
| 
 | |
|   // If the atomicrmw address does not alias the location, it does not access it.
 | |
|   if (!alias(getLocation(RMW), Loc))
 | |
|     return NoModRef;
 | |
| 
 | |
|   return ModRef;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   // Conservatively return true. Return false, if there is a single path
 | |
|   // starting from "From" and the path does not reach "To".
 | |
|   static bool hasPath(const BasicBlock *From, const BasicBlock *To) {
 | |
|     const unsigned MaxCheck = 5;
 | |
|     const BasicBlock *Current = From;
 | |
|     for (unsigned I = 0; I < MaxCheck; I++) {
 | |
|       unsigned NumSuccs = Current->getTerminator()->getNumSuccessors();
 | |
|       if (NumSuccs > 1)
 | |
|         return true;
 | |
|       if (NumSuccs == 0)
 | |
|         return false;
 | |
|       Current = Current->getTerminator()->getSuccessor(0);
 | |
|       if (Current == To)
 | |
|         return true;
 | |
|     }
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   /// Only find pointer captures which happen before the given instruction. Uses
 | |
|   /// the dominator tree to determine whether one instruction is before another.
 | |
|   /// Only support the case where the Value is defined in the same basic block
 | |
|   /// as the given instruction and the use.
 | |
|   struct CapturesBefore : public CaptureTracker {
 | |
|     CapturesBefore(const Instruction *I, DominatorTree *DT)
 | |
|       : BeforeHere(I), DT(DT), Captured(false) {}
 | |
| 
 | |
|     void tooManyUses() { Captured = true; }
 | |
| 
 | |
|     bool shouldExplore(Use *U) {
 | |
|       Instruction *I = cast<Instruction>(U->getUser());
 | |
|       BasicBlock *BB = I->getParent();
 | |
|       // We explore this usage only if the usage can reach "BeforeHere".
 | |
|       // If use is not reachable from entry, there is no need to explore.
 | |
|       if (BeforeHere != I && !DT->isReachableFromEntry(BB))
 | |
|         return false;
 | |
|       // If the value is defined in the same basic block as use and BeforeHere,
 | |
|       // there is no need to explore the use if BeforeHere dominates use.
 | |
|       // Check whether there is a path from I to BeforeHere.
 | |
|       if (BeforeHere != I && DT->dominates(BeforeHere, I) &&
 | |
|           !hasPath(BB, BeforeHere->getParent()))
 | |
|         return false;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     bool captured(Use *U) {
 | |
|       Instruction *I = cast<Instruction>(U->getUser());
 | |
|       BasicBlock *BB = I->getParent();
 | |
|       // Same logic as in shouldExplore.
 | |
|       if (BeforeHere != I && !DT->isReachableFromEntry(BB))
 | |
|         return false;
 | |
|       if (BeforeHere != I && DT->dominates(BeforeHere, I) &&
 | |
|           !hasPath(BB, BeforeHere->getParent()))
 | |
|         return false;
 | |
|       Captured = true;
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     const Instruction *BeforeHere;
 | |
|     DominatorTree *DT;
 | |
| 
 | |
|     bool Captured;
 | |
|   };
 | |
| }
 | |
| 
 | |
| // FIXME: this is really just shoring-up a deficiency in alias analysis.
 | |
| // BasicAA isn't willing to spend linear time determining whether an alloca
 | |
| // was captured before or after this particular call, while we are. However,
 | |
| // with a smarter AA in place, this test is just wasting compile time.
 | |
| AliasAnalysis::ModRefResult
 | |
| AliasAnalysis::callCapturesBefore(const Instruction *I,
 | |
|                                   const AliasAnalysis::Location &MemLoc,
 | |
|                                   DominatorTree *DT) {
 | |
|   if (!DT || !TD) return AliasAnalysis::ModRef;
 | |
| 
 | |
|   const Value *Object = GetUnderlyingObject(MemLoc.Ptr, TD);
 | |
|   if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) ||
 | |
|       isa<Constant>(Object))
 | |
|     return AliasAnalysis::ModRef;
 | |
| 
 | |
|   ImmutableCallSite CS(I);
 | |
|   if (!CS.getInstruction() || CS.getInstruction() == Object)
 | |
|     return AliasAnalysis::ModRef;
 | |
| 
 | |
|   CapturesBefore CB(I, DT);
 | |
|   llvm::PointerMayBeCaptured(Object, &CB);
 | |
|   if (CB.Captured)
 | |
|     return AliasAnalysis::ModRef;
 | |
| 
 | |
|   unsigned ArgNo = 0;
 | |
|   for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
 | |
|        CI != CE; ++CI, ++ArgNo) {
 | |
|     // Only look at the no-capture or byval pointer arguments.  If this
 | |
|     // pointer were passed to arguments that were neither of these, then it
 | |
|     // couldn't be no-capture.
 | |
|     if (!(*CI)->getType()->isPointerTy() ||
 | |
|         (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
 | |
|       continue;
 | |
| 
 | |
|     // If this is a no-capture pointer argument, see if we can tell that it
 | |
|     // is impossible to alias the pointer we're checking.  If not, we have to
 | |
|     // assume that the call could touch the pointer, even though it doesn't
 | |
|     // escape.
 | |
|     if (!isNoAlias(AliasAnalysis::Location(*CI),
 | |
|                    AliasAnalysis::Location(Object))) {
 | |
|       return AliasAnalysis::ModRef;
 | |
|     }
 | |
|   }
 | |
|   return AliasAnalysis::NoModRef;
 | |
| }
 | |
| 
 | |
| // AliasAnalysis destructor: DO NOT move this to the header file for
 | |
| // AliasAnalysis or else clients of the AliasAnalysis class may not depend on
 | |
| // the AliasAnalysis.o file in the current .a file, causing alias analysis
 | |
| // support to not be included in the tool correctly!
 | |
| //
 | |
| AliasAnalysis::~AliasAnalysis() {}
 | |
| 
 | |
| /// InitializeAliasAnalysis - Subclasses must call this method to initialize the
 | |
| /// AliasAnalysis interface before any other methods are called.
 | |
| ///
 | |
| void AliasAnalysis::InitializeAliasAnalysis(Pass *P) {
 | |
|   TD = P->getAnalysisIfAvailable<DataLayout>();
 | |
|   TLI = P->getAnalysisIfAvailable<TargetLibraryInfo>();
 | |
|   AA = &P->getAnalysis<AliasAnalysis>();
 | |
| }
 | |
| 
 | |
| // getAnalysisUsage - All alias analysis implementations should invoke this
 | |
| // directly (using AliasAnalysis::getAnalysisUsage(AU)).
 | |
| void AliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|   AU.addRequired<AliasAnalysis>();         // All AA's chain
 | |
| }
 | |
| 
 | |
| /// getTypeStoreSize - Return the DataLayout store size for the given type,
 | |
| /// if known, or a conservative value otherwise.
 | |
| ///
 | |
| uint64_t AliasAnalysis::getTypeStoreSize(Type *Ty) {
 | |
|   return TD ? TD->getTypeStoreSize(Ty) : UnknownSize;
 | |
| }
 | |
| 
 | |
| /// canBasicBlockModify - Return true if it is possible for execution of the
 | |
| /// specified basic block to modify the value pointed to by Ptr.
 | |
| ///
 | |
| bool AliasAnalysis::canBasicBlockModify(const BasicBlock &BB,
 | |
|                                         const Location &Loc) {
 | |
|   return canInstructionRangeModify(BB.front(), BB.back(), Loc);
 | |
| }
 | |
| 
 | |
| /// canInstructionRangeModify - Return true if it is possible for the execution
 | |
| /// of the specified instructions to modify the value pointed to by Ptr.  The
 | |
| /// instructions to consider are all of the instructions in the range of [I1,I2]
 | |
| /// INCLUSIVE.  I1 and I2 must be in the same basic block.
 | |
| ///
 | |
| bool AliasAnalysis::canInstructionRangeModify(const Instruction &I1,
 | |
|                                               const Instruction &I2,
 | |
|                                               const Location &Loc) {
 | |
|   assert(I1.getParent() == I2.getParent() &&
 | |
|          "Instructions not in same basic block!");
 | |
|   BasicBlock::const_iterator I = &I1;
 | |
|   BasicBlock::const_iterator E = &I2;
 | |
|   ++E;  // Convert from inclusive to exclusive range.
 | |
| 
 | |
|   for (; I != E; ++I) // Check every instruction in range
 | |
|     if (getModRefInfo(I, Loc) & Mod)
 | |
|       return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isNoAliasCall - Return true if this pointer is returned by a noalias
 | |
| /// function.
 | |
| bool llvm::isNoAliasCall(const Value *V) {
 | |
|   if (isa<CallInst>(V) || isa<InvokeInst>(V))
 | |
|     return ImmutableCallSite(cast<Instruction>(V))
 | |
|       .paramHasAttr(0, Attribute::NoAlias);
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// isIdentifiedObject - Return true if this pointer refers to a distinct and
 | |
| /// identifiable object.  This returns true for:
 | |
| ///    Global Variables and Functions (but not Global Aliases)
 | |
| ///    Allocas and Mallocs
 | |
| ///    ByVal and NoAlias Arguments
 | |
| ///    NoAlias returns
 | |
| ///
 | |
| bool llvm::isIdentifiedObject(const Value *V) {
 | |
|   if (isa<AllocaInst>(V))
 | |
|     return true;
 | |
|   if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
 | |
|     return true;
 | |
|   if (isNoAliasCall(V))
 | |
|     return true;
 | |
|   if (const Argument *A = dyn_cast<Argument>(V))
 | |
|     return A->hasNoAliasAttr() || A->hasByValAttr();
 | |
|   return false;
 | |
| }
 |