mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180825 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			429 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			429 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- Analysis.cpp - CodeGen LLVM IR Analysis Utilities -----------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines several CodeGen-specific LLVM IR analysis utilties.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/CodeGen/Analysis.h"
 | 
						|
#include "llvm/Analysis/ValueTracking.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/IR/DataLayout.h"
 | 
						|
#include "llvm/IR/DerivedTypes.h"
 | 
						|
#include "llvm/IR/Function.h"
 | 
						|
#include "llvm/IR/Instructions.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/IR/Module.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/MathExtras.h"
 | 
						|
#include "llvm/Target/TargetLowering.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
 | 
						|
/// of insertvalue or extractvalue indices that identify a member, return
 | 
						|
/// the linearized index of the start of the member.
 | 
						|
///
 | 
						|
unsigned llvm::ComputeLinearIndex(Type *Ty,
 | 
						|
                                  const unsigned *Indices,
 | 
						|
                                  const unsigned *IndicesEnd,
 | 
						|
                                  unsigned CurIndex) {
 | 
						|
  // Base case: We're done.
 | 
						|
  if (Indices && Indices == IndicesEnd)
 | 
						|
    return CurIndex;
 | 
						|
 | 
						|
  // Given a struct type, recursively traverse the elements.
 | 
						|
  if (StructType *STy = dyn_cast<StructType>(Ty)) {
 | 
						|
    for (StructType::element_iterator EB = STy->element_begin(),
 | 
						|
                                      EI = EB,
 | 
						|
                                      EE = STy->element_end();
 | 
						|
        EI != EE; ++EI) {
 | 
						|
      if (Indices && *Indices == unsigned(EI - EB))
 | 
						|
        return ComputeLinearIndex(*EI, Indices+1, IndicesEnd, CurIndex);
 | 
						|
      CurIndex = ComputeLinearIndex(*EI, 0, 0, CurIndex);
 | 
						|
    }
 | 
						|
    return CurIndex;
 | 
						|
  }
 | 
						|
  // Given an array type, recursively traverse the elements.
 | 
						|
  else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
 | 
						|
    Type *EltTy = ATy->getElementType();
 | 
						|
    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
 | 
						|
      if (Indices && *Indices == i)
 | 
						|
        return ComputeLinearIndex(EltTy, Indices+1, IndicesEnd, CurIndex);
 | 
						|
      CurIndex = ComputeLinearIndex(EltTy, 0, 0, CurIndex);
 | 
						|
    }
 | 
						|
    return CurIndex;
 | 
						|
  }
 | 
						|
  // We haven't found the type we're looking for, so keep searching.
 | 
						|
  return CurIndex + 1;
 | 
						|
}
 | 
						|
 | 
						|
/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
 | 
						|
/// EVTs that represent all the individual underlying
 | 
						|
/// non-aggregate types that comprise it.
 | 
						|
///
 | 
						|
/// If Offsets is non-null, it points to a vector to be filled in
 | 
						|
/// with the in-memory offsets of each of the individual values.
 | 
						|
///
 | 
						|
void llvm::ComputeValueVTs(const TargetLowering &TLI, Type *Ty,
 | 
						|
                           SmallVectorImpl<EVT> &ValueVTs,
 | 
						|
                           SmallVectorImpl<uint64_t> *Offsets,
 | 
						|
                           uint64_t StartingOffset) {
 | 
						|
  // Given a struct type, recursively traverse the elements.
 | 
						|
  if (StructType *STy = dyn_cast<StructType>(Ty)) {
 | 
						|
    const StructLayout *SL = TLI.getDataLayout()->getStructLayout(STy);
 | 
						|
    for (StructType::element_iterator EB = STy->element_begin(),
 | 
						|
                                      EI = EB,
 | 
						|
                                      EE = STy->element_end();
 | 
						|
         EI != EE; ++EI)
 | 
						|
      ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
 | 
						|
                      StartingOffset + SL->getElementOffset(EI - EB));
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  // Given an array type, recursively traverse the elements.
 | 
						|
  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
 | 
						|
    Type *EltTy = ATy->getElementType();
 | 
						|
    uint64_t EltSize = TLI.getDataLayout()->getTypeAllocSize(EltTy);
 | 
						|
    for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
 | 
						|
      ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
 | 
						|
                      StartingOffset + i * EltSize);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  // Interpret void as zero return values.
 | 
						|
  if (Ty->isVoidTy())
 | 
						|
    return;
 | 
						|
  // Base case: we can get an EVT for this LLVM IR type.
 | 
						|
  ValueVTs.push_back(TLI.getValueType(Ty));
 | 
						|
  if (Offsets)
 | 
						|
    Offsets->push_back(StartingOffset);
 | 
						|
}
 | 
						|
 | 
						|
/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
 | 
						|
GlobalVariable *llvm::ExtractTypeInfo(Value *V) {
 | 
						|
  V = V->stripPointerCasts();
 | 
						|
  GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
 | 
						|
 | 
						|
  if (GV && GV->getName() == "llvm.eh.catch.all.value") {
 | 
						|
    assert(GV->hasInitializer() &&
 | 
						|
           "The EH catch-all value must have an initializer");
 | 
						|
    Value *Init = GV->getInitializer();
 | 
						|
    GV = dyn_cast<GlobalVariable>(Init);
 | 
						|
    if (!GV) V = cast<ConstantPointerNull>(Init);
 | 
						|
  }
 | 
						|
 | 
						|
  assert((GV || isa<ConstantPointerNull>(V)) &&
 | 
						|
         "TypeInfo must be a global variable or NULL");
 | 
						|
  return GV;
 | 
						|
}
 | 
						|
 | 
						|
/// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
 | 
						|
/// processed uses a memory 'm' constraint.
 | 
						|
bool
 | 
						|
llvm::hasInlineAsmMemConstraint(InlineAsm::ConstraintInfoVector &CInfos,
 | 
						|
                                const TargetLowering &TLI) {
 | 
						|
  for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
 | 
						|
    InlineAsm::ConstraintInfo &CI = CInfos[i];
 | 
						|
    for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
 | 
						|
      TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
 | 
						|
      if (CType == TargetLowering::C_Memory)
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Indirect operand accesses access memory.
 | 
						|
    if (CI.isIndirect)
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// getFCmpCondCode - Return the ISD condition code corresponding to
 | 
						|
/// the given LLVM IR floating-point condition code.  This includes
 | 
						|
/// consideration of global floating-point math flags.
 | 
						|
///
 | 
						|
ISD::CondCode llvm::getFCmpCondCode(FCmpInst::Predicate Pred) {
 | 
						|
  switch (Pred) {
 | 
						|
  case FCmpInst::FCMP_FALSE: return ISD::SETFALSE;
 | 
						|
  case FCmpInst::FCMP_OEQ:   return ISD::SETOEQ;
 | 
						|
  case FCmpInst::FCMP_OGT:   return ISD::SETOGT;
 | 
						|
  case FCmpInst::FCMP_OGE:   return ISD::SETOGE;
 | 
						|
  case FCmpInst::FCMP_OLT:   return ISD::SETOLT;
 | 
						|
  case FCmpInst::FCMP_OLE:   return ISD::SETOLE;
 | 
						|
  case FCmpInst::FCMP_ONE:   return ISD::SETONE;
 | 
						|
  case FCmpInst::FCMP_ORD:   return ISD::SETO;
 | 
						|
  case FCmpInst::FCMP_UNO:   return ISD::SETUO;
 | 
						|
  case FCmpInst::FCMP_UEQ:   return ISD::SETUEQ;
 | 
						|
  case FCmpInst::FCMP_UGT:   return ISD::SETUGT;
 | 
						|
  case FCmpInst::FCMP_UGE:   return ISD::SETUGE;
 | 
						|
  case FCmpInst::FCMP_ULT:   return ISD::SETULT;
 | 
						|
  case FCmpInst::FCMP_ULE:   return ISD::SETULE;
 | 
						|
  case FCmpInst::FCMP_UNE:   return ISD::SETUNE;
 | 
						|
  case FCmpInst::FCMP_TRUE:  return ISD::SETTRUE;
 | 
						|
  default: llvm_unreachable("Invalid FCmp predicate opcode!");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
ISD::CondCode llvm::getFCmpCodeWithoutNaN(ISD::CondCode CC) {
 | 
						|
  switch (CC) {
 | 
						|
    case ISD::SETOEQ: case ISD::SETUEQ: return ISD::SETEQ;
 | 
						|
    case ISD::SETONE: case ISD::SETUNE: return ISD::SETNE;
 | 
						|
    case ISD::SETOLT: case ISD::SETULT: return ISD::SETLT;
 | 
						|
    case ISD::SETOLE: case ISD::SETULE: return ISD::SETLE;
 | 
						|
    case ISD::SETOGT: case ISD::SETUGT: return ISD::SETGT;
 | 
						|
    case ISD::SETOGE: case ISD::SETUGE: return ISD::SETGE;
 | 
						|
    default: return CC;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// getICmpCondCode - Return the ISD condition code corresponding to
 | 
						|
/// the given LLVM IR integer condition code.
 | 
						|
///
 | 
						|
ISD::CondCode llvm::getICmpCondCode(ICmpInst::Predicate Pred) {
 | 
						|
  switch (Pred) {
 | 
						|
  case ICmpInst::ICMP_EQ:  return ISD::SETEQ;
 | 
						|
  case ICmpInst::ICMP_NE:  return ISD::SETNE;
 | 
						|
  case ICmpInst::ICMP_SLE: return ISD::SETLE;
 | 
						|
  case ICmpInst::ICMP_ULE: return ISD::SETULE;
 | 
						|
  case ICmpInst::ICMP_SGE: return ISD::SETGE;
 | 
						|
  case ICmpInst::ICMP_UGE: return ISD::SETUGE;
 | 
						|
  case ICmpInst::ICMP_SLT: return ISD::SETLT;
 | 
						|
  case ICmpInst::ICMP_ULT: return ISD::SETULT;
 | 
						|
  case ICmpInst::ICMP_SGT: return ISD::SETGT;
 | 
						|
  case ICmpInst::ICMP_UGT: return ISD::SETUGT;
 | 
						|
  default:
 | 
						|
    llvm_unreachable("Invalid ICmp predicate opcode!");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static bool isNoopBitcast(Type *T1, Type *T2,
 | 
						|
                          const TargetLowering& TLI) {
 | 
						|
  return T1 == T2 || (T1->isPointerTy() && T2->isPointerTy()) ||
 | 
						|
         (isa<VectorType>(T1) && isa<VectorType>(T2) &&
 | 
						|
          TLI.isTypeLegal(EVT::getEVT(T1)) && TLI.isTypeLegal(EVT::getEVT(T2)));
 | 
						|
}
 | 
						|
 | 
						|
/// sameNoopInput - Return true if V1 == V2, else if either V1 or V2 is a noop
 | 
						|
/// (i.e., lowers to no machine code), look through it (and any transitive noop
 | 
						|
/// operands to it) and check if it has the same noop input value.  This is
 | 
						|
/// used to determine if a tail call can be formed.
 | 
						|
static bool sameNoopInput(const Value *V1, const Value *V2,
 | 
						|
                          SmallVectorImpl<unsigned> &Els1,
 | 
						|
                          SmallVectorImpl<unsigned> &Els2,
 | 
						|
                          const TargetLowering &TLI) {
 | 
						|
  using std::swap;
 | 
						|
  bool swapParity = false;
 | 
						|
  bool equalEls = Els1 == Els2;
 | 
						|
  while (true) {
 | 
						|
    if ((equalEls && V1 == V2) || isa<UndefValue>(V1) || isa<UndefValue>(V2)) {
 | 
						|
      if (swapParity)
 | 
						|
        // Revert to original Els1 and Els2 to avoid confusing recursive calls
 | 
						|
        swap(Els1, Els2);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
 | 
						|
    // Try to look through V1; if V1 is not an instruction, it can't be looked
 | 
						|
    // through.
 | 
						|
    const Instruction *I = dyn_cast<Instruction>(V1);
 | 
						|
    const Value *NoopInput = 0;
 | 
						|
    if (I != 0 && I->getNumOperands() > 0) {
 | 
						|
     Value *Op = I->getOperand(0);
 | 
						|
      if (isa<TruncInst>(I)) {
 | 
						|
        // Look through truly no-op truncates.
 | 
						|
        if (TLI.isTruncateFree(Op->getType(), I->getType()))
 | 
						|
          NoopInput = Op;
 | 
						|
      } else if (isa<BitCastInst>(I)) {
 | 
						|
        // Look through truly no-op bitcasts.
 | 
						|
        if (isNoopBitcast(Op->getType(), I->getType(), TLI))
 | 
						|
          NoopInput = Op;
 | 
						|
      } else if (isa<GetElementPtrInst>(I)) {
 | 
						|
        // Look through getelementptr
 | 
						|
        if (cast<GetElementPtrInst>(I)->hasAllZeroIndices())
 | 
						|
          NoopInput = Op;
 | 
						|
      } else if (isa<IntToPtrInst>(I)) {
 | 
						|
        // Look through inttoptr.
 | 
						|
        // Make sure this isn't a truncating or extending cast.  We could
 | 
						|
        // support this eventually, but don't bother for now.
 | 
						|
        if (!isa<VectorType>(I->getType()) &&
 | 
						|
            TLI.getPointerTy().getSizeInBits() == 
 | 
						|
              cast<IntegerType>(Op->getType())->getBitWidth())
 | 
						|
          NoopInput = Op;
 | 
						|
      } else if (isa<PtrToIntInst>(I)) {
 | 
						|
        // Look through ptrtoint.
 | 
						|
        // Make sure this isn't a truncating or extending cast.  We could
 | 
						|
        // support this eventually, but don't bother for now.
 | 
						|
        if (!isa<VectorType>(I->getType()) &&
 | 
						|
            TLI.getPointerTy().getSizeInBits() == 
 | 
						|
              cast<IntegerType>(I->getType())->getBitWidth())
 | 
						|
          NoopInput = Op;
 | 
						|
      } else if (isa<CallInst>(I)) {
 | 
						|
        // Look through call
 | 
						|
        for (User::const_op_iterator i = I->op_begin(),
 | 
						|
                                     // Skip Callee
 | 
						|
                                     e = I->op_end() - 1;
 | 
						|
             i != e; ++i) {
 | 
						|
          unsigned attrInd = i - I->op_begin() + 1;
 | 
						|
          if (cast<CallInst>(I)->paramHasAttr(attrInd, Attribute::Returned) &&
 | 
						|
              isNoopBitcast((*i)->getType(), I->getType(), TLI)) {
 | 
						|
            NoopInput = *i;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      } else if (isa<InvokeInst>(I)) {
 | 
						|
        // Look through invoke
 | 
						|
        for (User::const_op_iterator i = I->op_begin(),
 | 
						|
                                     // Skip BB, BB, Callee
 | 
						|
                                     e = I->op_end() - 3;
 | 
						|
             i != e; ++i) {
 | 
						|
          unsigned attrInd = i - I->op_begin() + 1;
 | 
						|
          if (cast<InvokeInst>(I)->paramHasAttr(attrInd, Attribute::Returned) &&
 | 
						|
              isNoopBitcast((*i)->getType(), I->getType(), TLI)) {
 | 
						|
            NoopInput = *i;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (NoopInput) {
 | 
						|
      V1 = NoopInput;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // If we already swapped, avoid infinite loop
 | 
						|
    if (swapParity)
 | 
						|
      break;
 | 
						|
 | 
						|
    // Otherwise, swap V1<->V2, Els1<->Els2
 | 
						|
    swap(V1, V2);
 | 
						|
    swap(Els1, Els2);
 | 
						|
    swapParity = !swapParity;
 | 
						|
  }
 | 
						|
 | 
						|
  for (unsigned n = 0; n < 2; ++n) {
 | 
						|
    if (isa<InsertValueInst>(V1)) {
 | 
						|
      if (isa<StructType>(V1->getType())) {
 | 
						|
        // Look through insertvalue
 | 
						|
        unsigned i, e;
 | 
						|
        for (i = 0, e = cast<StructType>(V1->getType())->getNumElements();
 | 
						|
             i != e; ++i) {
 | 
						|
          const Value *InScalar = FindInsertedValue(const_cast<Value*>(V1), i);
 | 
						|
          if (InScalar == 0)
 | 
						|
            break;
 | 
						|
          Els1.push_back(i);
 | 
						|
          if (!sameNoopInput(InScalar, V2, Els1, Els2, TLI)) {
 | 
						|
            Els1.pop_back();
 | 
						|
            break;
 | 
						|
          }
 | 
						|
          Els1.pop_back();
 | 
						|
        }
 | 
						|
        if (i == e) {
 | 
						|
          if (swapParity)
 | 
						|
            swap(Els1, Els2);
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else if (!Els1.empty() && isa<ExtractValueInst>(V1)) {
 | 
						|
      const ExtractValueInst *EVI = cast<ExtractValueInst>(V1);
 | 
						|
      unsigned i = Els1.back();
 | 
						|
      // If the scalar value being inserted is an extractvalue of the right
 | 
						|
      // index from the call, then everything is good.
 | 
						|
      if (isa<StructType>(EVI->getOperand(0)->getType()) &&
 | 
						|
          EVI->getNumIndices() == 1 && EVI->getIndices()[0] == i) {
 | 
						|
        // Look through extractvalue
 | 
						|
        Els1.pop_back();
 | 
						|
        if (sameNoopInput(EVI->getOperand(0), V2, Els1, Els2, TLI)) {
 | 
						|
          Els1.push_back(i);
 | 
						|
          if (swapParity)
 | 
						|
            swap(Els1, Els2);
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
        Els1.push_back(i);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    swap(V1, V2);
 | 
						|
    swap(Els1, Els2);
 | 
						|
    swapParity = !swapParity;
 | 
						|
  }
 | 
						|
 | 
						|
  if (swapParity)
 | 
						|
    swap(Els1, Els2);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Test if the given instruction is in a position to be optimized
 | 
						|
/// with a tail-call. This roughly means that it's in a block with
 | 
						|
/// a return and there's nothing that needs to be scheduled
 | 
						|
/// between it and the return.
 | 
						|
///
 | 
						|
/// This function only tests target-independent requirements.
 | 
						|
bool llvm::isInTailCallPosition(ImmutableCallSite CS,
 | 
						|
                                const TargetLowering &TLI) {
 | 
						|
  const Instruction *I = CS.getInstruction();
 | 
						|
  const BasicBlock *ExitBB = I->getParent();
 | 
						|
  const TerminatorInst *Term = ExitBB->getTerminator();
 | 
						|
  const ReturnInst *Ret = dyn_cast<ReturnInst>(Term);
 | 
						|
 | 
						|
  // The block must end in a return statement or unreachable.
 | 
						|
  //
 | 
						|
  // FIXME: Decline tailcall if it's not guaranteed and if the block ends in
 | 
						|
  // an unreachable, for now. The way tailcall optimization is currently
 | 
						|
  // implemented means it will add an epilogue followed by a jump. That is
 | 
						|
  // not profitable. Also, if the callee is a special function (e.g.
 | 
						|
  // longjmp on x86), it can end up causing miscompilation that has not
 | 
						|
  // been fully understood.
 | 
						|
  if (!Ret &&
 | 
						|
      (!TLI.getTargetMachine().Options.GuaranteedTailCallOpt ||
 | 
						|
       !isa<UnreachableInst>(Term)))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If I will have a chain, make sure no other instruction that will have a
 | 
						|
  // chain interposes between I and the return.
 | 
						|
  if (I->mayHaveSideEffects() || I->mayReadFromMemory() ||
 | 
						|
      !isSafeToSpeculativelyExecute(I))
 | 
						|
    for (BasicBlock::const_iterator BBI = prior(prior(ExitBB->end())); ;
 | 
						|
         --BBI) {
 | 
						|
      if (&*BBI == I)
 | 
						|
        break;
 | 
						|
      // Debug info intrinsics do not get in the way of tail call optimization.
 | 
						|
      if (isa<DbgInfoIntrinsic>(BBI))
 | 
						|
        continue;
 | 
						|
      if (BBI->mayHaveSideEffects() || BBI->mayReadFromMemory() ||
 | 
						|
          !isSafeToSpeculativelyExecute(BBI))
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
  // If the block ends with a void return or unreachable, it doesn't matter
 | 
						|
  // what the call's return type is.
 | 
						|
  if (!Ret || Ret->getNumOperands() == 0) return true;
 | 
						|
 | 
						|
  // If the return value is undef, it doesn't matter what the call's
 | 
						|
  // return type is.
 | 
						|
  if (isa<UndefValue>(Ret->getOperand(0))) return true;
 | 
						|
 | 
						|
  // Conservatively require the attributes of the call to match those of
 | 
						|
  // the return. Ignore noalias because it doesn't affect the call sequence.
 | 
						|
  const Function *F = ExitBB->getParent();
 | 
						|
  AttributeSet CallerAttrs = F->getAttributes();
 | 
						|
  if (AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex).
 | 
						|
        removeAttribute(Attribute::NoAlias) !=
 | 
						|
      AttrBuilder(CallerAttrs, AttributeSet::ReturnIndex).
 | 
						|
        removeAttribute(Attribute::NoAlias))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // It's not safe to eliminate the sign / zero extension of the return value.
 | 
						|
  if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
 | 
						|
      CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Otherwise, make sure the return value and I have the same value
 | 
						|
  SmallVector<unsigned, 4> Els1, Els2;
 | 
						|
  return sameNoopInput(Ret->getOperand(0), I, Els1, Els2, TLI);
 | 
						|
}
 |