mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	I'll fix the heuristic in a general way in a follow-up commit. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@180815 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2681 lines
		
	
	
		
			93 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2681 lines
		
	
	
		
			93 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// MachineScheduler schedules machine instructions after phi elimination. It
 | 
						|
// preserves LiveIntervals so it can be invoked before register allocation.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "misched"
 | 
						|
 | 
						|
#include "llvm/CodeGen/MachineScheduler.h"
 | 
						|
#include "llvm/ADT/OwningPtr.h"
 | 
						|
#include "llvm/ADT/PriorityQueue.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | 
						|
#include "llvm/CodeGen/MachineDominators.h"
 | 
						|
#include "llvm/CodeGen/MachineLoopInfo.h"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/CodeGen/RegisterClassInfo.h"
 | 
						|
#include "llvm/CodeGen/ScheduleDFS.h"
 | 
						|
#include "llvm/CodeGen/ScheduleHazardRecognizer.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/GraphWriter.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include <queue>
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
 | 
						|
                           cl::desc("Force top-down list scheduling"));
 | 
						|
cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
 | 
						|
                            cl::desc("Force bottom-up list scheduling"));
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
 | 
						|
  cl::desc("Pop up a window to show MISched dags after they are processed"));
 | 
						|
 | 
						|
static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
 | 
						|
  cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
 | 
						|
#else
 | 
						|
static bool ViewMISchedDAGs = false;
 | 
						|
#endif // NDEBUG
 | 
						|
 | 
						|
// FIXME: remove this flag after initial testing. It should always be a good
 | 
						|
// thing.
 | 
						|
static cl::opt<bool> EnableCopyConstrain("misched-vcopy", cl::Hidden,
 | 
						|
    cl::desc("Constrain vreg copies."), cl::init(true));
 | 
						|
 | 
						|
static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden,
 | 
						|
  cl::desc("Enable load clustering."), cl::init(true));
 | 
						|
 | 
						|
// Experimental heuristics
 | 
						|
static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden,
 | 
						|
  cl::desc("Enable scheduling for macro fusion."), cl::init(true));
 | 
						|
 | 
						|
static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
 | 
						|
  cl::desc("Verify machine instrs before and after machine scheduling"));
 | 
						|
 | 
						|
// DAG subtrees must have at least this many nodes.
 | 
						|
static const unsigned MinSubtreeSize = 8;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Machine Instruction Scheduling Pass and Registry
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
MachineSchedContext::MachineSchedContext():
 | 
						|
    MF(0), MLI(0), MDT(0), PassConfig(0), AA(0), LIS(0) {
 | 
						|
  RegClassInfo = new RegisterClassInfo();
 | 
						|
}
 | 
						|
 | 
						|
MachineSchedContext::~MachineSchedContext() {
 | 
						|
  delete RegClassInfo;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
/// MachineScheduler runs after coalescing and before register allocation.
 | 
						|
class MachineScheduler : public MachineSchedContext,
 | 
						|
                         public MachineFunctionPass {
 | 
						|
public:
 | 
						|
  MachineScheduler();
 | 
						|
 | 
						|
  virtual void getAnalysisUsage(AnalysisUsage &AU) const;
 | 
						|
 | 
						|
  virtual void releaseMemory() {}
 | 
						|
 | 
						|
  virtual bool runOnMachineFunction(MachineFunction&);
 | 
						|
 | 
						|
  virtual void print(raw_ostream &O, const Module* = 0) const;
 | 
						|
 | 
						|
  static char ID; // Class identification, replacement for typeinfo
 | 
						|
};
 | 
						|
} // namespace
 | 
						|
 | 
						|
char MachineScheduler::ID = 0;
 | 
						|
 | 
						|
char &llvm::MachineSchedulerID = MachineScheduler::ID;
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(MachineScheduler, "misched",
 | 
						|
                      "Machine Instruction Scheduler", false, false)
 | 
						|
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
 | 
						|
INITIALIZE_PASS_END(MachineScheduler, "misched",
 | 
						|
                    "Machine Instruction Scheduler", false, false)
 | 
						|
 | 
						|
MachineScheduler::MachineScheduler()
 | 
						|
: MachineFunctionPass(ID) {
 | 
						|
  initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
 | 
						|
}
 | 
						|
 | 
						|
void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.setPreservesCFG();
 | 
						|
  AU.addRequiredID(MachineDominatorsID);
 | 
						|
  AU.addRequired<MachineLoopInfo>();
 | 
						|
  AU.addRequired<AliasAnalysis>();
 | 
						|
  AU.addRequired<TargetPassConfig>();
 | 
						|
  AU.addRequired<SlotIndexes>();
 | 
						|
  AU.addPreserved<SlotIndexes>();
 | 
						|
  AU.addRequired<LiveIntervals>();
 | 
						|
  AU.addPreserved<LiveIntervals>();
 | 
						|
  MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
}
 | 
						|
 | 
						|
MachinePassRegistry MachineSchedRegistry::Registry;
 | 
						|
 | 
						|
/// A dummy default scheduler factory indicates whether the scheduler
 | 
						|
/// is overridden on the command line.
 | 
						|
static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// MachineSchedOpt allows command line selection of the scheduler.
 | 
						|
static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
 | 
						|
               RegisterPassParser<MachineSchedRegistry> >
 | 
						|
MachineSchedOpt("misched",
 | 
						|
                cl::init(&useDefaultMachineSched), cl::Hidden,
 | 
						|
                cl::desc("Machine instruction scheduler to use"));
 | 
						|
 | 
						|
static MachineSchedRegistry
 | 
						|
DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
 | 
						|
                     useDefaultMachineSched);
 | 
						|
 | 
						|
/// Forward declare the standard machine scheduler. This will be used as the
 | 
						|
/// default scheduler if the target does not set a default.
 | 
						|
static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C);
 | 
						|
 | 
						|
 | 
						|
/// Decrement this iterator until reaching the top or a non-debug instr.
 | 
						|
static MachineBasicBlock::iterator
 | 
						|
priorNonDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Beg) {
 | 
						|
  assert(I != Beg && "reached the top of the region, cannot decrement");
 | 
						|
  while (--I != Beg) {
 | 
						|
    if (!I->isDebugValue())
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  return I;
 | 
						|
}
 | 
						|
 | 
						|
/// If this iterator is a debug value, increment until reaching the End or a
 | 
						|
/// non-debug instruction.
 | 
						|
static MachineBasicBlock::iterator
 | 
						|
nextIfDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator End) {
 | 
						|
  for(; I != End; ++I) {
 | 
						|
    if (!I->isDebugValue())
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  return I;
 | 
						|
}
 | 
						|
 | 
						|
/// Top-level MachineScheduler pass driver.
 | 
						|
///
 | 
						|
/// Visit blocks in function order. Divide each block into scheduling regions
 | 
						|
/// and visit them bottom-up. Visiting regions bottom-up is not required, but is
 | 
						|
/// consistent with the DAG builder, which traverses the interior of the
 | 
						|
/// scheduling regions bottom-up.
 | 
						|
///
 | 
						|
/// This design avoids exposing scheduling boundaries to the DAG builder,
 | 
						|
/// simplifying the DAG builder's support for "special" target instructions.
 | 
						|
/// At the same time the design allows target schedulers to operate across
 | 
						|
/// scheduling boundaries, for example to bundle the boudary instructions
 | 
						|
/// without reordering them. This creates complexity, because the target
 | 
						|
/// scheduler must update the RegionBegin and RegionEnd positions cached by
 | 
						|
/// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
 | 
						|
/// design would be to split blocks at scheduling boundaries, but LLVM has a
 | 
						|
/// general bias against block splitting purely for implementation simplicity.
 | 
						|
bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
 | 
						|
  DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs()));
 | 
						|
 | 
						|
  // Initialize the context of the pass.
 | 
						|
  MF = &mf;
 | 
						|
  MLI = &getAnalysis<MachineLoopInfo>();
 | 
						|
  MDT = &getAnalysis<MachineDominatorTree>();
 | 
						|
  PassConfig = &getAnalysis<TargetPassConfig>();
 | 
						|
  AA = &getAnalysis<AliasAnalysis>();
 | 
						|
 | 
						|
  LIS = &getAnalysis<LiveIntervals>();
 | 
						|
  const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
 | 
						|
 | 
						|
  if (VerifyScheduling) {
 | 
						|
    DEBUG(LIS->print(dbgs()));
 | 
						|
    MF->verify(this, "Before machine scheduling.");
 | 
						|
  }
 | 
						|
  RegClassInfo->runOnMachineFunction(*MF);
 | 
						|
 | 
						|
  // Select the scheduler, or set the default.
 | 
						|
  MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
 | 
						|
  if (Ctor == useDefaultMachineSched) {
 | 
						|
    // Get the default scheduler set by the target.
 | 
						|
    Ctor = MachineSchedRegistry::getDefault();
 | 
						|
    if (!Ctor) {
 | 
						|
      Ctor = createConvergingSched;
 | 
						|
      MachineSchedRegistry::setDefault(Ctor);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Instantiate the selected scheduler.
 | 
						|
  OwningPtr<ScheduleDAGInstrs> Scheduler(Ctor(this));
 | 
						|
 | 
						|
  // Visit all machine basic blocks.
 | 
						|
  //
 | 
						|
  // TODO: Visit blocks in global postorder or postorder within the bottom-up
 | 
						|
  // loop tree. Then we can optionally compute global RegPressure.
 | 
						|
  for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
 | 
						|
       MBB != MBBEnd; ++MBB) {
 | 
						|
 | 
						|
    Scheduler->startBlock(MBB);
 | 
						|
 | 
						|
    // Break the block into scheduling regions [I, RegionEnd), and schedule each
 | 
						|
    // region as soon as it is discovered. RegionEnd points the scheduling
 | 
						|
    // boundary at the bottom of the region. The DAG does not include RegionEnd,
 | 
						|
    // but the region does (i.e. the next RegionEnd is above the previous
 | 
						|
    // RegionBegin). If the current block has no terminator then RegionEnd ==
 | 
						|
    // MBB->end() for the bottom region.
 | 
						|
    //
 | 
						|
    // The Scheduler may insert instructions during either schedule() or
 | 
						|
    // exitRegion(), even for empty regions. So the local iterators 'I' and
 | 
						|
    // 'RegionEnd' are invalid across these calls.
 | 
						|
    unsigned RemainingInstrs = MBB->size();
 | 
						|
    for(MachineBasicBlock::iterator RegionEnd = MBB->end();
 | 
						|
        RegionEnd != MBB->begin(); RegionEnd = Scheduler->begin()) {
 | 
						|
 | 
						|
      // Avoid decrementing RegionEnd for blocks with no terminator.
 | 
						|
      if (RegionEnd != MBB->end()
 | 
						|
          || TII->isSchedulingBoundary(llvm::prior(RegionEnd), MBB, *MF)) {
 | 
						|
        --RegionEnd;
 | 
						|
        // Count the boundary instruction.
 | 
						|
        --RemainingInstrs;
 | 
						|
      }
 | 
						|
 | 
						|
      // The next region starts above the previous region. Look backward in the
 | 
						|
      // instruction stream until we find the nearest boundary.
 | 
						|
      MachineBasicBlock::iterator I = RegionEnd;
 | 
						|
      for(;I != MBB->begin(); --I, --RemainingInstrs) {
 | 
						|
        if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF))
 | 
						|
          break;
 | 
						|
      }
 | 
						|
      // Notify the scheduler of the region, even if we may skip scheduling
 | 
						|
      // it. Perhaps it still needs to be bundled.
 | 
						|
      Scheduler->enterRegion(MBB, I, RegionEnd, RemainingInstrs);
 | 
						|
 | 
						|
      // Skip empty scheduling regions (0 or 1 schedulable instructions).
 | 
						|
      if (I == RegionEnd || I == llvm::prior(RegionEnd)) {
 | 
						|
        // Close the current region. Bundle the terminator if needed.
 | 
						|
        // This invalidates 'RegionEnd' and 'I'.
 | 
						|
        Scheduler->exitRegion();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      DEBUG(dbgs() << "********** MI Scheduling **********\n");
 | 
						|
      DEBUG(dbgs() << MF->getName()
 | 
						|
            << ":BB#" << MBB->getNumber() << " " << MBB->getName()
 | 
						|
            << "\n  From: " << *I << "    To: ";
 | 
						|
            if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
 | 
						|
            else dbgs() << "End";
 | 
						|
            dbgs() << " Remaining: " << RemainingInstrs << "\n");
 | 
						|
 | 
						|
      // Schedule a region: possibly reorder instructions.
 | 
						|
      // This invalidates 'RegionEnd' and 'I'.
 | 
						|
      Scheduler->schedule();
 | 
						|
 | 
						|
      // Close the current region.
 | 
						|
      Scheduler->exitRegion();
 | 
						|
 | 
						|
      // Scheduling has invalidated the current iterator 'I'. Ask the
 | 
						|
      // scheduler for the top of it's scheduled region.
 | 
						|
      RegionEnd = Scheduler->begin();
 | 
						|
    }
 | 
						|
    assert(RemainingInstrs == 0 && "Instruction count mismatch!");
 | 
						|
    Scheduler->finishBlock();
 | 
						|
  }
 | 
						|
  Scheduler->finalizeSchedule();
 | 
						|
  DEBUG(LIS->print(dbgs()));
 | 
						|
  if (VerifyScheduling)
 | 
						|
    MF->verify(this, "After machine scheduling.");
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
void MachineScheduler::print(raw_ostream &O, const Module* m) const {
 | 
						|
  // unimplemented
 | 
						|
}
 | 
						|
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
void ReadyQueue::dump() {
 | 
						|
  dbgs() << "  " << Name << ": ";
 | 
						|
  for (unsigned i = 0, e = Queue.size(); i < e; ++i)
 | 
						|
    dbgs() << Queue[i]->NodeNum << " ";
 | 
						|
  dbgs() << "\n";
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// ScheduleDAGMI - Base class for MachineInstr scheduling with LiveIntervals
 | 
						|
// preservation.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
ScheduleDAGMI::~ScheduleDAGMI() {
 | 
						|
  delete DFSResult;
 | 
						|
  DeleteContainerPointers(Mutations);
 | 
						|
  delete SchedImpl;
 | 
						|
}
 | 
						|
 | 
						|
bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
 | 
						|
  return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
 | 
						|
}
 | 
						|
 | 
						|
bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
 | 
						|
  if (SuccSU != &ExitSU) {
 | 
						|
    // Do not use WillCreateCycle, it assumes SD scheduling.
 | 
						|
    // If Pred is reachable from Succ, then the edge creates a cycle.
 | 
						|
    if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
 | 
						|
      return false;
 | 
						|
    Topo.AddPred(SuccSU, PredDep.getSUnit());
 | 
						|
  }
 | 
						|
  SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
 | 
						|
  // Return true regardless of whether a new edge needed to be inserted.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
 | 
						|
/// NumPredsLeft reaches zero, release the successor node.
 | 
						|
///
 | 
						|
/// FIXME: Adjust SuccSU height based on MinLatency.
 | 
						|
void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
 | 
						|
  SUnit *SuccSU = SuccEdge->getSUnit();
 | 
						|
 | 
						|
  if (SuccEdge->isWeak()) {
 | 
						|
    --SuccSU->WeakPredsLeft;
 | 
						|
    if (SuccEdge->isCluster())
 | 
						|
      NextClusterSucc = SuccSU;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
#ifndef NDEBUG
 | 
						|
  if (SuccSU->NumPredsLeft == 0) {
 | 
						|
    dbgs() << "*** Scheduling failed! ***\n";
 | 
						|
    SuccSU->dump(this);
 | 
						|
    dbgs() << " has been released too many times!\n";
 | 
						|
    llvm_unreachable(0);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  --SuccSU->NumPredsLeft;
 | 
						|
  if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
 | 
						|
    SchedImpl->releaseTopNode(SuccSU);
 | 
						|
}
 | 
						|
 | 
						|
/// releaseSuccessors - Call releaseSucc on each of SU's successors.
 | 
						|
void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
 | 
						|
  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    releaseSucc(SU, &*I);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
 | 
						|
/// NumSuccsLeft reaches zero, release the predecessor node.
 | 
						|
///
 | 
						|
/// FIXME: Adjust PredSU height based on MinLatency.
 | 
						|
void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
 | 
						|
  SUnit *PredSU = PredEdge->getSUnit();
 | 
						|
 | 
						|
  if (PredEdge->isWeak()) {
 | 
						|
    --PredSU->WeakSuccsLeft;
 | 
						|
    if (PredEdge->isCluster())
 | 
						|
      NextClusterPred = PredSU;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
#ifndef NDEBUG
 | 
						|
  if (PredSU->NumSuccsLeft == 0) {
 | 
						|
    dbgs() << "*** Scheduling failed! ***\n";
 | 
						|
    PredSU->dump(this);
 | 
						|
    dbgs() << " has been released too many times!\n";
 | 
						|
    llvm_unreachable(0);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
  --PredSU->NumSuccsLeft;
 | 
						|
  if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
 | 
						|
    SchedImpl->releaseBottomNode(PredSU);
 | 
						|
}
 | 
						|
 | 
						|
/// releasePredecessors - Call releasePred on each of SU's predecessors.
 | 
						|
void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
 | 
						|
  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    releasePred(SU, &*I);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// This is normally called from the main scheduler loop but may also be invoked
 | 
						|
/// by the scheduling strategy to perform additional code motion.
 | 
						|
void ScheduleDAGMI::moveInstruction(MachineInstr *MI,
 | 
						|
                                    MachineBasicBlock::iterator InsertPos) {
 | 
						|
  // Advance RegionBegin if the first instruction moves down.
 | 
						|
  if (&*RegionBegin == MI)
 | 
						|
    ++RegionBegin;
 | 
						|
 | 
						|
  // Update the instruction stream.
 | 
						|
  BB->splice(InsertPos, BB, MI);
 | 
						|
 | 
						|
  // Update LiveIntervals
 | 
						|
  LIS->handleMove(MI, /*UpdateFlags=*/true);
 | 
						|
 | 
						|
  // Recede RegionBegin if an instruction moves above the first.
 | 
						|
  if (RegionBegin == InsertPos)
 | 
						|
    RegionBegin = MI;
 | 
						|
}
 | 
						|
 | 
						|
bool ScheduleDAGMI::checkSchedLimit() {
 | 
						|
#ifndef NDEBUG
 | 
						|
  if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
 | 
						|
    CurrentTop = CurrentBottom;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  ++NumInstrsScheduled;
 | 
						|
#endif
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
 | 
						|
/// crossing a scheduling boundary. [begin, end) includes all instructions in
 | 
						|
/// the region, including the boundary itself and single-instruction regions
 | 
						|
/// that don't get scheduled.
 | 
						|
void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
 | 
						|
                                MachineBasicBlock::iterator begin,
 | 
						|
                                MachineBasicBlock::iterator end,
 | 
						|
                                unsigned endcount)
 | 
						|
{
 | 
						|
  ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount);
 | 
						|
 | 
						|
  // For convenience remember the end of the liveness region.
 | 
						|
  LiveRegionEnd =
 | 
						|
    (RegionEnd == bb->end()) ? RegionEnd : llvm::next(RegionEnd);
 | 
						|
}
 | 
						|
 | 
						|
// Setup the register pressure trackers for the top scheduled top and bottom
 | 
						|
// scheduled regions.
 | 
						|
void ScheduleDAGMI::initRegPressure() {
 | 
						|
  TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin);
 | 
						|
  BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
 | 
						|
 | 
						|
  // Close the RPTracker to finalize live ins.
 | 
						|
  RPTracker.closeRegion();
 | 
						|
 | 
						|
  DEBUG(RPTracker.getPressure().dump(TRI));
 | 
						|
 | 
						|
  // Initialize the live ins and live outs.
 | 
						|
  TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
 | 
						|
  BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
 | 
						|
 | 
						|
  // Close one end of the tracker so we can call
 | 
						|
  // getMaxUpward/DownwardPressureDelta before advancing across any
 | 
						|
  // instructions. This converts currently live regs into live ins/outs.
 | 
						|
  TopRPTracker.closeTop();
 | 
						|
  BotRPTracker.closeBottom();
 | 
						|
 | 
						|
  // Account for liveness generated by the region boundary.
 | 
						|
  if (LiveRegionEnd != RegionEnd)
 | 
						|
    BotRPTracker.recede();
 | 
						|
 | 
						|
  assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
 | 
						|
 | 
						|
  // Cache the list of excess pressure sets in this region. This will also track
 | 
						|
  // the max pressure in the scheduled code for these sets.
 | 
						|
  RegionCriticalPSets.clear();
 | 
						|
  const std::vector<unsigned> &RegionPressure =
 | 
						|
    RPTracker.getPressure().MaxSetPressure;
 | 
						|
  for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
 | 
						|
    unsigned Limit = TRI->getRegPressureSetLimit(i);
 | 
						|
    DEBUG(dbgs() << TRI->getRegPressureSetName(i)
 | 
						|
          << "Limit " << Limit
 | 
						|
          << " Actual " << RegionPressure[i] << "\n");
 | 
						|
    if (RegionPressure[i] > Limit)
 | 
						|
      RegionCriticalPSets.push_back(PressureElement(i, 0));
 | 
						|
  }
 | 
						|
  DEBUG(dbgs() << "Excess PSets: ";
 | 
						|
        for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
 | 
						|
          dbgs() << TRI->getRegPressureSetName(
 | 
						|
            RegionCriticalPSets[i].PSetID) << " ";
 | 
						|
        dbgs() << "\n");
 | 
						|
}
 | 
						|
 | 
						|
// FIXME: When the pressure tracker deals in pressure differences then we won't
 | 
						|
// iterate over all RegionCriticalPSets[i].
 | 
						|
void ScheduleDAGMI::
 | 
						|
updateScheduledPressure(const std::vector<unsigned> &NewMaxPressure) {
 | 
						|
  for (unsigned i = 0, e = RegionCriticalPSets.size(); i < e; ++i) {
 | 
						|
    unsigned ID = RegionCriticalPSets[i].PSetID;
 | 
						|
    int &MaxUnits = RegionCriticalPSets[i].UnitIncrease;
 | 
						|
    if ((int)NewMaxPressure[ID] > MaxUnits)
 | 
						|
      MaxUnits = NewMaxPressure[ID];
 | 
						|
  }
 | 
						|
  DEBUG(
 | 
						|
    for (unsigned i = 0, e = NewMaxPressure.size(); i < e; ++i) {
 | 
						|
      unsigned Limit = TRI->getRegPressureSetLimit(i);
 | 
						|
      if (NewMaxPressure[i] > Limit ) {
 | 
						|
        dbgs() << "  " << TRI->getRegPressureSetName(i) << ": "
 | 
						|
               << NewMaxPressure[i] << " > " << Limit << "\n";
 | 
						|
      }
 | 
						|
    });
 | 
						|
}
 | 
						|
 | 
						|
/// schedule - Called back from MachineScheduler::runOnMachineFunction
 | 
						|
/// after setting up the current scheduling region. [RegionBegin, RegionEnd)
 | 
						|
/// only includes instructions that have DAG nodes, not scheduling boundaries.
 | 
						|
///
 | 
						|
/// This is a skeletal driver, with all the functionality pushed into helpers,
 | 
						|
/// so that it can be easilly extended by experimental schedulers. Generally,
 | 
						|
/// implementing MachineSchedStrategy should be sufficient to implement a new
 | 
						|
/// scheduling algorithm. However, if a scheduler further subclasses
 | 
						|
/// ScheduleDAGMI then it will want to override this virtual method in order to
 | 
						|
/// update any specialized state.
 | 
						|
void ScheduleDAGMI::schedule() {
 | 
						|
  buildDAGWithRegPressure();
 | 
						|
 | 
						|
  Topo.InitDAGTopologicalSorting();
 | 
						|
 | 
						|
  postprocessDAG();
 | 
						|
 | 
						|
  SmallVector<SUnit*, 8> TopRoots, BotRoots;
 | 
						|
  findRootsAndBiasEdges(TopRoots, BotRoots);
 | 
						|
 | 
						|
  // Initialize the strategy before modifying the DAG.
 | 
						|
  // This may initialize a DFSResult to be used for queue priority.
 | 
						|
  SchedImpl->initialize(this);
 | 
						|
 | 
						|
  DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
 | 
						|
          SUnits[su].dumpAll(this));
 | 
						|
  if (ViewMISchedDAGs) viewGraph();
 | 
						|
 | 
						|
  // Initialize ready queues now that the DAG and priority data are finalized.
 | 
						|
  initQueues(TopRoots, BotRoots);
 | 
						|
 | 
						|
  bool IsTopNode = false;
 | 
						|
  while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
 | 
						|
    assert(!SU->isScheduled && "Node already scheduled");
 | 
						|
    if (!checkSchedLimit())
 | 
						|
      break;
 | 
						|
 | 
						|
    scheduleMI(SU, IsTopNode);
 | 
						|
 | 
						|
    updateQueues(SU, IsTopNode);
 | 
						|
  }
 | 
						|
  assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
 | 
						|
 | 
						|
  placeDebugValues();
 | 
						|
 | 
						|
  DEBUG({
 | 
						|
      unsigned BBNum = begin()->getParent()->getNumber();
 | 
						|
      dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
 | 
						|
      dumpSchedule();
 | 
						|
      dbgs() << '\n';
 | 
						|
    });
 | 
						|
}
 | 
						|
 | 
						|
/// Build the DAG and setup three register pressure trackers.
 | 
						|
void ScheduleDAGMI::buildDAGWithRegPressure() {
 | 
						|
  // Initialize the register pressure tracker used by buildSchedGraph.
 | 
						|
  RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
 | 
						|
 | 
						|
  // Account for liveness generate by the region boundary.
 | 
						|
  if (LiveRegionEnd != RegionEnd)
 | 
						|
    RPTracker.recede();
 | 
						|
 | 
						|
  // Build the DAG, and compute current register pressure.
 | 
						|
  buildSchedGraph(AA, &RPTracker);
 | 
						|
 | 
						|
  // Initialize top/bottom trackers after computing region pressure.
 | 
						|
  initRegPressure();
 | 
						|
}
 | 
						|
 | 
						|
/// Apply each ScheduleDAGMutation step in order.
 | 
						|
void ScheduleDAGMI::postprocessDAG() {
 | 
						|
  for (unsigned i = 0, e = Mutations.size(); i < e; ++i) {
 | 
						|
    Mutations[i]->apply(this);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGMI::computeDFSResult() {
 | 
						|
  if (!DFSResult)
 | 
						|
    DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
 | 
						|
  DFSResult->clear();
 | 
						|
  ScheduledTrees.clear();
 | 
						|
  DFSResult->resize(SUnits.size());
 | 
						|
  DFSResult->compute(SUnits);
 | 
						|
  ScheduledTrees.resize(DFSResult->getNumSubtrees());
 | 
						|
}
 | 
						|
 | 
						|
void ScheduleDAGMI::findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
 | 
						|
                                          SmallVectorImpl<SUnit*> &BotRoots) {
 | 
						|
  for (std::vector<SUnit>::iterator
 | 
						|
         I = SUnits.begin(), E = SUnits.end(); I != E; ++I) {
 | 
						|
    SUnit *SU = &(*I);
 | 
						|
    assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits");
 | 
						|
 | 
						|
    // Order predecessors so DFSResult follows the critical path.
 | 
						|
    SU->biasCriticalPath();
 | 
						|
 | 
						|
    // A SUnit is ready to top schedule if it has no predecessors.
 | 
						|
    if (!I->NumPredsLeft)
 | 
						|
      TopRoots.push_back(SU);
 | 
						|
    // A SUnit is ready to bottom schedule if it has no successors.
 | 
						|
    if (!I->NumSuccsLeft)
 | 
						|
      BotRoots.push_back(SU);
 | 
						|
  }
 | 
						|
  ExitSU.biasCriticalPath();
 | 
						|
}
 | 
						|
 | 
						|
/// Identify DAG roots and setup scheduler queues.
 | 
						|
void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
 | 
						|
                               ArrayRef<SUnit*> BotRoots) {
 | 
						|
  NextClusterSucc = NULL;
 | 
						|
  NextClusterPred = NULL;
 | 
						|
 | 
						|
  // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
 | 
						|
  //
 | 
						|
  // Nodes with unreleased weak edges can still be roots.
 | 
						|
  // Release top roots in forward order.
 | 
						|
  for (SmallVectorImpl<SUnit*>::const_iterator
 | 
						|
         I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) {
 | 
						|
    SchedImpl->releaseTopNode(*I);
 | 
						|
  }
 | 
						|
  // Release bottom roots in reverse order so the higher priority nodes appear
 | 
						|
  // first. This is more natural and slightly more efficient.
 | 
						|
  for (SmallVectorImpl<SUnit*>::const_reverse_iterator
 | 
						|
         I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
 | 
						|
    SchedImpl->releaseBottomNode(*I);
 | 
						|
  }
 | 
						|
 | 
						|
  releaseSuccessors(&EntrySU);
 | 
						|
  releasePredecessors(&ExitSU);
 | 
						|
 | 
						|
  SchedImpl->registerRoots();
 | 
						|
 | 
						|
  // Advance past initial DebugValues.
 | 
						|
  assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
 | 
						|
  CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
 | 
						|
  TopRPTracker.setPos(CurrentTop);
 | 
						|
 | 
						|
  CurrentBottom = RegionEnd;
 | 
						|
}
 | 
						|
 | 
						|
/// Move an instruction and update register pressure.
 | 
						|
void ScheduleDAGMI::scheduleMI(SUnit *SU, bool IsTopNode) {
 | 
						|
  // Move the instruction to its new location in the instruction stream.
 | 
						|
  MachineInstr *MI = SU->getInstr();
 | 
						|
 | 
						|
  if (IsTopNode) {
 | 
						|
    assert(SU->isTopReady() && "node still has unscheduled dependencies");
 | 
						|
    if (&*CurrentTop == MI)
 | 
						|
      CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
 | 
						|
    else {
 | 
						|
      moveInstruction(MI, CurrentTop);
 | 
						|
      TopRPTracker.setPos(MI);
 | 
						|
    }
 | 
						|
 | 
						|
    // Update top scheduled pressure.
 | 
						|
    TopRPTracker.advance();
 | 
						|
    assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
 | 
						|
    updateScheduledPressure(TopRPTracker.getPressure().MaxSetPressure);
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    assert(SU->isBottomReady() && "node still has unscheduled dependencies");
 | 
						|
    MachineBasicBlock::iterator priorII =
 | 
						|
      priorNonDebug(CurrentBottom, CurrentTop);
 | 
						|
    if (&*priorII == MI)
 | 
						|
      CurrentBottom = priorII;
 | 
						|
    else {
 | 
						|
      if (&*CurrentTop == MI) {
 | 
						|
        CurrentTop = nextIfDebug(++CurrentTop, priorII);
 | 
						|
        TopRPTracker.setPos(CurrentTop);
 | 
						|
      }
 | 
						|
      moveInstruction(MI, CurrentBottom);
 | 
						|
      CurrentBottom = MI;
 | 
						|
    }
 | 
						|
    // Update bottom scheduled pressure.
 | 
						|
    BotRPTracker.recede();
 | 
						|
    assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
 | 
						|
    updateScheduledPressure(BotRPTracker.getPressure().MaxSetPressure);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Update scheduler queues after scheduling an instruction.
 | 
						|
void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
 | 
						|
  // Release dependent instructions for scheduling.
 | 
						|
  if (IsTopNode)
 | 
						|
    releaseSuccessors(SU);
 | 
						|
  else
 | 
						|
    releasePredecessors(SU);
 | 
						|
 | 
						|
  SU->isScheduled = true;
 | 
						|
 | 
						|
  if (DFSResult) {
 | 
						|
    unsigned SubtreeID = DFSResult->getSubtreeID(SU);
 | 
						|
    if (!ScheduledTrees.test(SubtreeID)) {
 | 
						|
      ScheduledTrees.set(SubtreeID);
 | 
						|
      DFSResult->scheduleTree(SubtreeID);
 | 
						|
      SchedImpl->scheduleTree(SubtreeID);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Notify the scheduling strategy after updating the DAG.
 | 
						|
  SchedImpl->schedNode(SU, IsTopNode);
 | 
						|
}
 | 
						|
 | 
						|
/// Reinsert any remaining debug_values, just like the PostRA scheduler.
 | 
						|
void ScheduleDAGMI::placeDebugValues() {
 | 
						|
  // If first instruction was a DBG_VALUE then put it back.
 | 
						|
  if (FirstDbgValue) {
 | 
						|
    BB->splice(RegionBegin, BB, FirstDbgValue);
 | 
						|
    RegionBegin = FirstDbgValue;
 | 
						|
  }
 | 
						|
 | 
						|
  for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
 | 
						|
         DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
 | 
						|
    std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
 | 
						|
    MachineInstr *DbgValue = P.first;
 | 
						|
    MachineBasicBlock::iterator OrigPrevMI = P.second;
 | 
						|
    if (&*RegionBegin == DbgValue)
 | 
						|
      ++RegionBegin;
 | 
						|
    BB->splice(++OrigPrevMI, BB, DbgValue);
 | 
						|
    if (OrigPrevMI == llvm::prior(RegionEnd))
 | 
						|
      RegionEnd = DbgValue;
 | 
						|
  }
 | 
						|
  DbgValues.clear();
 | 
						|
  FirstDbgValue = NULL;
 | 
						|
}
 | 
						|
 | 
						|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
 | 
						|
void ScheduleDAGMI::dumpSchedule() const {
 | 
						|
  for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
 | 
						|
    if (SUnit *SU = getSUnit(&(*MI)))
 | 
						|
      SU->dump(this);
 | 
						|
    else
 | 
						|
      dbgs() << "Missing SUnit\n";
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// LoadClusterMutation - DAG post-processing to cluster loads.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
/// \brief Post-process the DAG to create cluster edges between neighboring
 | 
						|
/// loads.
 | 
						|
class LoadClusterMutation : public ScheduleDAGMutation {
 | 
						|
  struct LoadInfo {
 | 
						|
    SUnit *SU;
 | 
						|
    unsigned BaseReg;
 | 
						|
    unsigned Offset;
 | 
						|
    LoadInfo(SUnit *su, unsigned reg, unsigned ofs)
 | 
						|
      : SU(su), BaseReg(reg), Offset(ofs) {}
 | 
						|
  };
 | 
						|
  static bool LoadInfoLess(const LoadClusterMutation::LoadInfo &LHS,
 | 
						|
                           const LoadClusterMutation::LoadInfo &RHS);
 | 
						|
 | 
						|
  const TargetInstrInfo *TII;
 | 
						|
  const TargetRegisterInfo *TRI;
 | 
						|
public:
 | 
						|
  LoadClusterMutation(const TargetInstrInfo *tii,
 | 
						|
                      const TargetRegisterInfo *tri)
 | 
						|
    : TII(tii), TRI(tri) {}
 | 
						|
 | 
						|
  virtual void apply(ScheduleDAGMI *DAG);
 | 
						|
protected:
 | 
						|
  void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG);
 | 
						|
};
 | 
						|
} // anonymous
 | 
						|
 | 
						|
bool LoadClusterMutation::LoadInfoLess(
 | 
						|
  const LoadClusterMutation::LoadInfo &LHS,
 | 
						|
  const LoadClusterMutation::LoadInfo &RHS) {
 | 
						|
  if (LHS.BaseReg != RHS.BaseReg)
 | 
						|
    return LHS.BaseReg < RHS.BaseReg;
 | 
						|
  return LHS.Offset < RHS.Offset;
 | 
						|
}
 | 
						|
 | 
						|
void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads,
 | 
						|
                                                  ScheduleDAGMI *DAG) {
 | 
						|
  SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords;
 | 
						|
  for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) {
 | 
						|
    SUnit *SU = Loads[Idx];
 | 
						|
    unsigned BaseReg;
 | 
						|
    unsigned Offset;
 | 
						|
    if (TII->getLdStBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI))
 | 
						|
      LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset));
 | 
						|
  }
 | 
						|
  if (LoadRecords.size() < 2)
 | 
						|
    return;
 | 
						|
  std::sort(LoadRecords.begin(), LoadRecords.end(), LoadInfoLess);
 | 
						|
  unsigned ClusterLength = 1;
 | 
						|
  for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) {
 | 
						|
    if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) {
 | 
						|
      ClusterLength = 1;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    SUnit *SUa = LoadRecords[Idx].SU;
 | 
						|
    SUnit *SUb = LoadRecords[Idx+1].SU;
 | 
						|
    if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength)
 | 
						|
        && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
 | 
						|
 | 
						|
      DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU("
 | 
						|
            << SUb->NodeNum << ")\n");
 | 
						|
      // Copy successor edges from SUa to SUb. Interleaving computation
 | 
						|
      // dependent on SUa can prevent load combining due to register reuse.
 | 
						|
      // Predecessor edges do not need to be copied from SUb to SUa since nearby
 | 
						|
      // loads should have effectively the same inputs.
 | 
						|
      for (SUnit::const_succ_iterator
 | 
						|
             SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) {
 | 
						|
        if (SI->getSUnit() == SUb)
 | 
						|
          continue;
 | 
						|
        DEBUG(dbgs() << "  Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n");
 | 
						|
        DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial));
 | 
						|
      }
 | 
						|
      ++ClusterLength;
 | 
						|
    }
 | 
						|
    else
 | 
						|
      ClusterLength = 1;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Callback from DAG postProcessing to create cluster edges for loads.
 | 
						|
void LoadClusterMutation::apply(ScheduleDAGMI *DAG) {
 | 
						|
  // Map DAG NodeNum to store chain ID.
 | 
						|
  DenseMap<unsigned, unsigned> StoreChainIDs;
 | 
						|
  // Map each store chain to a set of dependent loads.
 | 
						|
  SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
 | 
						|
  for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
 | 
						|
    SUnit *SU = &DAG->SUnits[Idx];
 | 
						|
    if (!SU->getInstr()->mayLoad())
 | 
						|
      continue;
 | 
						|
    unsigned ChainPredID = DAG->SUnits.size();
 | 
						|
    for (SUnit::const_pred_iterator
 | 
						|
           PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
 | 
						|
      if (PI->isCtrl()) {
 | 
						|
        ChainPredID = PI->getSUnit()->NodeNum;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    // Check if this chain-like pred has been seen
 | 
						|
    // before. ChainPredID==MaxNodeID for loads at the top of the schedule.
 | 
						|
    unsigned NumChains = StoreChainDependents.size();
 | 
						|
    std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
 | 
						|
      StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
 | 
						|
    if (Result.second)
 | 
						|
      StoreChainDependents.resize(NumChains + 1);
 | 
						|
    StoreChainDependents[Result.first->second].push_back(SU);
 | 
						|
  }
 | 
						|
  // Iterate over the store chains.
 | 
						|
  for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx)
 | 
						|
    clusterNeighboringLoads(StoreChainDependents[Idx], DAG);
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// MacroFusion - DAG post-processing to encourage fusion of macro ops.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
/// \brief Post-process the DAG to create cluster edges between instructions
 | 
						|
/// that may be fused by the processor into a single operation.
 | 
						|
class MacroFusion : public ScheduleDAGMutation {
 | 
						|
  const TargetInstrInfo *TII;
 | 
						|
public:
 | 
						|
  MacroFusion(const TargetInstrInfo *tii): TII(tii) {}
 | 
						|
 | 
						|
  virtual void apply(ScheduleDAGMI *DAG);
 | 
						|
};
 | 
						|
} // anonymous
 | 
						|
 | 
						|
/// \brief Callback from DAG postProcessing to create cluster edges to encourage
 | 
						|
/// fused operations.
 | 
						|
void MacroFusion::apply(ScheduleDAGMI *DAG) {
 | 
						|
  // For now, assume targets can only fuse with the branch.
 | 
						|
  MachineInstr *Branch = DAG->ExitSU.getInstr();
 | 
						|
  if (!Branch)
 | 
						|
    return;
 | 
						|
 | 
						|
  for (unsigned Idx = DAG->SUnits.size(); Idx > 0;) {
 | 
						|
    SUnit *SU = &DAG->SUnits[--Idx];
 | 
						|
    if (!TII->shouldScheduleAdjacent(SU->getInstr(), Branch))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Create a single weak edge from SU to ExitSU. The only effect is to cause
 | 
						|
    // bottom-up scheduling to heavily prioritize the clustered SU.  There is no
 | 
						|
    // need to copy predecessor edges from ExitSU to SU, since top-down
 | 
						|
    // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling
 | 
						|
    // of SU, we could create an artificial edge from the deepest root, but it
 | 
						|
    // hasn't been needed yet.
 | 
						|
    bool Success = DAG->addEdge(&DAG->ExitSU, SDep(SU, SDep::Cluster));
 | 
						|
    (void)Success;
 | 
						|
    assert(Success && "No DAG nodes should be reachable from ExitSU");
 | 
						|
 | 
						|
    DEBUG(dbgs() << "Macro Fuse SU(" << SU->NodeNum << ")\n");
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// CopyConstrain - DAG post-processing to encourage copy elimination.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
/// \brief Post-process the DAG to create weak edges from all uses of a copy to
 | 
						|
/// the one use that defines the copy's source vreg, most likely an induction
 | 
						|
/// variable increment.
 | 
						|
class CopyConstrain : public ScheduleDAGMutation {
 | 
						|
  // Transient state.
 | 
						|
  SlotIndex RegionBeginIdx;
 | 
						|
  // RegionEndIdx is the slot index of the last non-debug instruction in the
 | 
						|
  // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
 | 
						|
  SlotIndex RegionEndIdx;
 | 
						|
public:
 | 
						|
  CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
 | 
						|
 | 
						|
  virtual void apply(ScheduleDAGMI *DAG);
 | 
						|
 | 
						|
protected:
 | 
						|
  void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMI *DAG);
 | 
						|
};
 | 
						|
} // anonymous
 | 
						|
 | 
						|
/// constrainLocalCopy handles two possibilities:
 | 
						|
/// 1) Local src:
 | 
						|
/// I0:     = dst
 | 
						|
/// I1: src = ...
 | 
						|
/// I2:     = dst
 | 
						|
/// I3: dst = src (copy)
 | 
						|
/// (create pred->succ edges I0->I1, I2->I1)
 | 
						|
///
 | 
						|
/// 2) Local copy:
 | 
						|
/// I0: dst = src (copy)
 | 
						|
/// I1:     = dst
 | 
						|
/// I2: src = ...
 | 
						|
/// I3:     = dst
 | 
						|
/// (create pred->succ edges I1->I2, I3->I2)
 | 
						|
///
 | 
						|
/// Although the MachineScheduler is currently constrained to single blocks,
 | 
						|
/// this algorithm should handle extended blocks. An EBB is a set of
 | 
						|
/// contiguously numbered blocks such that the previous block in the EBB is
 | 
						|
/// always the single predecessor.
 | 
						|
void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMI *DAG) {
 | 
						|
  LiveIntervals *LIS = DAG->getLIS();
 | 
						|
  MachineInstr *Copy = CopySU->getInstr();
 | 
						|
 | 
						|
  // Check for pure vreg copies.
 | 
						|
  unsigned SrcReg = Copy->getOperand(1).getReg();
 | 
						|
  if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
 | 
						|
    return;
 | 
						|
 | 
						|
  unsigned DstReg = Copy->getOperand(0).getReg();
 | 
						|
  if (!TargetRegisterInfo::isVirtualRegister(DstReg))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Check if either the dest or source is local. If it's live across a back
 | 
						|
  // edge, it's not local. Note that if both vregs are live across the back
 | 
						|
  // edge, we cannot successfully contrain the copy without cyclic scheduling.
 | 
						|
  unsigned LocalReg = DstReg;
 | 
						|
  unsigned GlobalReg = SrcReg;
 | 
						|
  LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
 | 
						|
  if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
 | 
						|
    LocalReg = SrcReg;
 | 
						|
    GlobalReg = DstReg;
 | 
						|
    LocalLI = &LIS->getInterval(LocalReg);
 | 
						|
    if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
 | 
						|
      return;
 | 
						|
  }
 | 
						|
  LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
 | 
						|
 | 
						|
  // Find the global segment after the start of the local LI.
 | 
						|
  LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
 | 
						|
  // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
 | 
						|
  // local live range. We could create edges from other global uses to the local
 | 
						|
  // start, but the coalescer should have already eliminated these cases, so
 | 
						|
  // don't bother dealing with it.
 | 
						|
  if (GlobalSegment == GlobalLI->end())
 | 
						|
    return;
 | 
						|
 | 
						|
  // If GlobalSegment is killed at the LocalLI->start, the call to find()
 | 
						|
  // returned the next global segment. But if GlobalSegment overlaps with
 | 
						|
  // LocalLI->start, then advance to the next segement. If a hole in GlobalLI
 | 
						|
  // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
 | 
						|
  if (GlobalSegment->contains(LocalLI->beginIndex()))
 | 
						|
    ++GlobalSegment;
 | 
						|
 | 
						|
  if (GlobalSegment == GlobalLI->end())
 | 
						|
    return;
 | 
						|
 | 
						|
  // Check if GlobalLI contains a hole in the vicinity of LocalLI.
 | 
						|
  if (GlobalSegment != GlobalLI->begin()) {
 | 
						|
    // Two address defs have no hole.
 | 
						|
    if (SlotIndex::isSameInstr(llvm::prior(GlobalSegment)->end,
 | 
						|
                               GlobalSegment->start)) {
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
 | 
						|
    // it would be a disconnected component in the live range.
 | 
						|
    assert(llvm::prior(GlobalSegment)->start < LocalLI->beginIndex() &&
 | 
						|
           "Disconnected LRG within the scheduling region.");
 | 
						|
  }
 | 
						|
  MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
 | 
						|
  if (!GlobalDef)
 | 
						|
    return;
 | 
						|
 | 
						|
  SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
 | 
						|
  if (!GlobalSU)
 | 
						|
    return;
 | 
						|
 | 
						|
  // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
 | 
						|
  // constraining the uses of the last local def to precede GlobalDef.
 | 
						|
  SmallVector<SUnit*,8> LocalUses;
 | 
						|
  const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
 | 
						|
  MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
 | 
						|
  SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
 | 
						|
  for (SUnit::const_succ_iterator
 | 
						|
         I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (I->getKind() != SDep::Data || I->getReg() != LocalReg)
 | 
						|
      continue;
 | 
						|
    if (I->getSUnit() == GlobalSU)
 | 
						|
      continue;
 | 
						|
    if (!DAG->canAddEdge(GlobalSU, I->getSUnit()))
 | 
						|
      return;
 | 
						|
    LocalUses.push_back(I->getSUnit());
 | 
						|
  }
 | 
						|
  // Open the top of the GlobalLI hole by constraining any earlier global uses
 | 
						|
  // to precede the start of LocalLI.
 | 
						|
  SmallVector<SUnit*,8> GlobalUses;
 | 
						|
  MachineInstr *FirstLocalDef =
 | 
						|
    LIS->getInstructionFromIndex(LocalLI->beginIndex());
 | 
						|
  SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
 | 
						|
  for (SUnit::const_pred_iterator
 | 
						|
         I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) {
 | 
						|
    if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg)
 | 
						|
      continue;
 | 
						|
    if (I->getSUnit() == FirstLocalSU)
 | 
						|
      continue;
 | 
						|
    if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit()))
 | 
						|
      return;
 | 
						|
    GlobalUses.push_back(I->getSUnit());
 | 
						|
  }
 | 
						|
  DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
 | 
						|
  // Add the weak edges.
 | 
						|
  for (SmallVectorImpl<SUnit*>::const_iterator
 | 
						|
         I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
 | 
						|
    DEBUG(dbgs() << "  Local use SU(" << (*I)->NodeNum << ") -> SU("
 | 
						|
          << GlobalSU->NodeNum << ")\n");
 | 
						|
    DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
 | 
						|
  }
 | 
						|
  for (SmallVectorImpl<SUnit*>::const_iterator
 | 
						|
         I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
 | 
						|
    DEBUG(dbgs() << "  Global use SU(" << (*I)->NodeNum << ") -> SU("
 | 
						|
          << FirstLocalSU->NodeNum << ")\n");
 | 
						|
    DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Callback from DAG postProcessing to create weak edges to encourage
 | 
						|
/// copy elimination.
 | 
						|
void CopyConstrain::apply(ScheduleDAGMI *DAG) {
 | 
						|
  MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
 | 
						|
  if (FirstPos == DAG->end())
 | 
						|
    return;
 | 
						|
  RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos);
 | 
						|
  RegionEndIdx = DAG->getLIS()->getInstructionIndex(
 | 
						|
    &*priorNonDebug(DAG->end(), DAG->begin()));
 | 
						|
 | 
						|
  for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
 | 
						|
    SUnit *SU = &DAG->SUnits[Idx];
 | 
						|
    if (!SU->getInstr()->isCopy())
 | 
						|
      continue;
 | 
						|
 | 
						|
    constrainLocalCopy(SU, DAG);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// ConvergingScheduler - Implementation of the standard MachineSchedStrategy.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
/// ConvergingScheduler shrinks the unscheduled zone using heuristics to balance
 | 
						|
/// the schedule.
 | 
						|
class ConvergingScheduler : public MachineSchedStrategy {
 | 
						|
public:
 | 
						|
  /// Represent the type of SchedCandidate found within a single queue.
 | 
						|
  /// pickNodeBidirectional depends on these listed by decreasing priority.
 | 
						|
  enum CandReason {
 | 
						|
    NoCand, PhysRegCopy, SingleExcess, SingleCritical, Cluster, Weak,
 | 
						|
    ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce,
 | 
						|
    TopDepthReduce, TopPathReduce, SingleMax, MultiPressure, NextDefUse,
 | 
						|
    NodeOrder};
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  static const char *getReasonStr(ConvergingScheduler::CandReason Reason);
 | 
						|
#endif
 | 
						|
 | 
						|
  /// Policy for scheduling the next instruction in the candidate's zone.
 | 
						|
  struct CandPolicy {
 | 
						|
    bool ReduceLatency;
 | 
						|
    unsigned ReduceResIdx;
 | 
						|
    unsigned DemandResIdx;
 | 
						|
 | 
						|
    CandPolicy(): ReduceLatency(false), ReduceResIdx(0), DemandResIdx(0) {}
 | 
						|
  };
 | 
						|
 | 
						|
  /// Status of an instruction's critical resource consumption.
 | 
						|
  struct SchedResourceDelta {
 | 
						|
    // Count critical resources in the scheduled region required by SU.
 | 
						|
    unsigned CritResources;
 | 
						|
 | 
						|
    // Count critical resources from another region consumed by SU.
 | 
						|
    unsigned DemandedResources;
 | 
						|
 | 
						|
    SchedResourceDelta(): CritResources(0), DemandedResources(0) {}
 | 
						|
 | 
						|
    bool operator==(const SchedResourceDelta &RHS) const {
 | 
						|
      return CritResources == RHS.CritResources
 | 
						|
        && DemandedResources == RHS.DemandedResources;
 | 
						|
    }
 | 
						|
    bool operator!=(const SchedResourceDelta &RHS) const {
 | 
						|
      return !operator==(RHS);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// Store the state used by ConvergingScheduler heuristics, required for the
 | 
						|
  /// lifetime of one invocation of pickNode().
 | 
						|
  struct SchedCandidate {
 | 
						|
    CandPolicy Policy;
 | 
						|
 | 
						|
    // The best SUnit candidate.
 | 
						|
    SUnit *SU;
 | 
						|
 | 
						|
    // The reason for this candidate.
 | 
						|
    CandReason Reason;
 | 
						|
 | 
						|
    // Register pressure values for the best candidate.
 | 
						|
    RegPressureDelta RPDelta;
 | 
						|
 | 
						|
    // Critical resource consumption of the best candidate.
 | 
						|
    SchedResourceDelta ResDelta;
 | 
						|
 | 
						|
    SchedCandidate(const CandPolicy &policy)
 | 
						|
    : Policy(policy), SU(NULL), Reason(NoCand) {}
 | 
						|
 | 
						|
    bool isValid() const { return SU; }
 | 
						|
 | 
						|
    // Copy the status of another candidate without changing policy.
 | 
						|
    void setBest(SchedCandidate &Best) {
 | 
						|
      assert(Best.Reason != NoCand && "uninitialized Sched candidate");
 | 
						|
      SU = Best.SU;
 | 
						|
      Reason = Best.Reason;
 | 
						|
      RPDelta = Best.RPDelta;
 | 
						|
      ResDelta = Best.ResDelta;
 | 
						|
    }
 | 
						|
 | 
						|
    void initResourceDelta(const ScheduleDAGMI *DAG,
 | 
						|
                           const TargetSchedModel *SchedModel);
 | 
						|
  };
 | 
						|
 | 
						|
  /// Summarize the unscheduled region.
 | 
						|
  struct SchedRemainder {
 | 
						|
    // Critical path through the DAG in expected latency.
 | 
						|
    unsigned CriticalPath;
 | 
						|
 | 
						|
    // Unscheduled resources
 | 
						|
    SmallVector<unsigned, 16> RemainingCounts;
 | 
						|
    // Critical resource for the unscheduled zone.
 | 
						|
    unsigned CritResIdx;
 | 
						|
    // Number of micro-ops left to schedule.
 | 
						|
    unsigned RemainingMicroOps;
 | 
						|
 | 
						|
    void reset() {
 | 
						|
      CriticalPath = 0;
 | 
						|
      RemainingCounts.clear();
 | 
						|
      CritResIdx = 0;
 | 
						|
      RemainingMicroOps = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    SchedRemainder() { reset(); }
 | 
						|
 | 
						|
    void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel);
 | 
						|
 | 
						|
    unsigned getMaxRemainingCount(const TargetSchedModel *SchedModel) const {
 | 
						|
      if (!SchedModel->hasInstrSchedModel())
 | 
						|
        return 0;
 | 
						|
 | 
						|
      return std::max(
 | 
						|
        RemainingMicroOps * SchedModel->getMicroOpFactor(),
 | 
						|
        RemainingCounts[CritResIdx]);
 | 
						|
    }
 | 
						|
  };
 | 
						|
 | 
						|
  /// Each Scheduling boundary is associated with ready queues. It tracks the
 | 
						|
  /// current cycle in the direction of movement, and maintains the state
 | 
						|
  /// of "hazards" and other interlocks at the current cycle.
 | 
						|
  struct SchedBoundary {
 | 
						|
    ScheduleDAGMI *DAG;
 | 
						|
    const TargetSchedModel *SchedModel;
 | 
						|
    SchedRemainder *Rem;
 | 
						|
 | 
						|
    ReadyQueue Available;
 | 
						|
    ReadyQueue Pending;
 | 
						|
    bool CheckPending;
 | 
						|
 | 
						|
    // For heuristics, keep a list of the nodes that immediately depend on the
 | 
						|
    // most recently scheduled node.
 | 
						|
    SmallPtrSet<const SUnit*, 8> NextSUs;
 | 
						|
 | 
						|
    ScheduleHazardRecognizer *HazardRec;
 | 
						|
 | 
						|
    unsigned CurrCycle;
 | 
						|
    unsigned IssueCount;
 | 
						|
 | 
						|
    /// MinReadyCycle - Cycle of the soonest available instruction.
 | 
						|
    unsigned MinReadyCycle;
 | 
						|
 | 
						|
    // The expected latency of the critical path in this scheduled zone.
 | 
						|
    unsigned ExpectedLatency;
 | 
						|
 | 
						|
    // Resources used in the scheduled zone beyond this boundary.
 | 
						|
    SmallVector<unsigned, 16> ResourceCounts;
 | 
						|
 | 
						|
    // Cache the critical resources ID in this scheduled zone.
 | 
						|
    unsigned CritResIdx;
 | 
						|
 | 
						|
    // Is the scheduled region resource limited vs. latency limited.
 | 
						|
    bool IsResourceLimited;
 | 
						|
 | 
						|
    unsigned ExpectedCount;
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
    // Remember the greatest min operand latency.
 | 
						|
    unsigned MaxMinLatency;
 | 
						|
#endif
 | 
						|
 | 
						|
    void reset() {
 | 
						|
      // A new HazardRec is created for each DAG and owned by SchedBoundary.
 | 
						|
      delete HazardRec;
 | 
						|
 | 
						|
      Available.clear();
 | 
						|
      Pending.clear();
 | 
						|
      CheckPending = false;
 | 
						|
      NextSUs.clear();
 | 
						|
      HazardRec = 0;
 | 
						|
      CurrCycle = 0;
 | 
						|
      IssueCount = 0;
 | 
						|
      MinReadyCycle = UINT_MAX;
 | 
						|
      ExpectedLatency = 0;
 | 
						|
      ResourceCounts.resize(1);
 | 
						|
      assert(!ResourceCounts[0] && "nonzero count for bad resource");
 | 
						|
      CritResIdx = 0;
 | 
						|
      IsResourceLimited = false;
 | 
						|
      ExpectedCount = 0;
 | 
						|
#ifndef NDEBUG
 | 
						|
      MaxMinLatency = 0;
 | 
						|
#endif
 | 
						|
      // Reserve a zero-count for invalid CritResIdx.
 | 
						|
      ResourceCounts.resize(1);
 | 
						|
    }
 | 
						|
 | 
						|
    /// Pending queues extend the ready queues with the same ID and the
 | 
						|
    /// PendingFlag set.
 | 
						|
    SchedBoundary(unsigned ID, const Twine &Name):
 | 
						|
      DAG(0), SchedModel(0), Rem(0), Available(ID, Name+".A"),
 | 
						|
      Pending(ID << ConvergingScheduler::LogMaxQID, Name+".P"),
 | 
						|
      HazardRec(0) {
 | 
						|
      reset();
 | 
						|
    }
 | 
						|
 | 
						|
    ~SchedBoundary() { delete HazardRec; }
 | 
						|
 | 
						|
    void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel,
 | 
						|
              SchedRemainder *rem);
 | 
						|
 | 
						|
    bool isTop() const {
 | 
						|
      return Available.getID() == ConvergingScheduler::TopQID;
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned getUnscheduledLatency(SUnit *SU) const {
 | 
						|
      if (isTop())
 | 
						|
        return SU->getHeight();
 | 
						|
      return SU->getDepth() + SU->Latency;
 | 
						|
    }
 | 
						|
 | 
						|
    unsigned getCriticalCount() const {
 | 
						|
      return ResourceCounts[CritResIdx];
 | 
						|
    }
 | 
						|
 | 
						|
    bool checkHazard(SUnit *SU);
 | 
						|
 | 
						|
    void setLatencyPolicy(CandPolicy &Policy);
 | 
						|
 | 
						|
    void releaseNode(SUnit *SU, unsigned ReadyCycle);
 | 
						|
 | 
						|
    void bumpCycle();
 | 
						|
 | 
						|
    void countResource(unsigned PIdx, unsigned Cycles);
 | 
						|
 | 
						|
    void bumpNode(SUnit *SU);
 | 
						|
 | 
						|
    void releasePending();
 | 
						|
 | 
						|
    void removeReady(SUnit *SU);
 | 
						|
 | 
						|
    SUnit *pickOnlyChoice();
 | 
						|
  };
 | 
						|
 | 
						|
private:
 | 
						|
  ScheduleDAGMI *DAG;
 | 
						|
  const TargetSchedModel *SchedModel;
 | 
						|
  const TargetRegisterInfo *TRI;
 | 
						|
 | 
						|
  // State of the top and bottom scheduled instruction boundaries.
 | 
						|
  SchedRemainder Rem;
 | 
						|
  SchedBoundary Top;
 | 
						|
  SchedBoundary Bot;
 | 
						|
 | 
						|
public:
 | 
						|
  /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both)
 | 
						|
  enum {
 | 
						|
    TopQID = 1,
 | 
						|
    BotQID = 2,
 | 
						|
    LogMaxQID = 2
 | 
						|
  };
 | 
						|
 | 
						|
  ConvergingScheduler():
 | 
						|
    DAG(0), SchedModel(0), TRI(0), Top(TopQID, "TopQ"), Bot(BotQID, "BotQ") {}
 | 
						|
 | 
						|
  virtual void initialize(ScheduleDAGMI *dag);
 | 
						|
 | 
						|
  virtual SUnit *pickNode(bool &IsTopNode);
 | 
						|
 | 
						|
  virtual void schedNode(SUnit *SU, bool IsTopNode);
 | 
						|
 | 
						|
  virtual void releaseTopNode(SUnit *SU);
 | 
						|
 | 
						|
  virtual void releaseBottomNode(SUnit *SU);
 | 
						|
 | 
						|
  virtual void registerRoots();
 | 
						|
 | 
						|
protected:
 | 
						|
  void balanceZones(
 | 
						|
    ConvergingScheduler::SchedBoundary &CriticalZone,
 | 
						|
    ConvergingScheduler::SchedCandidate &CriticalCand,
 | 
						|
    ConvergingScheduler::SchedBoundary &OppositeZone,
 | 
						|
    ConvergingScheduler::SchedCandidate &OppositeCand);
 | 
						|
 | 
						|
  void checkResourceLimits(ConvergingScheduler::SchedCandidate &TopCand,
 | 
						|
                           ConvergingScheduler::SchedCandidate &BotCand);
 | 
						|
 | 
						|
  void tryCandidate(SchedCandidate &Cand,
 | 
						|
                    SchedCandidate &TryCand,
 | 
						|
                    SchedBoundary &Zone,
 | 
						|
                    const RegPressureTracker &RPTracker,
 | 
						|
                    RegPressureTracker &TempTracker);
 | 
						|
 | 
						|
  SUnit *pickNodeBidirectional(bool &IsTopNode);
 | 
						|
 | 
						|
  void pickNodeFromQueue(SchedBoundary &Zone,
 | 
						|
                         const RegPressureTracker &RPTracker,
 | 
						|
                         SchedCandidate &Candidate);
 | 
						|
 | 
						|
  void reschedulePhysRegCopies(SUnit *SU, bool isTop);
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  void traceCandidate(const SchedCandidate &Cand);
 | 
						|
#endif
 | 
						|
};
 | 
						|
} // namespace
 | 
						|
 | 
						|
void ConvergingScheduler::SchedRemainder::
 | 
						|
init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
 | 
						|
  reset();
 | 
						|
  if (!SchedModel->hasInstrSchedModel())
 | 
						|
    return;
 | 
						|
  RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
 | 
						|
  for (std::vector<SUnit>::iterator
 | 
						|
         I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) {
 | 
						|
    const MCSchedClassDesc *SC = DAG->getSchedClass(&*I);
 | 
						|
    RemainingMicroOps += SchedModel->getNumMicroOps(I->getInstr(), SC);
 | 
						|
    for (TargetSchedModel::ProcResIter
 | 
						|
           PI = SchedModel->getWriteProcResBegin(SC),
 | 
						|
           PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
 | 
						|
      unsigned PIdx = PI->ProcResourceIdx;
 | 
						|
      unsigned Factor = SchedModel->getResourceFactor(PIdx);
 | 
						|
      RemainingCounts[PIdx] += (Factor * PI->Cycles);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  for (unsigned PIdx = 0, PEnd = SchedModel->getNumProcResourceKinds();
 | 
						|
       PIdx != PEnd; ++PIdx) {
 | 
						|
    if ((int)(RemainingCounts[PIdx] - RemainingCounts[CritResIdx])
 | 
						|
        >= (int)SchedModel->getLatencyFactor()) {
 | 
						|
      CritResIdx = PIdx;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ConvergingScheduler::SchedBoundary::
 | 
						|
init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
 | 
						|
  reset();
 | 
						|
  DAG = dag;
 | 
						|
  SchedModel = smodel;
 | 
						|
  Rem = rem;
 | 
						|
  if (SchedModel->hasInstrSchedModel())
 | 
						|
    ResourceCounts.resize(SchedModel->getNumProcResourceKinds());
 | 
						|
}
 | 
						|
 | 
						|
void ConvergingScheduler::initialize(ScheduleDAGMI *dag) {
 | 
						|
  DAG = dag;
 | 
						|
  SchedModel = DAG->getSchedModel();
 | 
						|
  TRI = DAG->TRI;
 | 
						|
 | 
						|
  Rem.init(DAG, SchedModel);
 | 
						|
  Top.init(DAG, SchedModel, &Rem);
 | 
						|
  Bot.init(DAG, SchedModel, &Rem);
 | 
						|
 | 
						|
  // Initialize resource counts.
 | 
						|
 | 
						|
  // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
 | 
						|
  // are disabled, then these HazardRecs will be disabled.
 | 
						|
  const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
 | 
						|
  const TargetMachine &TM = DAG->MF.getTarget();
 | 
						|
  Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
 | 
						|
  Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
 | 
						|
 | 
						|
  assert((!ForceTopDown || !ForceBottomUp) &&
 | 
						|
         "-misched-topdown incompatible with -misched-bottomup");
 | 
						|
}
 | 
						|
 | 
						|
void ConvergingScheduler::releaseTopNode(SUnit *SU) {
 | 
						|
  if (SU->isScheduled)
 | 
						|
    return;
 | 
						|
 | 
						|
  for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle;
 | 
						|
    unsigned MinLatency = I->getMinLatency();
 | 
						|
#ifndef NDEBUG
 | 
						|
    Top.MaxMinLatency = std::max(MinLatency, Top.MaxMinLatency);
 | 
						|
#endif
 | 
						|
    if (SU->TopReadyCycle < PredReadyCycle + MinLatency)
 | 
						|
      SU->TopReadyCycle = PredReadyCycle + MinLatency;
 | 
						|
  }
 | 
						|
  Top.releaseNode(SU, SU->TopReadyCycle);
 | 
						|
}
 | 
						|
 | 
						|
void ConvergingScheduler::releaseBottomNode(SUnit *SU) {
 | 
						|
  if (SU->isScheduled)
 | 
						|
    return;
 | 
						|
 | 
						|
  assert(SU->getInstr() && "Scheduled SUnit must have instr");
 | 
						|
 | 
						|
  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (I->isWeak())
 | 
						|
      continue;
 | 
						|
    unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle;
 | 
						|
    unsigned MinLatency = I->getMinLatency();
 | 
						|
#ifndef NDEBUG
 | 
						|
    Bot.MaxMinLatency = std::max(MinLatency, Bot.MaxMinLatency);
 | 
						|
#endif
 | 
						|
    if (SU->BotReadyCycle < SuccReadyCycle + MinLatency)
 | 
						|
      SU->BotReadyCycle = SuccReadyCycle + MinLatency;
 | 
						|
  }
 | 
						|
  Bot.releaseNode(SU, SU->BotReadyCycle);
 | 
						|
}
 | 
						|
 | 
						|
void ConvergingScheduler::registerRoots() {
 | 
						|
  Rem.CriticalPath = DAG->ExitSU.getDepth();
 | 
						|
  // Some roots may not feed into ExitSU. Check all of them in case.
 | 
						|
  for (std::vector<SUnit*>::const_iterator
 | 
						|
         I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) {
 | 
						|
    if ((*I)->getDepth() > Rem.CriticalPath)
 | 
						|
      Rem.CriticalPath = (*I)->getDepth();
 | 
						|
  }
 | 
						|
  DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n');
 | 
						|
}
 | 
						|
 | 
						|
/// Does this SU have a hazard within the current instruction group.
 | 
						|
///
 | 
						|
/// The scheduler supports two modes of hazard recognition. The first is the
 | 
						|
/// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
 | 
						|
/// supports highly complicated in-order reservation tables
 | 
						|
/// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
 | 
						|
///
 | 
						|
/// The second is a streamlined mechanism that checks for hazards based on
 | 
						|
/// simple counters that the scheduler itself maintains. It explicitly checks
 | 
						|
/// for instruction dispatch limitations, including the number of micro-ops that
 | 
						|
/// can dispatch per cycle.
 | 
						|
///
 | 
						|
/// TODO: Also check whether the SU must start a new group.
 | 
						|
bool ConvergingScheduler::SchedBoundary::checkHazard(SUnit *SU) {
 | 
						|
  if (HazardRec->isEnabled())
 | 
						|
    return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard;
 | 
						|
 | 
						|
  unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
 | 
						|
  if ((IssueCount > 0) && (IssueCount + uops > SchedModel->getIssueWidth())) {
 | 
						|
    DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
 | 
						|
          << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Compute the remaining latency to determine whether ILP should be increased.
 | 
						|
void ConvergingScheduler::SchedBoundary::setLatencyPolicy(CandPolicy &Policy) {
 | 
						|
  // FIXME: compile time. In all, we visit four queues here one we should only
 | 
						|
  // need to visit the one that was last popped if we cache the result.
 | 
						|
  unsigned RemLatency = 0;
 | 
						|
  for (ReadyQueue::iterator I = Available.begin(), E = Available.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    unsigned L = getUnscheduledLatency(*I);
 | 
						|
    DEBUG(dbgs() << "  " << Available.getName()
 | 
						|
          << " RemLatency SU(" << (*I)->NodeNum << ") " << L << '\n');
 | 
						|
    if (L > RemLatency)
 | 
						|
      RemLatency = L;
 | 
						|
  }
 | 
						|
  for (ReadyQueue::iterator I = Pending.begin(), E = Pending.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    unsigned L = getUnscheduledLatency(*I);
 | 
						|
    if (L > RemLatency)
 | 
						|
      RemLatency = L;
 | 
						|
  }
 | 
						|
  unsigned CriticalPathLimit = Rem->CriticalPath + SchedModel->getILPWindow();
 | 
						|
  DEBUG(dbgs() << "  " << Available.getName()
 | 
						|
        << " ExpectedLatency " << ExpectedLatency
 | 
						|
        << " CP Limit " << CriticalPathLimit << '\n');
 | 
						|
  if (RemLatency + ExpectedLatency >= CriticalPathLimit
 | 
						|
      && RemLatency > Rem->getMaxRemainingCount(SchedModel)) {
 | 
						|
    Policy.ReduceLatency = true;
 | 
						|
    DEBUG(dbgs() << "  Increase ILP: " << Available.getName() << '\n');
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void ConvergingScheduler::SchedBoundary::releaseNode(SUnit *SU,
 | 
						|
                                                     unsigned ReadyCycle) {
 | 
						|
 | 
						|
  if (ReadyCycle < MinReadyCycle)
 | 
						|
    MinReadyCycle = ReadyCycle;
 | 
						|
 | 
						|
  // Check for interlocks first. For the purpose of other heuristics, an
 | 
						|
  // instruction that cannot issue appears as if it's not in the ReadyQueue.
 | 
						|
  if (ReadyCycle > CurrCycle || checkHazard(SU))
 | 
						|
    Pending.push(SU);
 | 
						|
  else
 | 
						|
    Available.push(SU);
 | 
						|
 | 
						|
  // Record this node as an immediate dependent of the scheduled node.
 | 
						|
  NextSUs.insert(SU);
 | 
						|
}
 | 
						|
 | 
						|
/// Move the boundary of scheduled code by one cycle.
 | 
						|
void ConvergingScheduler::SchedBoundary::bumpCycle() {
 | 
						|
  unsigned Width = SchedModel->getIssueWidth();
 | 
						|
  IssueCount = (IssueCount <= Width) ? 0 : IssueCount - Width;
 | 
						|
 | 
						|
  unsigned NextCycle = CurrCycle + 1;
 | 
						|
  assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
 | 
						|
  if (MinReadyCycle > NextCycle) {
 | 
						|
    IssueCount = 0;
 | 
						|
    NextCycle = MinReadyCycle;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!HazardRec->isEnabled()) {
 | 
						|
    // Bypass HazardRec virtual calls.
 | 
						|
    CurrCycle = NextCycle;
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    // Bypass getHazardType calls in case of long latency.
 | 
						|
    for (; CurrCycle != NextCycle; ++CurrCycle) {
 | 
						|
      if (isTop())
 | 
						|
        HazardRec->AdvanceCycle();
 | 
						|
      else
 | 
						|
        HazardRec->RecedeCycle();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  CheckPending = true;
 | 
						|
  IsResourceLimited = getCriticalCount() > std::max(ExpectedLatency, CurrCycle);
 | 
						|
 | 
						|
  DEBUG(dbgs() << "  " << Available.getName()
 | 
						|
        << " Cycle: " << CurrCycle << '\n');
 | 
						|
}
 | 
						|
 | 
						|
/// Add the given processor resource to this scheduled zone.
 | 
						|
void ConvergingScheduler::SchedBoundary::countResource(unsigned PIdx,
 | 
						|
                                                       unsigned Cycles) {
 | 
						|
  unsigned Factor = SchedModel->getResourceFactor(PIdx);
 | 
						|
  DEBUG(dbgs() << "  " << SchedModel->getProcResource(PIdx)->Name
 | 
						|
        << " +(" << Cycles << "x" << Factor
 | 
						|
        << ") / " << SchedModel->getLatencyFactor() << '\n');
 | 
						|
 | 
						|
  unsigned Count = Factor * Cycles;
 | 
						|
  ResourceCounts[PIdx] += Count;
 | 
						|
  assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
 | 
						|
  Rem->RemainingCounts[PIdx] -= Count;
 | 
						|
 | 
						|
  // Check if this resource exceeds the current critical resource by a full
 | 
						|
  // cycle. If so, it becomes the critical resource.
 | 
						|
  if ((int)(ResourceCounts[PIdx] - ResourceCounts[CritResIdx])
 | 
						|
      >= (int)SchedModel->getLatencyFactor()) {
 | 
						|
    CritResIdx = PIdx;
 | 
						|
    DEBUG(dbgs() << "  *** Critical resource "
 | 
						|
          << SchedModel->getProcResource(PIdx)->Name << " x"
 | 
						|
          << ResourceCounts[PIdx] << '\n');
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Move the boundary of scheduled code by one SUnit.
 | 
						|
void ConvergingScheduler::SchedBoundary::bumpNode(SUnit *SU) {
 | 
						|
  // Update the reservation table.
 | 
						|
  if (HazardRec->isEnabled()) {
 | 
						|
    if (!isTop() && SU->isCall) {
 | 
						|
      // Calls are scheduled with their preceding instructions. For bottom-up
 | 
						|
      // scheduling, clear the pipeline state before emitting.
 | 
						|
      HazardRec->Reset();
 | 
						|
    }
 | 
						|
    HazardRec->EmitInstruction(SU);
 | 
						|
  }
 | 
						|
  // Update resource counts and critical resource.
 | 
						|
  if (SchedModel->hasInstrSchedModel()) {
 | 
						|
    const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
 | 
						|
    Rem->RemainingMicroOps -= SchedModel->getNumMicroOps(SU->getInstr(), SC);
 | 
						|
    for (TargetSchedModel::ProcResIter
 | 
						|
           PI = SchedModel->getWriteProcResBegin(SC),
 | 
						|
           PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
 | 
						|
      countResource(PI->ProcResourceIdx, PI->Cycles);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  if (isTop()) {
 | 
						|
    if (SU->getDepth() > ExpectedLatency)
 | 
						|
      ExpectedLatency = SU->getDepth();
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    if (SU->getHeight() > ExpectedLatency)
 | 
						|
      ExpectedLatency = SU->getHeight();
 | 
						|
  }
 | 
						|
 | 
						|
  IsResourceLimited = getCriticalCount() > std::max(ExpectedLatency, CurrCycle);
 | 
						|
 | 
						|
  // Check the instruction group dispatch limit.
 | 
						|
  // TODO: Check if this SU must end a dispatch group.
 | 
						|
  IssueCount += SchedModel->getNumMicroOps(SU->getInstr());
 | 
						|
 | 
						|
  // checkHazard prevents scheduling multiple instructions per cycle that exceed
 | 
						|
  // issue width. However, we commonly reach the maximum. In this case
 | 
						|
  // opportunistically bump the cycle to avoid uselessly checking everything in
 | 
						|
  // the readyQ. Furthermore, a single instruction may produce more than one
 | 
						|
  // cycle's worth of micro-ops.
 | 
						|
  if (IssueCount >= SchedModel->getIssueWidth()) {
 | 
						|
    DEBUG(dbgs() << "  *** Max instrs at cycle " << CurrCycle << '\n');
 | 
						|
    bumpCycle();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Release pending ready nodes in to the available queue. This makes them
 | 
						|
/// visible to heuristics.
 | 
						|
void ConvergingScheduler::SchedBoundary::releasePending() {
 | 
						|
  // If the available queue is empty, it is safe to reset MinReadyCycle.
 | 
						|
  if (Available.empty())
 | 
						|
    MinReadyCycle = UINT_MAX;
 | 
						|
 | 
						|
  // Check to see if any of the pending instructions are ready to issue.  If
 | 
						|
  // so, add them to the available queue.
 | 
						|
  for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
 | 
						|
    SUnit *SU = *(Pending.begin()+i);
 | 
						|
    unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
 | 
						|
 | 
						|
    if (ReadyCycle < MinReadyCycle)
 | 
						|
      MinReadyCycle = ReadyCycle;
 | 
						|
 | 
						|
    if (ReadyCycle > CurrCycle)
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (checkHazard(SU))
 | 
						|
      continue;
 | 
						|
 | 
						|
    Available.push(SU);
 | 
						|
    Pending.remove(Pending.begin()+i);
 | 
						|
    --i; --e;
 | 
						|
  }
 | 
						|
  DEBUG(if (!Pending.empty()) Pending.dump());
 | 
						|
  CheckPending = false;
 | 
						|
}
 | 
						|
 | 
						|
/// Remove SU from the ready set for this boundary.
 | 
						|
void ConvergingScheduler::SchedBoundary::removeReady(SUnit *SU) {
 | 
						|
  if (Available.isInQueue(SU))
 | 
						|
    Available.remove(Available.find(SU));
 | 
						|
  else {
 | 
						|
    assert(Pending.isInQueue(SU) && "bad ready count");
 | 
						|
    Pending.remove(Pending.find(SU));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// If this queue only has one ready candidate, return it. As a side effect,
 | 
						|
/// defer any nodes that now hit a hazard, and advance the cycle until at least
 | 
						|
/// one node is ready. If multiple instructions are ready, return NULL.
 | 
						|
SUnit *ConvergingScheduler::SchedBoundary::pickOnlyChoice() {
 | 
						|
  if (CheckPending)
 | 
						|
    releasePending();
 | 
						|
 | 
						|
  if (IssueCount > 0) {
 | 
						|
    // Defer any ready instrs that now have a hazard.
 | 
						|
    for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
 | 
						|
      if (checkHazard(*I)) {
 | 
						|
        Pending.push(*I);
 | 
						|
        I = Available.remove(I);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      ++I;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  for (unsigned i = 0; Available.empty(); ++i) {
 | 
						|
    assert(i <= (HazardRec->getMaxLookAhead() + MaxMinLatency) &&
 | 
						|
           "permanent hazard"); (void)i;
 | 
						|
    bumpCycle();
 | 
						|
    releasePending();
 | 
						|
  }
 | 
						|
  if (Available.size() == 1)
 | 
						|
    return *Available.begin();
 | 
						|
  return NULL;
 | 
						|
}
 | 
						|
 | 
						|
/// Record the candidate policy for opposite zones with different critical
 | 
						|
/// resources.
 | 
						|
///
 | 
						|
/// If the CriticalZone is latency limited, don't force a policy for the
 | 
						|
/// candidates here. Instead, setLatencyPolicy sets ReduceLatency if needed.
 | 
						|
void ConvergingScheduler::balanceZones(
 | 
						|
  ConvergingScheduler::SchedBoundary &CriticalZone,
 | 
						|
  ConvergingScheduler::SchedCandidate &CriticalCand,
 | 
						|
  ConvergingScheduler::SchedBoundary &OppositeZone,
 | 
						|
  ConvergingScheduler::SchedCandidate &OppositeCand) {
 | 
						|
 | 
						|
  if (!CriticalZone.IsResourceLimited)
 | 
						|
    return;
 | 
						|
  assert(SchedModel->hasInstrSchedModel() && "required schedmodel");
 | 
						|
 | 
						|
  SchedRemainder *Rem = CriticalZone.Rem;
 | 
						|
 | 
						|
  // If the critical zone is overconsuming a resource relative to the
 | 
						|
  // remainder, try to reduce it.
 | 
						|
  unsigned RemainingCritCount =
 | 
						|
    Rem->RemainingCounts[CriticalZone.CritResIdx];
 | 
						|
  if ((int)(Rem->getMaxRemainingCount(SchedModel) - RemainingCritCount)
 | 
						|
      > (int)SchedModel->getLatencyFactor()) {
 | 
						|
    CriticalCand.Policy.ReduceResIdx = CriticalZone.CritResIdx;
 | 
						|
    DEBUG(dbgs() << "  Balance " << CriticalZone.Available.getName()
 | 
						|
          << " reduce "
 | 
						|
          << SchedModel->getProcResource(CriticalZone.CritResIdx)->Name
 | 
						|
          << '\n');
 | 
						|
  }
 | 
						|
  // If the other zone is underconsuming a resource relative to the full zone,
 | 
						|
  // try to increase it.
 | 
						|
  unsigned OppositeCount =
 | 
						|
    OppositeZone.ResourceCounts[CriticalZone.CritResIdx];
 | 
						|
  if ((int)(OppositeZone.ExpectedCount - OppositeCount)
 | 
						|
      > (int)SchedModel->getLatencyFactor()) {
 | 
						|
    OppositeCand.Policy.DemandResIdx = CriticalZone.CritResIdx;
 | 
						|
    DEBUG(dbgs() << "  Balance " << OppositeZone.Available.getName()
 | 
						|
          << " demand "
 | 
						|
          << SchedModel->getProcResource(OppositeZone.CritResIdx)->Name
 | 
						|
          << '\n');
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Determine if the scheduled zones exceed resource limits or critical path and
 | 
						|
/// set each candidate's ReduceHeight policy accordingly.
 | 
						|
void ConvergingScheduler::checkResourceLimits(
 | 
						|
  ConvergingScheduler::SchedCandidate &TopCand,
 | 
						|
  ConvergingScheduler::SchedCandidate &BotCand) {
 | 
						|
 | 
						|
  // Set ReduceLatency to true if needed.
 | 
						|
  Bot.setLatencyPolicy(BotCand.Policy);
 | 
						|
  Top.setLatencyPolicy(TopCand.Policy);
 | 
						|
 | 
						|
  // Handle resource-limited regions.
 | 
						|
  if (Top.IsResourceLimited && Bot.IsResourceLimited
 | 
						|
      && Top.CritResIdx == Bot.CritResIdx) {
 | 
						|
    // If the scheduled critical resource in both zones is no longer the
 | 
						|
    // critical remaining resource, attempt to reduce resource height both ways.
 | 
						|
    if (Top.CritResIdx != Rem.CritResIdx) {
 | 
						|
      TopCand.Policy.ReduceResIdx = Top.CritResIdx;
 | 
						|
      BotCand.Policy.ReduceResIdx = Bot.CritResIdx;
 | 
						|
      DEBUG(dbgs() << "  Reduce scheduled "
 | 
						|
            << SchedModel->getProcResource(Top.CritResIdx)->Name << '\n');
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  // Handle latency-limited regions.
 | 
						|
  if (!Top.IsResourceLimited && !Bot.IsResourceLimited) {
 | 
						|
    // If the total scheduled expected latency exceeds the region's critical
 | 
						|
    // path then reduce latency both ways.
 | 
						|
    //
 | 
						|
    // Just because a zone is not resource limited does not mean it is latency
 | 
						|
    // limited. Unbuffered resource, such as max micro-ops may cause CurrCycle
 | 
						|
    // to exceed expected latency.
 | 
						|
    if ((Top.ExpectedLatency + Bot.ExpectedLatency >= Rem.CriticalPath)
 | 
						|
        && (Rem.CriticalPath > Top.CurrCycle + Bot.CurrCycle)) {
 | 
						|
      TopCand.Policy.ReduceLatency = true;
 | 
						|
      BotCand.Policy.ReduceLatency = true;
 | 
						|
      DEBUG(dbgs() << "  Reduce scheduled latency " << Top.ExpectedLatency
 | 
						|
            << " + " << Bot.ExpectedLatency << '\n');
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  // The critical resource is different in each zone, so request balancing.
 | 
						|
 | 
						|
  // Compute the cost of each zone.
 | 
						|
  Top.ExpectedCount = std::max(Top.ExpectedLatency, Top.CurrCycle);
 | 
						|
  Top.ExpectedCount = std::max(
 | 
						|
    Top.getCriticalCount(),
 | 
						|
    Top.ExpectedCount * SchedModel->getLatencyFactor());
 | 
						|
  Bot.ExpectedCount = std::max(Bot.ExpectedLatency, Bot.CurrCycle);
 | 
						|
  Bot.ExpectedCount = std::max(
 | 
						|
    Bot.getCriticalCount(),
 | 
						|
    Bot.ExpectedCount * SchedModel->getLatencyFactor());
 | 
						|
 | 
						|
  balanceZones(Top, TopCand, Bot, BotCand);
 | 
						|
  balanceZones(Bot, BotCand, Top, TopCand);
 | 
						|
}
 | 
						|
 | 
						|
void ConvergingScheduler::SchedCandidate::
 | 
						|
initResourceDelta(const ScheduleDAGMI *DAG,
 | 
						|
                  const TargetSchedModel *SchedModel) {
 | 
						|
  if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
 | 
						|
    return;
 | 
						|
 | 
						|
  const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
 | 
						|
  for (TargetSchedModel::ProcResIter
 | 
						|
         PI = SchedModel->getWriteProcResBegin(SC),
 | 
						|
         PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
 | 
						|
    if (PI->ProcResourceIdx == Policy.ReduceResIdx)
 | 
						|
      ResDelta.CritResources += PI->Cycles;
 | 
						|
    if (PI->ProcResourceIdx == Policy.DemandResIdx)
 | 
						|
      ResDelta.DemandedResources += PI->Cycles;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if this heuristic determines order.
 | 
						|
static bool tryLess(int TryVal, int CandVal,
 | 
						|
                    ConvergingScheduler::SchedCandidate &TryCand,
 | 
						|
                    ConvergingScheduler::SchedCandidate &Cand,
 | 
						|
                    ConvergingScheduler::CandReason Reason) {
 | 
						|
  if (TryVal < CandVal) {
 | 
						|
    TryCand.Reason = Reason;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (TryVal > CandVal) {
 | 
						|
    if (Cand.Reason > Reason)
 | 
						|
      Cand.Reason = Reason;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool tryGreater(int TryVal, int CandVal,
 | 
						|
                       ConvergingScheduler::SchedCandidate &TryCand,
 | 
						|
                       ConvergingScheduler::SchedCandidate &Cand,
 | 
						|
                       ConvergingScheduler::CandReason Reason) {
 | 
						|
  if (TryVal > CandVal) {
 | 
						|
    TryCand.Reason = Reason;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  if (TryVal < CandVal) {
 | 
						|
    if (Cand.Reason > Reason)
 | 
						|
      Cand.Reason = Reason;
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned getWeakLeft(const SUnit *SU, bool isTop) {
 | 
						|
  return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
 | 
						|
}
 | 
						|
 | 
						|
/// Minimize physical register live ranges. Regalloc wants them adjacent to
 | 
						|
/// their physreg def/use.
 | 
						|
///
 | 
						|
/// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
 | 
						|
/// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
 | 
						|
/// with the operation that produces or consumes the physreg. We'll do this when
 | 
						|
/// regalloc has support for parallel copies.
 | 
						|
static int biasPhysRegCopy(const SUnit *SU, bool isTop) {
 | 
						|
  const MachineInstr *MI = SU->getInstr();
 | 
						|
  if (!MI->isCopy())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  unsigned ScheduledOper = isTop ? 1 : 0;
 | 
						|
  unsigned UnscheduledOper = isTop ? 0 : 1;
 | 
						|
  // If we have already scheduled the physreg produce/consumer, immediately
 | 
						|
  // schedule the copy.
 | 
						|
  if (TargetRegisterInfo::isPhysicalRegister(
 | 
						|
        MI->getOperand(ScheduledOper).getReg()))
 | 
						|
    return 1;
 | 
						|
  // If the physreg is at the boundary, defer it. Otherwise schedule it
 | 
						|
  // immediately to free the dependent. We can hoist the copy later.
 | 
						|
  bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
 | 
						|
  if (TargetRegisterInfo::isPhysicalRegister(
 | 
						|
        MI->getOperand(UnscheduledOper).getReg()))
 | 
						|
    return AtBoundary ? -1 : 1;
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// Apply a set of heursitics to a new candidate. Heuristics are currently
 | 
						|
/// hierarchical. This may be more efficient than a graduated cost model because
 | 
						|
/// we don't need to evaluate all aspects of the model for each node in the
 | 
						|
/// queue. But it's really done to make the heuristics easier to debug and
 | 
						|
/// statistically analyze.
 | 
						|
///
 | 
						|
/// \param Cand provides the policy and current best candidate.
 | 
						|
/// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
 | 
						|
/// \param Zone describes the scheduled zone that we are extending.
 | 
						|
/// \param RPTracker describes reg pressure within the scheduled zone.
 | 
						|
/// \param TempTracker is a scratch pressure tracker to reuse in queries.
 | 
						|
void ConvergingScheduler::tryCandidate(SchedCandidate &Cand,
 | 
						|
                                       SchedCandidate &TryCand,
 | 
						|
                                       SchedBoundary &Zone,
 | 
						|
                                       const RegPressureTracker &RPTracker,
 | 
						|
                                       RegPressureTracker &TempTracker) {
 | 
						|
 | 
						|
  // Always initialize TryCand's RPDelta.
 | 
						|
  TempTracker.getMaxPressureDelta(TryCand.SU->getInstr(), TryCand.RPDelta,
 | 
						|
                                  DAG->getRegionCriticalPSets(),
 | 
						|
                                  DAG->getRegPressure().MaxSetPressure);
 | 
						|
 | 
						|
  // Initialize the candidate if needed.
 | 
						|
  if (!Cand.isValid()) {
 | 
						|
    TryCand.Reason = NodeOrder;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()),
 | 
						|
                 biasPhysRegCopy(Cand.SU, Zone.isTop()),
 | 
						|
                 TryCand, Cand, PhysRegCopy))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Avoid exceeding the target's limit.
 | 
						|
  if (tryLess(TryCand.RPDelta.Excess.UnitIncrease,
 | 
						|
              Cand.RPDelta.Excess.UnitIncrease, TryCand, Cand, SingleExcess))
 | 
						|
    return;
 | 
						|
  if (Cand.Reason == SingleExcess)
 | 
						|
    Cand.Reason = MultiPressure;
 | 
						|
 | 
						|
  // Avoid increasing the max critical pressure in the scheduled region.
 | 
						|
  if (tryLess(TryCand.RPDelta.CriticalMax.UnitIncrease,
 | 
						|
              Cand.RPDelta.CriticalMax.UnitIncrease,
 | 
						|
              TryCand, Cand, SingleCritical))
 | 
						|
    return;
 | 
						|
  if (Cand.Reason == SingleCritical)
 | 
						|
    Cand.Reason = MultiPressure;
 | 
						|
 | 
						|
  // Keep clustered nodes together to encourage downstream peephole
 | 
						|
  // optimizations which may reduce resource requirements.
 | 
						|
  //
 | 
						|
  // This is a best effort to set things up for a post-RA pass. Optimizations
 | 
						|
  // like generating loads of multiple registers should ideally be done within
 | 
						|
  // the scheduler pass by combining the loads during DAG postprocessing.
 | 
						|
  const SUnit *NextClusterSU =
 | 
						|
    Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
 | 
						|
  if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU,
 | 
						|
                 TryCand, Cand, Cluster))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Weak edges are for clustering and other constraints.
 | 
						|
  //
 | 
						|
  // Deferring TryCand here does not change Cand's reason. This is good in the
 | 
						|
  // sense that a bad candidate shouldn't affect a previous candidate's
 | 
						|
  // goodness, but bad in that it is assymetric and depends on queue order.
 | 
						|
  CandReason OrigReason = Cand.Reason;
 | 
						|
  if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()),
 | 
						|
              getWeakLeft(Cand.SU, Zone.isTop()),
 | 
						|
              TryCand, Cand, Weak)) {
 | 
						|
    Cand.Reason = OrigReason;
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  // Avoid critical resource consumption and balance the schedule.
 | 
						|
  TryCand.initResourceDelta(DAG, SchedModel);
 | 
						|
  if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
 | 
						|
              TryCand, Cand, ResourceReduce))
 | 
						|
    return;
 | 
						|
  if (tryGreater(TryCand.ResDelta.DemandedResources,
 | 
						|
                 Cand.ResDelta.DemandedResources,
 | 
						|
                 TryCand, Cand, ResourceDemand))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Avoid serializing long latency dependence chains.
 | 
						|
  if (Cand.Policy.ReduceLatency) {
 | 
						|
    if (Zone.isTop()) {
 | 
						|
      if (Cand.SU->getDepth() * SchedModel->getLatencyFactor()
 | 
						|
          > Zone.ExpectedCount) {
 | 
						|
        if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
 | 
						|
                    TryCand, Cand, TopDepthReduce))
 | 
						|
          return;
 | 
						|
      }
 | 
						|
      if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
 | 
						|
                     TryCand, Cand, TopPathReduce))
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      if (Cand.SU->getHeight() * SchedModel->getLatencyFactor()
 | 
						|
          > Zone.ExpectedCount) {
 | 
						|
        if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
 | 
						|
                    TryCand, Cand, BotHeightReduce))
 | 
						|
          return;
 | 
						|
      }
 | 
						|
      if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
 | 
						|
                     TryCand, Cand, BotPathReduce))
 | 
						|
        return;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Avoid increasing the max pressure of the entire region.
 | 
						|
  if (tryLess(TryCand.RPDelta.CurrentMax.UnitIncrease,
 | 
						|
              Cand.RPDelta.CurrentMax.UnitIncrease, TryCand, Cand, SingleMax))
 | 
						|
    return;
 | 
						|
  if (Cand.Reason == SingleMax)
 | 
						|
    Cand.Reason = MultiPressure;
 | 
						|
 | 
						|
  // Prefer immediate defs/users of the last scheduled instruction. This is a
 | 
						|
  // nice pressure avoidance strategy that also conserves the processor's
 | 
						|
  // register renaming resources and keeps the machine code readable.
 | 
						|
  if (tryGreater(Zone.NextSUs.count(TryCand.SU), Zone.NextSUs.count(Cand.SU),
 | 
						|
                 TryCand, Cand, NextDefUse))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Fall through to original instruction order.
 | 
						|
  if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
 | 
						|
      || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
 | 
						|
    TryCand.Reason = NodeOrder;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// pickNodeFromQueue helper that returns true if the LHS reg pressure effect is
 | 
						|
/// more desirable than RHS from scheduling standpoint.
 | 
						|
static bool compareRPDelta(const RegPressureDelta &LHS,
 | 
						|
                           const RegPressureDelta &RHS) {
 | 
						|
  // Compare each component of pressure in decreasing order of importance
 | 
						|
  // without checking if any are valid. Invalid PressureElements are assumed to
 | 
						|
  // have UnitIncrease==0, so are neutral.
 | 
						|
 | 
						|
  // Avoid increasing the max critical pressure in the scheduled region.
 | 
						|
  if (LHS.Excess.UnitIncrease != RHS.Excess.UnitIncrease) {
 | 
						|
    DEBUG(dbgs() << "  RP excess top - bot: "
 | 
						|
          << (LHS.Excess.UnitIncrease - RHS.Excess.UnitIncrease) << '\n');
 | 
						|
    return LHS.Excess.UnitIncrease < RHS.Excess.UnitIncrease;
 | 
						|
  }
 | 
						|
  // Avoid increasing the max critical pressure in the scheduled region.
 | 
						|
  if (LHS.CriticalMax.UnitIncrease != RHS.CriticalMax.UnitIncrease) {
 | 
						|
    DEBUG(dbgs() << "  RP critical top - bot: "
 | 
						|
          << (LHS.CriticalMax.UnitIncrease - RHS.CriticalMax.UnitIncrease)
 | 
						|
          << '\n');
 | 
						|
    return LHS.CriticalMax.UnitIncrease < RHS.CriticalMax.UnitIncrease;
 | 
						|
  }
 | 
						|
  // Avoid increasing the max pressure of the entire region.
 | 
						|
  if (LHS.CurrentMax.UnitIncrease != RHS.CurrentMax.UnitIncrease) {
 | 
						|
    DEBUG(dbgs() << "  RP current top - bot: "
 | 
						|
          << (LHS.CurrentMax.UnitIncrease - RHS.CurrentMax.UnitIncrease)
 | 
						|
          << '\n');
 | 
						|
    return LHS.CurrentMax.UnitIncrease < RHS.CurrentMax.UnitIncrease;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
const char *ConvergingScheduler::getReasonStr(
 | 
						|
  ConvergingScheduler::CandReason Reason) {
 | 
						|
  switch (Reason) {
 | 
						|
  case NoCand:         return "NOCAND    ";
 | 
						|
  case PhysRegCopy:    return "PREG-COPY";
 | 
						|
  case SingleExcess:   return "REG-EXCESS";
 | 
						|
  case SingleCritical: return "REG-CRIT  ";
 | 
						|
  case Cluster:        return "CLUSTER   ";
 | 
						|
  case Weak:           return "WEAK      ";
 | 
						|
  case SingleMax:      return "REG-MAX   ";
 | 
						|
  case MultiPressure:  return "REG-MULTI ";
 | 
						|
  case ResourceReduce: return "RES-REDUCE";
 | 
						|
  case ResourceDemand: return "RES-DEMAND";
 | 
						|
  case TopDepthReduce: return "TOP-DEPTH ";
 | 
						|
  case TopPathReduce:  return "TOP-PATH  ";
 | 
						|
  case BotHeightReduce:return "BOT-HEIGHT";
 | 
						|
  case BotPathReduce:  return "BOT-PATH  ";
 | 
						|
  case NextDefUse:     return "DEF-USE   ";
 | 
						|
  case NodeOrder:      return "ORDER     ";
 | 
						|
  };
 | 
						|
  llvm_unreachable("Unknown reason!");
 | 
						|
}
 | 
						|
 | 
						|
void ConvergingScheduler::traceCandidate(const SchedCandidate &Cand) {
 | 
						|
  PressureElement P;
 | 
						|
  unsigned ResIdx = 0;
 | 
						|
  unsigned Latency = 0;
 | 
						|
  switch (Cand.Reason) {
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  case SingleExcess:
 | 
						|
    P = Cand.RPDelta.Excess;
 | 
						|
    break;
 | 
						|
  case SingleCritical:
 | 
						|
    P = Cand.RPDelta.CriticalMax;
 | 
						|
    break;
 | 
						|
  case SingleMax:
 | 
						|
    P = Cand.RPDelta.CurrentMax;
 | 
						|
    break;
 | 
						|
  case ResourceReduce:
 | 
						|
    ResIdx = Cand.Policy.ReduceResIdx;
 | 
						|
    break;
 | 
						|
  case ResourceDemand:
 | 
						|
    ResIdx = Cand.Policy.DemandResIdx;
 | 
						|
    break;
 | 
						|
  case TopDepthReduce:
 | 
						|
    Latency = Cand.SU->getDepth();
 | 
						|
    break;
 | 
						|
  case TopPathReduce:
 | 
						|
    Latency = Cand.SU->getHeight();
 | 
						|
    break;
 | 
						|
  case BotHeightReduce:
 | 
						|
    Latency = Cand.SU->getHeight();
 | 
						|
    break;
 | 
						|
  case BotPathReduce:
 | 
						|
    Latency = Cand.SU->getDepth();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  dbgs() << "  SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
 | 
						|
  if (P.isValid())
 | 
						|
    dbgs() << " " << TRI->getRegPressureSetName(P.PSetID)
 | 
						|
           << ":" << P.UnitIncrease << " ";
 | 
						|
  else
 | 
						|
    dbgs() << "      ";
 | 
						|
  if (ResIdx)
 | 
						|
    dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
 | 
						|
  else
 | 
						|
    dbgs() << "         ";
 | 
						|
  if (Latency)
 | 
						|
    dbgs() << " " << Latency << " cycles ";
 | 
						|
  else
 | 
						|
    dbgs() << "          ";
 | 
						|
  dbgs() << '\n';
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/// Pick the best candidate from the top queue.
 | 
						|
///
 | 
						|
/// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
 | 
						|
/// DAG building. To adjust for the current scheduling location we need to
 | 
						|
/// maintain the number of vreg uses remaining to be top-scheduled.
 | 
						|
void ConvergingScheduler::pickNodeFromQueue(SchedBoundary &Zone,
 | 
						|
                                            const RegPressureTracker &RPTracker,
 | 
						|
                                            SchedCandidate &Cand) {
 | 
						|
  ReadyQueue &Q = Zone.Available;
 | 
						|
 | 
						|
  DEBUG(Q.dump());
 | 
						|
 | 
						|
  // getMaxPressureDelta temporarily modifies the tracker.
 | 
						|
  RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
 | 
						|
 | 
						|
  for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
 | 
						|
 | 
						|
    SchedCandidate TryCand(Cand.Policy);
 | 
						|
    TryCand.SU = *I;
 | 
						|
    tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker);
 | 
						|
    if (TryCand.Reason != NoCand) {
 | 
						|
      // Initialize resource delta if needed in case future heuristics query it.
 | 
						|
      if (TryCand.ResDelta == SchedResourceDelta())
 | 
						|
        TryCand.initResourceDelta(DAG, SchedModel);
 | 
						|
      Cand.setBest(TryCand);
 | 
						|
      DEBUG(traceCandidate(Cand));
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void tracePick(const ConvergingScheduler::SchedCandidate &Cand,
 | 
						|
                      bool IsTop) {
 | 
						|
  DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
 | 
						|
        << ConvergingScheduler::getReasonStr(Cand.Reason) << '\n');
 | 
						|
}
 | 
						|
 | 
						|
/// Pick the best candidate node from either the top or bottom queue.
 | 
						|
SUnit *ConvergingScheduler::pickNodeBidirectional(bool &IsTopNode) {
 | 
						|
  // Schedule as far as possible in the direction of no choice. This is most
 | 
						|
  // efficient, but also provides the best heuristics for CriticalPSets.
 | 
						|
  if (SUnit *SU = Bot.pickOnlyChoice()) {
 | 
						|
    IsTopNode = false;
 | 
						|
    DEBUG(dbgs() << "Pick Top NOCAND\n");
 | 
						|
    return SU;
 | 
						|
  }
 | 
						|
  if (SUnit *SU = Top.pickOnlyChoice()) {
 | 
						|
    IsTopNode = true;
 | 
						|
    DEBUG(dbgs() << "Pick Bot NOCAND\n");
 | 
						|
    return SU;
 | 
						|
  }
 | 
						|
  CandPolicy NoPolicy;
 | 
						|
  SchedCandidate BotCand(NoPolicy);
 | 
						|
  SchedCandidate TopCand(NoPolicy);
 | 
						|
  checkResourceLimits(TopCand, BotCand);
 | 
						|
 | 
						|
  // Prefer bottom scheduling when heuristics are silent.
 | 
						|
  pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
 | 
						|
  assert(BotCand.Reason != NoCand && "failed to find the first candidate");
 | 
						|
 | 
						|
  // If either Q has a single candidate that provides the least increase in
 | 
						|
  // Excess pressure, we can immediately schedule from that Q.
 | 
						|
  //
 | 
						|
  // RegionCriticalPSets summarizes the pressure within the scheduled region and
 | 
						|
  // affects picking from either Q. If scheduling in one direction must
 | 
						|
  // increase pressure for one of the excess PSets, then schedule in that
 | 
						|
  // direction first to provide more freedom in the other direction.
 | 
						|
  if (BotCand.Reason == SingleExcess || BotCand.Reason == SingleCritical) {
 | 
						|
    IsTopNode = false;
 | 
						|
    tracePick(BotCand, IsTopNode);
 | 
						|
    return BotCand.SU;
 | 
						|
  }
 | 
						|
  // Check if the top Q has a better candidate.
 | 
						|
  pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
 | 
						|
  assert(TopCand.Reason != NoCand && "failed to find the first candidate");
 | 
						|
 | 
						|
  // If either Q has a single candidate that minimizes pressure above the
 | 
						|
  // original region's pressure pick it.
 | 
						|
  if (TopCand.Reason <= SingleMax || BotCand.Reason <= SingleMax) {
 | 
						|
    if (TopCand.Reason < BotCand.Reason) {
 | 
						|
      IsTopNode = true;
 | 
						|
      tracePick(TopCand, IsTopNode);
 | 
						|
      return TopCand.SU;
 | 
						|
    }
 | 
						|
    IsTopNode = false;
 | 
						|
    tracePick(BotCand, IsTopNode);
 | 
						|
    return BotCand.SU;
 | 
						|
  }
 | 
						|
  // Check for a salient pressure difference and pick the best from either side.
 | 
						|
  if (compareRPDelta(TopCand.RPDelta, BotCand.RPDelta)) {
 | 
						|
    IsTopNode = true;
 | 
						|
    tracePick(TopCand, IsTopNode);
 | 
						|
    return TopCand.SU;
 | 
						|
  }
 | 
						|
  // Otherwise prefer the bottom candidate, in node order if all else failed.
 | 
						|
  if (TopCand.Reason < BotCand.Reason) {
 | 
						|
    IsTopNode = true;
 | 
						|
    tracePick(TopCand, IsTopNode);
 | 
						|
    return TopCand.SU;
 | 
						|
  }
 | 
						|
  IsTopNode = false;
 | 
						|
  tracePick(BotCand, IsTopNode);
 | 
						|
  return BotCand.SU;
 | 
						|
}
 | 
						|
 | 
						|
/// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
 | 
						|
SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) {
 | 
						|
  if (DAG->top() == DAG->bottom()) {
 | 
						|
    assert(Top.Available.empty() && Top.Pending.empty() &&
 | 
						|
           Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
 | 
						|
    return NULL;
 | 
						|
  }
 | 
						|
  SUnit *SU;
 | 
						|
  do {
 | 
						|
    if (ForceTopDown) {
 | 
						|
      SU = Top.pickOnlyChoice();
 | 
						|
      if (!SU) {
 | 
						|
        CandPolicy NoPolicy;
 | 
						|
        SchedCandidate TopCand(NoPolicy);
 | 
						|
        pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
 | 
						|
        assert(TopCand.Reason != NoCand && "failed to find the first candidate");
 | 
						|
        SU = TopCand.SU;
 | 
						|
      }
 | 
						|
      IsTopNode = true;
 | 
						|
    }
 | 
						|
    else if (ForceBottomUp) {
 | 
						|
      SU = Bot.pickOnlyChoice();
 | 
						|
      if (!SU) {
 | 
						|
        CandPolicy NoPolicy;
 | 
						|
        SchedCandidate BotCand(NoPolicy);
 | 
						|
        pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
 | 
						|
        assert(BotCand.Reason != NoCand && "failed to find the first candidate");
 | 
						|
        SU = BotCand.SU;
 | 
						|
      }
 | 
						|
      IsTopNode = false;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      SU = pickNodeBidirectional(IsTopNode);
 | 
						|
    }
 | 
						|
  } while (SU->isScheduled);
 | 
						|
 | 
						|
  if (SU->isTopReady())
 | 
						|
    Top.removeReady(SU);
 | 
						|
  if (SU->isBottomReady())
 | 
						|
    Bot.removeReady(SU);
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
 | 
						|
  return SU;
 | 
						|
}
 | 
						|
 | 
						|
void ConvergingScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
 | 
						|
 | 
						|
  MachineBasicBlock::iterator InsertPos = SU->getInstr();
 | 
						|
  if (!isTop)
 | 
						|
    ++InsertPos;
 | 
						|
  SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
 | 
						|
 | 
						|
  // Find already scheduled copies with a single physreg dependence and move
 | 
						|
  // them just above the scheduled instruction.
 | 
						|
  for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end();
 | 
						|
       I != E; ++I) {
 | 
						|
    if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg()))
 | 
						|
      continue;
 | 
						|
    SUnit *DepSU = I->getSUnit();
 | 
						|
    if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
 | 
						|
      continue;
 | 
						|
    MachineInstr *Copy = DepSU->getInstr();
 | 
						|
    if (!Copy->isCopy())
 | 
						|
      continue;
 | 
						|
    DEBUG(dbgs() << "  Rescheduling physreg copy ";
 | 
						|
          I->getSUnit()->dump(DAG));
 | 
						|
    DAG->moveInstruction(Copy, InsertPos);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Update the scheduler's state after scheduling a node. This is the same node
 | 
						|
/// that was just returned by pickNode(). However, ScheduleDAGMI needs to update
 | 
						|
/// it's state based on the current cycle before MachineSchedStrategy does.
 | 
						|
///
 | 
						|
/// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
 | 
						|
/// them here. See comments in biasPhysRegCopy.
 | 
						|
void ConvergingScheduler::schedNode(SUnit *SU, bool IsTopNode) {
 | 
						|
  if (IsTopNode) {
 | 
						|
    SU->TopReadyCycle = Top.CurrCycle;
 | 
						|
    Top.bumpNode(SU);
 | 
						|
    if (SU->hasPhysRegUses)
 | 
						|
      reschedulePhysRegCopies(SU, true);
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    SU->BotReadyCycle = Bot.CurrCycle;
 | 
						|
    Bot.bumpNode(SU);
 | 
						|
    if (SU->hasPhysRegDefs)
 | 
						|
      reschedulePhysRegCopies(SU, false);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Create the standard converging machine scheduler. This will be used as the
 | 
						|
/// default scheduler if the target does not set a default.
 | 
						|
static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) {
 | 
						|
  assert((!ForceTopDown || !ForceBottomUp) &&
 | 
						|
         "-misched-topdown incompatible with -misched-bottomup");
 | 
						|
  ScheduleDAGMI *DAG = new ScheduleDAGMI(C, new ConvergingScheduler());
 | 
						|
  // Register DAG post-processors.
 | 
						|
  //
 | 
						|
  // FIXME: extend the mutation API to allow earlier mutations to instantiate
 | 
						|
  // data and pass it to later mutations. Have a single mutation that gathers
 | 
						|
  // the interesting nodes in one pass.
 | 
						|
  if (EnableCopyConstrain)
 | 
						|
    DAG->addMutation(new CopyConstrain(DAG->TII, DAG->TRI));
 | 
						|
  if (EnableLoadCluster)
 | 
						|
    DAG->addMutation(new LoadClusterMutation(DAG->TII, DAG->TRI));
 | 
						|
  if (EnableMacroFusion)
 | 
						|
    DAG->addMutation(new MacroFusion(DAG->TII));
 | 
						|
  return DAG;
 | 
						|
}
 | 
						|
static MachineSchedRegistry
 | 
						|
ConvergingSchedRegistry("converge", "Standard converging scheduler.",
 | 
						|
                        createConvergingSched);
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// ILP Scheduler. Currently for experimental analysis of heuristics.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
namespace {
 | 
						|
/// \brief Order nodes by the ILP metric.
 | 
						|
struct ILPOrder {
 | 
						|
  const SchedDFSResult *DFSResult;
 | 
						|
  const BitVector *ScheduledTrees;
 | 
						|
  bool MaximizeILP;
 | 
						|
 | 
						|
  ILPOrder(bool MaxILP): DFSResult(0), ScheduledTrees(0), MaximizeILP(MaxILP) {}
 | 
						|
 | 
						|
  /// \brief Apply a less-than relation on node priority.
 | 
						|
  ///
 | 
						|
  /// (Return true if A comes after B in the Q.)
 | 
						|
  bool operator()(const SUnit *A, const SUnit *B) const {
 | 
						|
    unsigned SchedTreeA = DFSResult->getSubtreeID(A);
 | 
						|
    unsigned SchedTreeB = DFSResult->getSubtreeID(B);
 | 
						|
    if (SchedTreeA != SchedTreeB) {
 | 
						|
      // Unscheduled trees have lower priority.
 | 
						|
      if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
 | 
						|
        return ScheduledTrees->test(SchedTreeB);
 | 
						|
 | 
						|
      // Trees with shallower connections have have lower priority.
 | 
						|
      if (DFSResult->getSubtreeLevel(SchedTreeA)
 | 
						|
          != DFSResult->getSubtreeLevel(SchedTreeB)) {
 | 
						|
        return DFSResult->getSubtreeLevel(SchedTreeA)
 | 
						|
          < DFSResult->getSubtreeLevel(SchedTreeB);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (MaximizeILP)
 | 
						|
      return DFSResult->getILP(A) < DFSResult->getILP(B);
 | 
						|
    else
 | 
						|
      return DFSResult->getILP(A) > DFSResult->getILP(B);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// \brief Schedule based on the ILP metric.
 | 
						|
class ILPScheduler : public MachineSchedStrategy {
 | 
						|
  /// In case all subtrees are eventually connected to a common root through
 | 
						|
  /// data dependence (e.g. reduction), place an upper limit on their size.
 | 
						|
  ///
 | 
						|
  /// FIXME: A subtree limit is generally good, but in the situation commented
 | 
						|
  /// above, where multiple similar subtrees feed a common root, we should
 | 
						|
  /// only split at a point where the resulting subtrees will be balanced.
 | 
						|
  /// (a motivating test case must be found).
 | 
						|
  static const unsigned SubtreeLimit = 16;
 | 
						|
 | 
						|
  ScheduleDAGMI *DAG;
 | 
						|
  ILPOrder Cmp;
 | 
						|
 | 
						|
  std::vector<SUnit*> ReadyQ;
 | 
						|
public:
 | 
						|
  ILPScheduler(bool MaximizeILP): DAG(0), Cmp(MaximizeILP) {}
 | 
						|
 | 
						|
  virtual void initialize(ScheduleDAGMI *dag) {
 | 
						|
    DAG = dag;
 | 
						|
    DAG->computeDFSResult();
 | 
						|
    Cmp.DFSResult = DAG->getDFSResult();
 | 
						|
    Cmp.ScheduledTrees = &DAG->getScheduledTrees();
 | 
						|
    ReadyQ.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  virtual void registerRoots() {
 | 
						|
    // Restore the heap in ReadyQ with the updated DFS results.
 | 
						|
    std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Implement MachineSchedStrategy interface.
 | 
						|
  /// -----------------------------------------
 | 
						|
 | 
						|
  /// Callback to select the highest priority node from the ready Q.
 | 
						|
  virtual SUnit *pickNode(bool &IsTopNode) {
 | 
						|
    if (ReadyQ.empty()) return NULL;
 | 
						|
    std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
 | 
						|
    SUnit *SU = ReadyQ.back();
 | 
						|
    ReadyQ.pop_back();
 | 
						|
    IsTopNode = false;
 | 
						|
    DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") "
 | 
						|
          << " ILP: " << DAG->getDFSResult()->getILP(SU)
 | 
						|
          << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @"
 | 
						|
          << DAG->getDFSResult()->getSubtreeLevel(
 | 
						|
            DAG->getDFSResult()->getSubtreeID(SU)) << '\n'
 | 
						|
          << "Scheduling " << *SU->getInstr());
 | 
						|
    return SU;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \brief Scheduler callback to notify that a new subtree is scheduled.
 | 
						|
  virtual void scheduleTree(unsigned SubtreeID) {
 | 
						|
    std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
 | 
						|
  /// DFSResults, and resort the priority Q.
 | 
						|
  virtual void schedNode(SUnit *SU, bool IsTopNode) {
 | 
						|
    assert(!IsTopNode && "SchedDFSResult needs bottom-up");
 | 
						|
  }
 | 
						|
 | 
						|
  virtual void releaseTopNode(SUnit *) { /*only called for top roots*/ }
 | 
						|
 | 
						|
  virtual void releaseBottomNode(SUnit *SU) {
 | 
						|
    ReadyQ.push_back(SU);
 | 
						|
    std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
 | 
						|
  }
 | 
						|
};
 | 
						|
} // namespace
 | 
						|
 | 
						|
static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
 | 
						|
  return new ScheduleDAGMI(C, new ILPScheduler(true));
 | 
						|
}
 | 
						|
static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
 | 
						|
  return new ScheduleDAGMI(C, new ILPScheduler(false));
 | 
						|
}
 | 
						|
static MachineSchedRegistry ILPMaxRegistry(
 | 
						|
  "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
 | 
						|
static MachineSchedRegistry ILPMinRegistry(
 | 
						|
  "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Machine Instruction Shuffler for Correctness Testing
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
namespace {
 | 
						|
/// Apply a less-than relation on the node order, which corresponds to the
 | 
						|
/// instruction order prior to scheduling. IsReverse implements greater-than.
 | 
						|
template<bool IsReverse>
 | 
						|
struct SUnitOrder {
 | 
						|
  bool operator()(SUnit *A, SUnit *B) const {
 | 
						|
    if (IsReverse)
 | 
						|
      return A->NodeNum > B->NodeNum;
 | 
						|
    else
 | 
						|
      return A->NodeNum < B->NodeNum;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
/// Reorder instructions as much as possible.
 | 
						|
class InstructionShuffler : public MachineSchedStrategy {
 | 
						|
  bool IsAlternating;
 | 
						|
  bool IsTopDown;
 | 
						|
 | 
						|
  // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
 | 
						|
  // gives nodes with a higher number higher priority causing the latest
 | 
						|
  // instructions to be scheduled first.
 | 
						|
  PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> >
 | 
						|
    TopQ;
 | 
						|
  // When scheduling bottom-up, use greater-than as the queue priority.
 | 
						|
  PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> >
 | 
						|
    BottomQ;
 | 
						|
public:
 | 
						|
  InstructionShuffler(bool alternate, bool topdown)
 | 
						|
    : IsAlternating(alternate), IsTopDown(topdown) {}
 | 
						|
 | 
						|
  virtual void initialize(ScheduleDAGMI *) {
 | 
						|
    TopQ.clear();
 | 
						|
    BottomQ.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  /// Implement MachineSchedStrategy interface.
 | 
						|
  /// -----------------------------------------
 | 
						|
 | 
						|
  virtual SUnit *pickNode(bool &IsTopNode) {
 | 
						|
    SUnit *SU;
 | 
						|
    if (IsTopDown) {
 | 
						|
      do {
 | 
						|
        if (TopQ.empty()) return NULL;
 | 
						|
        SU = TopQ.top();
 | 
						|
        TopQ.pop();
 | 
						|
      } while (SU->isScheduled);
 | 
						|
      IsTopNode = true;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      do {
 | 
						|
        if (BottomQ.empty()) return NULL;
 | 
						|
        SU = BottomQ.top();
 | 
						|
        BottomQ.pop();
 | 
						|
      } while (SU->isScheduled);
 | 
						|
      IsTopNode = false;
 | 
						|
    }
 | 
						|
    if (IsAlternating)
 | 
						|
      IsTopDown = !IsTopDown;
 | 
						|
    return SU;
 | 
						|
  }
 | 
						|
 | 
						|
  virtual void schedNode(SUnit *SU, bool IsTopNode) {}
 | 
						|
 | 
						|
  virtual void releaseTopNode(SUnit *SU) {
 | 
						|
    TopQ.push(SU);
 | 
						|
  }
 | 
						|
  virtual void releaseBottomNode(SUnit *SU) {
 | 
						|
    BottomQ.push(SU);
 | 
						|
  }
 | 
						|
};
 | 
						|
} // namespace
 | 
						|
 | 
						|
static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
 | 
						|
  bool Alternate = !ForceTopDown && !ForceBottomUp;
 | 
						|
  bool TopDown = !ForceBottomUp;
 | 
						|
  assert((TopDown || !ForceTopDown) &&
 | 
						|
         "-misched-topdown incompatible with -misched-bottomup");
 | 
						|
  return new ScheduleDAGMI(C, new InstructionShuffler(Alternate, TopDown));
 | 
						|
}
 | 
						|
static MachineSchedRegistry ShufflerRegistry(
 | 
						|
  "shuffle", "Shuffle machine instructions alternating directions",
 | 
						|
  createInstructionShuffler);
 | 
						|
#endif // !NDEBUG
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// GraphWriter support for ScheduleDAGMI.
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
template<> struct GraphTraits<
 | 
						|
  ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
 | 
						|
 | 
						|
template<>
 | 
						|
struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
 | 
						|
 | 
						|
  DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
 | 
						|
 | 
						|
  static std::string getGraphName(const ScheduleDAG *G) {
 | 
						|
    return G->MF.getName();
 | 
						|
  }
 | 
						|
 | 
						|
  static bool renderGraphFromBottomUp() {
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  static bool isNodeHidden(const SUnit *Node) {
 | 
						|
    return (Node->NumPreds > 10 || Node->NumSuccs > 10);
 | 
						|
  }
 | 
						|
 | 
						|
  static bool hasNodeAddressLabel(const SUnit *Node,
 | 
						|
                                  const ScheduleDAG *Graph) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  /// If you want to override the dot attributes printed for a particular
 | 
						|
  /// edge, override this method.
 | 
						|
  static std::string getEdgeAttributes(const SUnit *Node,
 | 
						|
                                       SUnitIterator EI,
 | 
						|
                                       const ScheduleDAG *Graph) {
 | 
						|
    if (EI.isArtificialDep())
 | 
						|
      return "color=cyan,style=dashed";
 | 
						|
    if (EI.isCtrlDep())
 | 
						|
      return "color=blue,style=dashed";
 | 
						|
    return "";
 | 
						|
  }
 | 
						|
 | 
						|
  static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
 | 
						|
    std::string Str;
 | 
						|
    raw_string_ostream SS(Str);
 | 
						|
    SS << "SU(" << SU->NodeNum << ')';
 | 
						|
    return SS.str();
 | 
						|
  }
 | 
						|
  static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
 | 
						|
    return G->getGraphNodeLabel(SU);
 | 
						|
  }
 | 
						|
 | 
						|
  static std::string getNodeAttributes(const SUnit *N,
 | 
						|
                                       const ScheduleDAG *Graph) {
 | 
						|
    std::string Str("shape=Mrecord");
 | 
						|
    const SchedDFSResult *DFS =
 | 
						|
      static_cast<const ScheduleDAGMI*>(Graph)->getDFSResult();
 | 
						|
    if (DFS) {
 | 
						|
      Str += ",style=filled,fillcolor=\"#";
 | 
						|
      Str += DOT::getColorString(DFS->getSubtreeID(N));
 | 
						|
      Str += '"';
 | 
						|
    }
 | 
						|
    return Str;
 | 
						|
  }
 | 
						|
};
 | 
						|
} // namespace llvm
 | 
						|
#endif // NDEBUG
 | 
						|
 | 
						|
/// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
 | 
						|
/// rendered using 'dot'.
 | 
						|
///
 | 
						|
void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
 | 
						|
#ifndef NDEBUG
 | 
						|
  ViewGraph(this, Name, false, Title);
 | 
						|
#else
 | 
						|
  errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
 | 
						|
         << "systems with Graphviz or gv!\n";
 | 
						|
#endif  // NDEBUG
 | 
						|
}
 | 
						|
 | 
						|
/// Out-of-line implementation with no arguments is handy for gdb.
 | 
						|
void ScheduleDAGMI::viewGraph() {
 | 
						|
  viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
 | 
						|
}
 |