mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	* Fixed file headers to be consistent with the rest of LLVM * Other minor fixes git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@3277 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			285 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			285 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- SchedPriorities.h - Encapsulate scheduling heuristics -------------===//
 | |
| // 
 | |
| // Strategy:
 | |
| //    Priority ordering rules:
 | |
| //    (1) Max delay, which is the order of the heap S.candsAsHeap.
 | |
| //    (2) Instruction that frees up a register.
 | |
| //    (3) Instruction that has the maximum number of dependent instructions.
 | |
| //    Note that rules 2 and 3 are only used if issue conflicts prevent
 | |
| //    choosing a higher priority instruction by rule 1.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "SchedPriorities.h"
 | |
| #include "llvm/Analysis/LiveVar/FunctionLiveVarInfo.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "Support/PostOrderIterator.h"
 | |
| using std::cerr;
 | |
| 
 | |
| SchedPriorities::SchedPriorities(const Function *, const SchedGraph *G,
 | |
|                                  FunctionLiveVarInfo &LVI)
 | |
|   : curTime(0), graph(G), methodLiveVarInfo(LVI),
 | |
|     nodeDelayVec(G->getNumNodes(), INVALID_LATENCY), // make errors obvious
 | |
|     earliestReadyTimeForNode(G->getNumNodes(), 0),
 | |
|     earliestReadyTime(0),
 | |
|     nextToTry(candsAsHeap.begin())
 | |
| {
 | |
|   computeDelays(graph);
 | |
| }
 | |
| 
 | |
| 
 | |
| void
 | |
| SchedPriorities::initialize()
 | |
| {
 | |
|   initializeReadyHeap(graph);
 | |
| }
 | |
| 
 | |
| 
 | |
| void
 | |
| SchedPriorities::computeDelays(const SchedGraph* graph)
 | |
| {
 | |
|   po_iterator<const SchedGraph*> poIter = po_begin(graph), poEnd =po_end(graph);
 | |
|   for ( ; poIter != poEnd; ++poIter)
 | |
|     {
 | |
|       const SchedGraphNode* node = *poIter;
 | |
|       cycles_t nodeDelay;
 | |
|       if (node->beginOutEdges() == node->endOutEdges())
 | |
|         nodeDelay = node->getLatency();
 | |
|       else
 | |
| 	{
 | |
| 	  // Iterate over the out-edges of the node to compute delay
 | |
| 	  nodeDelay = 0;
 | |
| 	  for (SchedGraphNode::const_iterator E=node->beginOutEdges();
 | |
| 	       E != node->endOutEdges(); ++E)
 | |
| 	    {
 | |
| 	      cycles_t sinkDelay = getNodeDelay((*E)->getSink());
 | |
| 	      nodeDelay = std::max(nodeDelay, sinkDelay + (*E)->getMinDelay());
 | |
| 	    }
 | |
| 	}
 | |
|       getNodeDelayRef(node) = nodeDelay;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| void
 | |
| SchedPriorities::initializeReadyHeap(const SchedGraph* graph)
 | |
| {
 | |
|   const SchedGraphNode* graphRoot = graph->getRoot();
 | |
|   assert(graphRoot->getMachineInstr() == NULL && "Expect dummy root");
 | |
|   
 | |
|   // Insert immediate successors of dummy root, which are the actual roots
 | |
|   sg_succ_const_iterator SEnd = succ_end(graphRoot);
 | |
|   for (sg_succ_const_iterator S = succ_begin(graphRoot); S != SEnd; ++S)
 | |
|     this->insertReady(*S);
 | |
|   
 | |
| #undef TEST_HEAP_CONVERSION
 | |
| #ifdef TEST_HEAP_CONVERSION
 | |
|   cerr << "Before heap conversion:\n";
 | |
|   copy(candsAsHeap.begin(), candsAsHeap.end(),
 | |
|        ostream_iterator<NodeDelayPair*>(cerr,"\n"));
 | |
| #endif
 | |
|   
 | |
|   candsAsHeap.makeHeap();
 | |
|   
 | |
|   nextToTry = candsAsHeap.begin();
 | |
|   
 | |
| #ifdef TEST_HEAP_CONVERSION
 | |
|   cerr << "After heap conversion:\n";
 | |
|   copy(candsAsHeap.begin(), candsAsHeap.end(),
 | |
|        ostream_iterator<NodeDelayPair*>(cerr,"\n"));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void
 | |
| SchedPriorities::insertReady(const SchedGraphNode* node)
 | |
| {
 | |
|   candsAsHeap.insert(node, nodeDelayVec[node->getNodeId()]);
 | |
|   candsAsSet.insert(node);
 | |
|   mcands.clear(); // ensure reset choices is called before any more choices
 | |
|   earliestReadyTime = std::min(earliestReadyTime,
 | |
|                        getEarliestReadyTimeForNode(node));
 | |
|   
 | |
|   if (SchedDebugLevel >= Sched_PrintSchedTrace)
 | |
|     {
 | |
|       cerr << " Node " << node->getNodeId() << " will be ready in Cycle "
 | |
|            << getEarliestReadyTimeForNode(node) << "; "
 | |
| 	   << " Delay = " <<(long)getNodeDelay(node) << "; Instruction: \n";
 | |
|       cerr << "        " << *node->getMachineInstr() << "\n";
 | |
|     }
 | |
| }
 | |
| 
 | |
| void
 | |
| SchedPriorities::issuedReadyNodeAt(cycles_t curTime,
 | |
| 				   const SchedGraphNode* node)
 | |
| {
 | |
|   candsAsHeap.removeNode(node);
 | |
|   candsAsSet.erase(node);
 | |
|   mcands.clear(); // ensure reset choices is called before any more choices
 | |
|   
 | |
|   if (earliestReadyTime == getEarliestReadyTimeForNode(node))
 | |
|     {// earliestReadyTime may have been due to this node, so recompute it
 | |
|       earliestReadyTime = HUGE_LATENCY;
 | |
|       for (NodeHeap::const_iterator I=candsAsHeap.begin();
 | |
| 	   I != candsAsHeap.end(); ++I)
 | |
| 	if (candsAsHeap.getNode(I))
 | |
| 	  earliestReadyTime = std::min(earliestReadyTime, 
 | |
| 				getEarliestReadyTimeForNode(candsAsHeap.getNode(I)));
 | |
|     }
 | |
|   
 | |
|   // Now update ready times for successors
 | |
|   for (SchedGraphNode::const_iterator E=node->beginOutEdges();
 | |
|        E != node->endOutEdges(); ++E)
 | |
|     {
 | |
|       cycles_t& etime = getEarliestReadyTimeForNodeRef((*E)->getSink());
 | |
|       etime = std::max(etime, curTime + (*E)->getMinDelay());
 | |
|     }    
 | |
| }
 | |
| 
 | |
| 
 | |
| //----------------------------------------------------------------------
 | |
| // Priority ordering rules:
 | |
| // (1) Max delay, which is the order of the heap S.candsAsHeap.
 | |
| // (2) Instruction that frees up a register.
 | |
| // (3) Instruction that has the maximum number of dependent instructions.
 | |
| // Note that rules 2 and 3 are only used if issue conflicts prevent
 | |
| // choosing a higher priority instruction by rule 1.
 | |
| //----------------------------------------------------------------------
 | |
| 
 | |
| inline int
 | |
| SchedPriorities::chooseByRule1(std::vector<candIndex>& mcands)
 | |
| {
 | |
|   return (mcands.size() == 1)? 0	// only one choice exists so take it
 | |
| 			     : -1;	// -1 indicates multiple choices
 | |
| }
 | |
| 
 | |
| inline int
 | |
| SchedPriorities::chooseByRule2(std::vector<candIndex>& mcands)
 | |
| {
 | |
|   assert(mcands.size() >= 1 && "Should have at least one candidate here.");
 | |
|   for (unsigned i=0, N = mcands.size(); i < N; i++)
 | |
|     if (instructionHasLastUse(methodLiveVarInfo,
 | |
| 			      candsAsHeap.getNode(mcands[i])))
 | |
|       return i;
 | |
|   return -1;
 | |
| }
 | |
| 
 | |
| inline int
 | |
| SchedPriorities::chooseByRule3(std::vector<candIndex>& mcands)
 | |
| {
 | |
|   assert(mcands.size() >= 1 && "Should have at least one candidate here.");
 | |
|   int maxUses = candsAsHeap.getNode(mcands[0])->getNumOutEdges();	
 | |
|   int indexWithMaxUses = 0;
 | |
|   for (unsigned i=1, N = mcands.size(); i < N; i++)
 | |
|     {
 | |
|       int numUses = candsAsHeap.getNode(mcands[i])->getNumOutEdges();
 | |
|       if (numUses > maxUses)
 | |
| 	{
 | |
| 	  maxUses = numUses;
 | |
| 	  indexWithMaxUses = i;
 | |
| 	}
 | |
|     }
 | |
|   return indexWithMaxUses; 
 | |
| }
 | |
| 
 | |
| const SchedGraphNode*
 | |
| SchedPriorities::getNextHighest(const SchedulingManager& S,
 | |
| 				cycles_t curTime)
 | |
| {
 | |
|   int nextIdx = -1;
 | |
|   const SchedGraphNode* nextChoice = NULL;
 | |
|   
 | |
|   if (mcands.size() == 0)
 | |
|     findSetWithMaxDelay(mcands, S);
 | |
|   
 | |
|   while (nextIdx < 0 && mcands.size() > 0)
 | |
|     {
 | |
|       nextIdx = chooseByRule1(mcands);	 // rule 1
 | |
|       
 | |
|       if (nextIdx == -1)
 | |
| 	nextIdx = chooseByRule2(mcands); // rule 2
 | |
|       
 | |
|       if (nextIdx == -1)
 | |
| 	nextIdx = chooseByRule3(mcands); // rule 3
 | |
|       
 | |
|       if (nextIdx == -1)
 | |
| 	nextIdx = 0;			 // default to first choice by delays
 | |
|       
 | |
|       // We have found the next best candidate.  Check if it ready in
 | |
|       // the current cycle, and if it is feasible.
 | |
|       // If not, remove it from mcands and continue.  Refill mcands if
 | |
|       // it becomes empty.
 | |
|       nextChoice = candsAsHeap.getNode(mcands[nextIdx]);
 | |
|       if (getEarliestReadyTimeForNode(nextChoice) > curTime
 | |
| 	  || ! instrIsFeasible(S, nextChoice->getMachineInstr()->getOpCode()))
 | |
| 	{
 | |
| 	  mcands.erase(mcands.begin() + nextIdx);
 | |
| 	  nextIdx = -1;
 | |
| 	  if (mcands.size() == 0)
 | |
| 	    findSetWithMaxDelay(mcands, S);
 | |
| 	}
 | |
|     }
 | |
|   
 | |
|   if (nextIdx >= 0)
 | |
|     {
 | |
|       mcands.erase(mcands.begin() + nextIdx);
 | |
|       return nextChoice;
 | |
|     }
 | |
|   else
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| 
 | |
| void
 | |
| SchedPriorities::findSetWithMaxDelay(std::vector<candIndex>& mcands,
 | |
| 				     const SchedulingManager& S)
 | |
| {
 | |
|   if (mcands.size() == 0 && nextToTry != candsAsHeap.end())
 | |
|     { // out of choices at current maximum delay;
 | |
|       // put nodes with next highest delay in mcands
 | |
|       candIndex next = nextToTry;
 | |
|       cycles_t maxDelay = candsAsHeap.getDelay(next);
 | |
|       for (; next != candsAsHeap.end()
 | |
| 	     && candsAsHeap.getDelay(next) == maxDelay; ++next)
 | |
| 	mcands.push_back(next);
 | |
|       
 | |
|       nextToTry = next;
 | |
|       
 | |
|       if (SchedDebugLevel >= Sched_PrintSchedTrace)
 | |
| 	{
 | |
| 	  cerr << "    Cycle " << (long)getTime() << ": "
 | |
| 	       << "Next highest delay = " << (long)maxDelay << " : "
 | |
| 	       << mcands.size() << " Nodes with this delay: ";
 | |
| 	  for (unsigned i=0; i < mcands.size(); i++)
 | |
| 	    cerr << candsAsHeap.getNode(mcands[i])->getNodeId() << ", ";
 | |
| 	  cerr << "\n";
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| bool
 | |
| SchedPriorities::instructionHasLastUse(FunctionLiveVarInfo &LVI,
 | |
| 				       const SchedGraphNode* graphNode) {
 | |
|   const MachineInstr *MI = graphNode->getMachineInstr();
 | |
|   
 | |
|   hash_map<const MachineInstr*, bool>::const_iterator
 | |
|     ui = lastUseMap.find(MI);
 | |
|   if (ui != lastUseMap.end())
 | |
|     return ui->second;
 | |
|   
 | |
|   // else check if instruction is a last use and save it in the hash_map
 | |
|   bool hasLastUse = false;
 | |
|   const BasicBlock* bb = graphNode->getBB();
 | |
|   const ValueSet &LVs = LVI.getLiveVarSetBeforeMInst(MI, bb);
 | |
|   
 | |
|   for (MachineInstr::const_val_op_iterator OI = MI->begin(), OE = MI->end();
 | |
|        OI != OE; ++OI)
 | |
|     if (!LVs.count(*OI)) {
 | |
|       hasLastUse = true;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|   return lastUseMap[MI] = hasLastUse;
 | |
| }
 | |
| 
 |