mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	is only a single return from the function! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@3878 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			278 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			278 lines
		
	
	
		
			9.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- FunctionInlining.cpp - Code to perform function inlining -----------===//
 | 
						|
//
 | 
						|
// This file implements inlining of functions.
 | 
						|
//
 | 
						|
// Specifically, this:
 | 
						|
//   * Exports functionality to inline any function call
 | 
						|
//   * Inlines functions that consist of a single basic block
 | 
						|
//   * Is able to inline ANY function call
 | 
						|
//   . Has a smart heuristic for when to inline a function
 | 
						|
//
 | 
						|
// Notice that:
 | 
						|
//   * This pass opens up a lot of opportunities for constant propogation.  It
 | 
						|
//     is a good idea to to run a constant propogation pass, then a DCE pass 
 | 
						|
//     sometime after running this pass.
 | 
						|
//
 | 
						|
// FIXME: This pass should transform alloca instructions in the called function
 | 
						|
//        into malloc/free pairs!
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Transforms/FunctionInlining.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/iTerminators.h"
 | 
						|
#include "llvm/iPHINode.h"
 | 
						|
#include "llvm/iOther.h"
 | 
						|
#include "llvm/Type.h"
 | 
						|
#include "Support/StatisticReporter.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <iostream>
 | 
						|
 | 
						|
static Statistic<> NumInlined("inline\t\t- Number of functions inlined");
 | 
						|
using std::cerr;
 | 
						|
 | 
						|
// RemapInstruction - Convert the instruction operands from referencing the 
 | 
						|
// current values into those specified by ValueMap.
 | 
						|
//
 | 
						|
static inline void RemapInstruction(Instruction *I, 
 | 
						|
				    std::map<const Value *, Value*> &ValueMap) {
 | 
						|
 | 
						|
  for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
 | 
						|
    const Value *Op = I->getOperand(op);
 | 
						|
    Value *V = ValueMap[Op];
 | 
						|
    if (!V && (isa<GlobalValue>(Op) || isa<Constant>(Op)))
 | 
						|
      continue;  // Globals and constants don't get relocated
 | 
						|
 | 
						|
    if (!V) {
 | 
						|
      cerr << "Val = \n" << Op << "Addr = " << (void*)Op;
 | 
						|
      cerr << "\nInst = " << I;
 | 
						|
    }
 | 
						|
    assert(V && "Referenced value not in value map!");
 | 
						|
    I->setOperand(op, V);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// InlineFunction - This function forcibly inlines the called function into the
 | 
						|
// basic block of the caller.  This returns false if it is not possible to
 | 
						|
// inline this call.  The program is still in a well defined state if this 
 | 
						|
// occurs though.
 | 
						|
//
 | 
						|
// Note that this only does one level of inlining.  For example, if the 
 | 
						|
// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 
 | 
						|
// exists in the instruction stream.  Similiarly this will inline a recursive
 | 
						|
// function by one level.
 | 
						|
//
 | 
						|
bool InlineFunction(CallInst *CI) {
 | 
						|
  assert(isa<CallInst>(CI) && "InlineFunction only works on CallInst nodes");
 | 
						|
  assert(CI->getParent() && "Instruction not embedded in basic block!");
 | 
						|
  assert(CI->getParent()->getParent() && "Instruction not in function!");
 | 
						|
 | 
						|
  const Function *CalledFunc = CI->getCalledFunction();
 | 
						|
  if (CalledFunc == 0 ||   // Can't inline external function or indirect call!
 | 
						|
      CalledFunc->isExternal()) return false;
 | 
						|
 | 
						|
  //cerr << "Inlining " << CalledFunc->getName() << " into " 
 | 
						|
  //     << CurrentMeth->getName() << "\n";
 | 
						|
 | 
						|
  BasicBlock *OrigBB = CI->getParent();
 | 
						|
 | 
						|
  // Call splitBasicBlock - The original basic block now ends at the instruction
 | 
						|
  // immediately before the call.  The original basic block now ends with an
 | 
						|
  // unconditional branch to NewBB, and NewBB starts with the call instruction.
 | 
						|
  //
 | 
						|
  BasicBlock *NewBB = OrigBB->splitBasicBlock(CI);
 | 
						|
  NewBB->setName("InlinedFunctionReturnNode");
 | 
						|
 | 
						|
  // Remove (unlink) the CallInst from the start of the new basic block.  
 | 
						|
  NewBB->getInstList().remove(CI);
 | 
						|
 | 
						|
  // If we have a return value generated by this call, convert it into a PHI 
 | 
						|
  // node that gets values from each of the old RET instructions in the original
 | 
						|
  // function.
 | 
						|
  //
 | 
						|
  PHINode *PHI = 0;
 | 
						|
  if (CalledFunc->getReturnType() != Type::VoidTy) {
 | 
						|
    // The PHI node should go at the front of the new basic block to merge all 
 | 
						|
    // possible incoming values.
 | 
						|
    //
 | 
						|
    PHI = new PHINode(CalledFunc->getReturnType(), CI->getName(),
 | 
						|
                      NewBB->begin());
 | 
						|
 | 
						|
    // Anything that used the result of the function call should now use the PHI
 | 
						|
    // node as their operand.
 | 
						|
    //
 | 
						|
    CI->replaceAllUsesWith(PHI);
 | 
						|
  }
 | 
						|
 | 
						|
  // Keep a mapping between the original function's values and the new
 | 
						|
  // duplicated code's values.  This includes all of: Function arguments,
 | 
						|
  // instruction values, constant pool entries, and basic blocks.
 | 
						|
  //
 | 
						|
  std::map<const Value *, Value*> ValueMap;
 | 
						|
 | 
						|
  // Add the function arguments to the mapping: (start counting at 1 to skip the
 | 
						|
  // function reference itself)
 | 
						|
  //
 | 
						|
  Function::const_aiterator PTI = CalledFunc->abegin();
 | 
						|
  for (unsigned a = 1, E = CI->getNumOperands(); a != E; ++a, ++PTI)
 | 
						|
    ValueMap[PTI] = CI->getOperand(a);
 | 
						|
  
 | 
						|
  ValueMap[NewBB] = NewBB;  // Returns get converted to reference NewBB
 | 
						|
 | 
						|
  // Loop over all of the basic blocks in the function, inlining them as 
 | 
						|
  // appropriate.  Keep track of the first basic block of the function...
 | 
						|
  //
 | 
						|
  for (Function::const_iterator BB = CalledFunc->begin(); 
 | 
						|
       BB != CalledFunc->end(); ++BB) {
 | 
						|
    assert(BB->getTerminator() && "BasicBlock doesn't have terminator!?!?");
 | 
						|
    
 | 
						|
    // Create a new basic block to copy instructions into!
 | 
						|
    BasicBlock *IBB = new BasicBlock("", NewBB->getParent());
 | 
						|
    if (BB->hasName()) IBB->setName(BB->getName()+".i");  // .i = inlined once
 | 
						|
 | 
						|
    ValueMap[BB] = IBB;                       // Add basic block mapping.
 | 
						|
 | 
						|
    // Make sure to capture the mapping that a return will use...
 | 
						|
    // TODO: This assumes that the RET is returning a value computed in the same
 | 
						|
    //       basic block as the return was issued from!
 | 
						|
    //
 | 
						|
    const TerminatorInst *TI = BB->getTerminator();
 | 
						|
   
 | 
						|
    // Loop over all instructions copying them over...
 | 
						|
    Instruction *NewInst;
 | 
						|
    for (BasicBlock::const_iterator II = BB->begin();
 | 
						|
	 II != --BB->end(); ++II) {
 | 
						|
      IBB->getInstList().push_back((NewInst = II->clone()));
 | 
						|
      ValueMap[II] = NewInst;                  // Add instruction map to value.
 | 
						|
      if (II->hasName())
 | 
						|
        NewInst->setName(II->getName()+".i");  // .i = inlined once
 | 
						|
    }
 | 
						|
 | 
						|
    // Copy over the terminator now...
 | 
						|
    switch (TI->getOpcode()) {
 | 
						|
    case Instruction::Ret: {
 | 
						|
      const ReturnInst *RI = cast<ReturnInst>(TI);
 | 
						|
 | 
						|
      if (PHI) {   // The PHI node should include this value!
 | 
						|
	assert(RI->getReturnValue() && "Ret should have value!");
 | 
						|
	assert(RI->getReturnValue()->getType() == PHI->getType() && 
 | 
						|
	       "Ret value not consistent in function!");
 | 
						|
	PHI->addIncoming((Value*)RI->getReturnValue(),
 | 
						|
                         (BasicBlock*)cast<BasicBlock>(&*BB));
 | 
						|
      }
 | 
						|
 | 
						|
      // Add a branch to the code that was after the original Call.
 | 
						|
      IBB->getInstList().push_back(new BranchInst(NewBB));
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case Instruction::Br:
 | 
						|
      IBB->getInstList().push_back(TI->clone());
 | 
						|
      break;
 | 
						|
 | 
						|
    default:
 | 
						|
      cerr << "FunctionInlining: Don't know how to handle terminator: " << TI;
 | 
						|
      abort();
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  // Loop over all of the instructions in the function, fixing up operand 
 | 
						|
  // references as we go.  This uses ValueMap to do all the hard work.
 | 
						|
  //
 | 
						|
  for (Function::const_iterator BB = CalledFunc->begin(); 
 | 
						|
       BB != CalledFunc->end(); ++BB) {
 | 
						|
    BasicBlock *NBB = (BasicBlock*)ValueMap[BB];
 | 
						|
 | 
						|
    // Loop over all instructions, fixing each one as we find it...
 | 
						|
    //
 | 
						|
    for (BasicBlock::iterator II = NBB->begin(); II != NBB->end(); ++II)
 | 
						|
      RemapInstruction(II, ValueMap);
 | 
						|
  }
 | 
						|
 | 
						|
  if (PHI) {
 | 
						|
    RemapInstruction(PHI, ValueMap);  // Fix the PHI node also...
 | 
						|
 | 
						|
    // Check to see if the PHI node only has one argument.  This is a common
 | 
						|
    // case resulting from there only being a single return instruction in the
 | 
						|
    // function call.  Because this is so common, eliminate the PHI node.
 | 
						|
    //
 | 
						|
    if (PHI->getNumIncomingValues() == 1) {
 | 
						|
      PHI->replaceAllUsesWith(PHI->getIncomingValue(0));
 | 
						|
      PHI->getParent()->getInstList().erase(PHI);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Change the branch that used to go to NewBB to branch to the first basic 
 | 
						|
  // block of the inlined function.
 | 
						|
  //
 | 
						|
  TerminatorInst *Br = OrigBB->getTerminator();
 | 
						|
  assert(Br && Br->getOpcode() == Instruction::Br && 
 | 
						|
	 "splitBasicBlock broken!");
 | 
						|
  Br->setOperand(0, ValueMap[&CalledFunc->front()]);
 | 
						|
 | 
						|
  // Since we are now done with the CallInst, we can finally delete it.
 | 
						|
  delete CI;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool ShouldInlineFunction(const CallInst *CI, const Function *F) {
 | 
						|
  assert(CI->getParent() && CI->getParent()->getParent() && 
 | 
						|
	 "Call not embedded into a function!");
 | 
						|
 | 
						|
  // Don't inline a recursive call.
 | 
						|
  if (CI->getParent()->getParent() == F) return false;
 | 
						|
 | 
						|
  // Don't inline something too big.  This is a really crappy heuristic
 | 
						|
  if (F->size() > 3) return false;
 | 
						|
 | 
						|
  // Don't inline into something too big. This is a **really** crappy heuristic
 | 
						|
  if (CI->getParent()->getParent()->size() > 10) return false;
 | 
						|
 | 
						|
  // Go ahead and try just about anything else.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static inline bool DoFunctionInlining(BasicBlock *BB) {
 | 
						|
  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
 | 
						|
    if (CallInst *CI = dyn_cast<CallInst>(&*I)) {
 | 
						|
      // Check to see if we should inline this function
 | 
						|
      Function *F = CI->getCalledFunction();
 | 
						|
      if (F && ShouldInlineFunction(CI, F)) {
 | 
						|
	return InlineFunction(CI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
// doFunctionInlining - Use a heuristic based approach to inline functions that
 | 
						|
// seem to look good.
 | 
						|
//
 | 
						|
static bool doFunctionInlining(Function &F) {
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // Loop through now and inline instructions a basic block at a time...
 | 
						|
  for (Function::iterator I = F.begin(); I != F.end(); )
 | 
						|
    if (DoFunctionInlining(I)) {
 | 
						|
      ++NumInlined;
 | 
						|
      Changed = true;
 | 
						|
    } else {
 | 
						|
      ++I;
 | 
						|
    }
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct FunctionInlining : public FunctionPass {
 | 
						|
    virtual bool runOnFunction(Function &F) {
 | 
						|
      return doFunctionInlining(F);
 | 
						|
    }
 | 
						|
  };
 | 
						|
  RegisterOpt<FunctionInlining> X("inline", "Function Integration/Inlining");
 | 
						|
}
 | 
						|
 | 
						|
Pass *createFunctionInliningPass() { return new FunctionInlining(); }
 |