mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@3654 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			934 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			934 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
 | 
						|
//
 | 
						|
// This library implements the functionality defined in llvm/Assembly/Writer.h
 | 
						|
//
 | 
						|
// Note that these routines must be extremely tolerant of various errors in the
 | 
						|
// LLVM code, because of of the primary uses of it is for debugging
 | 
						|
// transformations.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "llvm/Assembly/CachedWriter.h"
 | 
						|
#include "llvm/Assembly/Writer.h"
 | 
						|
#include "llvm/Assembly/PrintModulePass.h"
 | 
						|
#include "llvm/SlotCalculator.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Instruction.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/iMemory.h"
 | 
						|
#include "llvm/iTerminators.h"
 | 
						|
#include "llvm/iPHINode.h"
 | 
						|
#include "llvm/iOther.h"
 | 
						|
#include "llvm/SymbolTable.h"
 | 
						|
#include "Support/StringExtras.h"
 | 
						|
#include "Support/STLExtras.h"
 | 
						|
#include <algorithm>
 | 
						|
using std::string;
 | 
						|
using std::map;
 | 
						|
using std::vector;
 | 
						|
using std::ostream;
 | 
						|
 | 
						|
static RegisterPass<PrintModulePass>
 | 
						|
X("printm", "Print module to stderr",PassInfo::Analysis|PassInfo::Optimization);
 | 
						|
static RegisterPass<PrintFunctionPass>
 | 
						|
Y("print","Print function to stderr",PassInfo::Analysis|PassInfo::Optimization);
 | 
						|
 | 
						|
static void WriteAsOperandInternal(ostream &Out, const Value *V, bool PrintName,
 | 
						|
                                   map<const Type *, string> &TypeTable,
 | 
						|
                                   SlotCalculator *Table);
 | 
						|
 | 
						|
static const Module *getModuleFromVal(const Value *V) {
 | 
						|
  if (const Argument *MA = dyn_cast<const Argument>(V))
 | 
						|
    return MA->getParent() ? MA->getParent()->getParent() : 0;
 | 
						|
  else if (const BasicBlock *BB = dyn_cast<const BasicBlock>(V))
 | 
						|
    return BB->getParent() ? BB->getParent()->getParent() : 0;
 | 
						|
  else if (const Instruction *I = dyn_cast<const Instruction>(V)) {
 | 
						|
    const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
 | 
						|
    return M ? M->getParent() : 0;
 | 
						|
  } else if (const GlobalValue *GV = dyn_cast<const GlobalValue>(V))
 | 
						|
    return GV->getParent();
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
static SlotCalculator *createSlotCalculator(const Value *V) {
 | 
						|
  assert(!isa<Type>(V) && "Can't create an SC for a type!");
 | 
						|
  if (const Argument *FA = dyn_cast<const Argument>(V)) {
 | 
						|
    return new SlotCalculator(FA->getParent(), true);
 | 
						|
  } else if (const Instruction *I = dyn_cast<const Instruction>(V)) {
 | 
						|
    return new SlotCalculator(I->getParent()->getParent(), true);
 | 
						|
  } else if (const BasicBlock *BB = dyn_cast<const BasicBlock>(V)) {
 | 
						|
    return new SlotCalculator(BB->getParent(), true);
 | 
						|
  } else if (const GlobalVariable *GV = dyn_cast<const GlobalVariable>(V)){
 | 
						|
    return new SlotCalculator(GV->getParent(), true);
 | 
						|
  } else if (const Function *Func = dyn_cast<const Function>(V)) {
 | 
						|
    return new SlotCalculator(Func, true);
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// If the module has a symbol table, take all global types and stuff their
 | 
						|
// names into the TypeNames map.
 | 
						|
//
 | 
						|
static void fillTypeNameTable(const Module *M,
 | 
						|
                              map<const Type *, string> &TypeNames) {
 | 
						|
  if (M && M->hasSymbolTable()) {
 | 
						|
    const SymbolTable *ST = M->getSymbolTable();
 | 
						|
    SymbolTable::const_iterator PI = ST->find(Type::TypeTy);
 | 
						|
    if (PI != ST->end()) {
 | 
						|
      SymbolTable::type_const_iterator I = PI->second.begin();
 | 
						|
      for (; I != PI->second.end(); ++I) {
 | 
						|
        // As a heuristic, don't insert pointer to primitive types, because
 | 
						|
        // they are used too often to have a single useful name.
 | 
						|
        //
 | 
						|
        const Type *Ty = cast<const Type>(I->second);
 | 
						|
        if (!isa<PointerType>(Ty) ||
 | 
						|
            !cast<PointerType>(Ty)->getElementType()->isPrimitiveType())
 | 
						|
          TypeNames.insert(std::make_pair(Ty, "%"+I->first));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
static string calcTypeName(const Type *Ty, vector<const Type *> &TypeStack,
 | 
						|
                           map<const Type *, string> &TypeNames) {
 | 
						|
  if (Ty->isPrimitiveType()) return Ty->getDescription();  // Base case
 | 
						|
 | 
						|
  // Check to see if the type is named.
 | 
						|
  map<const Type *, string>::iterator I = TypeNames.find(Ty);
 | 
						|
  if (I != TypeNames.end()) return I->second;
 | 
						|
 | 
						|
  // Check to see if the Type is already on the stack...
 | 
						|
  unsigned Slot = 0, CurSize = TypeStack.size();
 | 
						|
  while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
 | 
						|
 | 
						|
  // This is another base case for the recursion.  In this case, we know 
 | 
						|
  // that we have looped back to a type that we have previously visited.
 | 
						|
  // Generate the appropriate upreference to handle this.
 | 
						|
  // 
 | 
						|
  if (Slot < CurSize)
 | 
						|
    return "\\" + utostr(CurSize-Slot);       // Here's the upreference
 | 
						|
 | 
						|
  TypeStack.push_back(Ty);    // Recursive case: Add us to the stack..
 | 
						|
  
 | 
						|
  string Result;
 | 
						|
  switch (Ty->getPrimitiveID()) {
 | 
						|
  case Type::FunctionTyID: {
 | 
						|
    const FunctionType *FTy = cast<const FunctionType>(Ty);
 | 
						|
    Result = calcTypeName(FTy->getReturnType(), TypeStack, TypeNames) + " (";
 | 
						|
    for (FunctionType::ParamTypes::const_iterator
 | 
						|
           I = FTy->getParamTypes().begin(),
 | 
						|
           E = FTy->getParamTypes().end(); I != E; ++I) {
 | 
						|
      if (I != FTy->getParamTypes().begin())
 | 
						|
        Result += ", ";
 | 
						|
      Result += calcTypeName(*I, TypeStack, TypeNames);
 | 
						|
    }
 | 
						|
    if (FTy->isVarArg()) {
 | 
						|
      if (!FTy->getParamTypes().empty()) Result += ", ";
 | 
						|
      Result += "...";
 | 
						|
    }
 | 
						|
    Result += ")";
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Type::StructTyID: {
 | 
						|
    const StructType *STy = cast<const StructType>(Ty);
 | 
						|
    Result = "{ ";
 | 
						|
    for (StructType::ElementTypes::const_iterator
 | 
						|
           I = STy->getElementTypes().begin(),
 | 
						|
           E = STy->getElementTypes().end(); I != E; ++I) {
 | 
						|
      if (I != STy->getElementTypes().begin())
 | 
						|
        Result += ", ";
 | 
						|
      Result += calcTypeName(*I, TypeStack, TypeNames);
 | 
						|
    }
 | 
						|
    Result += " }";
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Type::PointerTyID:
 | 
						|
    Result = calcTypeName(cast<const PointerType>(Ty)->getElementType(), 
 | 
						|
                          TypeStack, TypeNames) + "*";
 | 
						|
    break;
 | 
						|
  case Type::ArrayTyID: {
 | 
						|
    const ArrayType *ATy = cast<const ArrayType>(Ty);
 | 
						|
    Result = "[" + utostr(ATy->getNumElements()) + " x ";
 | 
						|
    Result += calcTypeName(ATy->getElementType(), TypeStack, TypeNames) + "]";
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    Result = "<unrecognized-type>";
 | 
						|
  }
 | 
						|
 | 
						|
  TypeStack.pop_back();       // Remove self from stack...
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// printTypeInt - The internal guts of printing out a type that has a
 | 
						|
// potentially named portion.
 | 
						|
//
 | 
						|
static ostream &printTypeInt(ostream &Out, const Type *Ty,
 | 
						|
                             map<const Type *, string> &TypeNames) {
 | 
						|
  // Primitive types always print out their description, regardless of whether
 | 
						|
  // they have been named or not.
 | 
						|
  //
 | 
						|
  if (Ty->isPrimitiveType()) return Out << Ty->getDescription();
 | 
						|
 | 
						|
  // Check to see if the type is named.
 | 
						|
  map<const Type *, string>::iterator I = TypeNames.find(Ty);
 | 
						|
  if (I != TypeNames.end()) return Out << I->second;
 | 
						|
 | 
						|
  // Otherwise we have a type that has not been named but is a derived type.
 | 
						|
  // Carefully recurse the type hierarchy to print out any contained symbolic
 | 
						|
  // names.
 | 
						|
  //
 | 
						|
  vector<const Type *> TypeStack;
 | 
						|
  string TypeName = calcTypeName(Ty, TypeStack, TypeNames);
 | 
						|
  TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use
 | 
						|
  return Out << TypeName;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
 | 
						|
// type, iff there is an entry in the modules symbol table for the specified
 | 
						|
// type or one of it's component types.  This is slower than a simple x << Type;
 | 
						|
//
 | 
						|
ostream &WriteTypeSymbolic(ostream &Out, const Type *Ty, const Module *M) {
 | 
						|
  Out << " "; 
 | 
						|
 | 
						|
  // If they want us to print out a type, attempt to make it symbolic if there
 | 
						|
  // is a symbol table in the module...
 | 
						|
  if (M && M->hasSymbolTable()) {
 | 
						|
    map<const Type *, string> TypeNames;
 | 
						|
    fillTypeNameTable(M, TypeNames);
 | 
						|
    
 | 
						|
    return printTypeInt(Out, Ty, TypeNames);
 | 
						|
  } else {
 | 
						|
    return Out << Ty->getDescription();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void WriteConstantInt(ostream &Out, const Constant *CV, bool PrintName,
 | 
						|
                             map<const Type *, string> &TypeTable,
 | 
						|
                             SlotCalculator *Table) {
 | 
						|
  if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
 | 
						|
    Out << (CB == ConstantBool::True ? "true" : "false");
 | 
						|
  } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV)) {
 | 
						|
    Out << CI->getValue();
 | 
						|
  } else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV)) {
 | 
						|
    Out << CI->getValue();
 | 
						|
  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
 | 
						|
    // We would like to output the FP constant value in exponential notation,
 | 
						|
    // but we cannot do this if doing so will lose precision.  Check here to
 | 
						|
    // make sure that we only output it in exponential format if we can parse
 | 
						|
    // the value back and get the same value.
 | 
						|
    //
 | 
						|
    std::string StrVal = ftostr(CFP->getValue());
 | 
						|
 | 
						|
    // Check to make sure that the stringized number is not some string like
 | 
						|
    // "Inf" or NaN, that atof will accept, but the lexer will not.  Check that
 | 
						|
    // the string matches the "[-+]?[0-9]" regex.
 | 
						|
    //
 | 
						|
    if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
 | 
						|
        ((StrVal[0] == '-' || StrVal[0] == '+') &&
 | 
						|
         (StrVal[0] >= '0' && StrVal[0] <= '9')))
 | 
						|
      // Reparse stringized version!
 | 
						|
      if (atof(StrVal.c_str()) == CFP->getValue()) {
 | 
						|
        Out << StrVal; return;
 | 
						|
      }
 | 
						|
    
 | 
						|
    // Otherwise we could not reparse it to exactly the same value, so we must
 | 
						|
    // output the string in hexadecimal format!
 | 
						|
    //
 | 
						|
    // Behave nicely in the face of C TBAA rules... see:
 | 
						|
    // http://www.nullstone.com/htmls/category/aliastyp.htm
 | 
						|
    //
 | 
						|
    double Val = CFP->getValue();
 | 
						|
    char *Ptr = (char*)&Val;
 | 
						|
    assert(sizeof(double) == sizeof(uint64_t) && sizeof(double) == 8 &&
 | 
						|
           "assuming that double is 64 bits!");
 | 
						|
    Out << "0x" << utohexstr(*(uint64_t*)Ptr);
 | 
						|
 | 
						|
  } else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
 | 
						|
    // As a special case, print the array as a string if it is an array of
 | 
						|
    // ubytes or an array of sbytes with positive values.
 | 
						|
    // 
 | 
						|
    const Type *ETy = CA->getType()->getElementType();
 | 
						|
    bool isString = (ETy == Type::SByteTy || ETy == Type::UByteTy);
 | 
						|
 | 
						|
    if (ETy == Type::SByteTy)
 | 
						|
      for (unsigned i = 0; i < CA->getNumOperands(); ++i)
 | 
						|
        if (cast<ConstantSInt>(CA->getOperand(i))->getValue() < 0) {
 | 
						|
          isString = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
 | 
						|
    if (isString) {
 | 
						|
      Out << "c\"";
 | 
						|
      for (unsigned i = 0; i < CA->getNumOperands(); ++i) {
 | 
						|
        unsigned char C = (ETy == Type::SByteTy) ?
 | 
						|
          (unsigned char)cast<ConstantSInt>(CA->getOperand(i))->getValue() :
 | 
						|
          (unsigned char)cast<ConstantUInt>(CA->getOperand(i))->getValue();
 | 
						|
        
 | 
						|
        if (isprint(C) && C != '"' && C != '\\') {
 | 
						|
          Out << C;
 | 
						|
        } else {
 | 
						|
          Out << '\\'
 | 
						|
              << (char) ((C/16  < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
 | 
						|
              << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
 | 
						|
        }
 | 
						|
      }
 | 
						|
      Out << "\"";
 | 
						|
 | 
						|
    } else {                // Cannot output in string format...
 | 
						|
      Out << "[";
 | 
						|
      if (CA->getNumOperands()) {
 | 
						|
        Out << " ";
 | 
						|
        printTypeInt(Out, ETy, TypeTable);
 | 
						|
        WriteAsOperandInternal(Out, CA->getOperand(0),
 | 
						|
                               PrintName, TypeTable, Table);
 | 
						|
        for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
 | 
						|
          Out << ", ";
 | 
						|
          printTypeInt(Out, ETy, TypeTable);
 | 
						|
          WriteAsOperandInternal(Out, CA->getOperand(i), PrintName,
 | 
						|
                                 TypeTable, Table);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      Out << " ]";
 | 
						|
    }
 | 
						|
  } else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
 | 
						|
    Out << "{";
 | 
						|
    if (CS->getNumOperands()) {
 | 
						|
      Out << " ";
 | 
						|
      printTypeInt(Out, CS->getOperand(0)->getType(), TypeTable);
 | 
						|
 | 
						|
      WriteAsOperandInternal(Out, CS->getOperand(0),
 | 
						|
                             PrintName, TypeTable, Table);
 | 
						|
 | 
						|
      for (unsigned i = 1; i < CS->getNumOperands(); i++) {
 | 
						|
        Out << ", ";
 | 
						|
        printTypeInt(Out, CS->getOperand(i)->getType(), TypeTable);
 | 
						|
 | 
						|
        WriteAsOperandInternal(Out, CS->getOperand(i),
 | 
						|
                               PrintName, TypeTable, Table);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    Out << " }";
 | 
						|
  } else if (isa<ConstantPointerNull>(CV)) {
 | 
						|
    Out << "null";
 | 
						|
 | 
						|
  } else if (const ConstantPointerRef *PR = dyn_cast<ConstantPointerRef>(CV)) {
 | 
						|
    const GlobalValue *V = PR->getValue();
 | 
						|
    if (V->hasName()) {
 | 
						|
      Out << "%" << V->getName();
 | 
						|
    } else if (Table) {
 | 
						|
      int Slot = Table->getValSlot(V);
 | 
						|
      if (Slot >= 0)
 | 
						|
        Out << "%" << Slot;
 | 
						|
      else
 | 
						|
        Out << "<pointer reference badref>";
 | 
						|
    } else {
 | 
						|
      Out << "<pointer reference without context info>";
 | 
						|
    }
 | 
						|
 | 
						|
  } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
 | 
						|
    Out << CE->getOpcodeName();
 | 
						|
 | 
						|
    bool isGEP = CE->getOpcode() == Instruction::GetElementPtr;
 | 
						|
    Out << " (";
 | 
						|
    
 | 
						|
    for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
 | 
						|
      printTypeInt(Out, (*OI)->getType(), TypeTable);
 | 
						|
      WriteAsOperandInternal(Out, *OI, PrintName, TypeTable, Table);
 | 
						|
      if (OI+1 != CE->op_end())
 | 
						|
        Out << ", ";
 | 
						|
    }
 | 
						|
    
 | 
						|
    if (CE->getOpcode() == Instruction::Cast) {
 | 
						|
      Out << " to ";
 | 
						|
      printTypeInt(Out, CE->getType(), TypeTable);
 | 
						|
    }
 | 
						|
    Out << ")";
 | 
						|
 | 
						|
  } else {
 | 
						|
    Out << "<placeholder or erroneous Constant>";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// WriteAsOperand - Write the name of the specified value out to the specified
 | 
						|
// ostream.  This can be useful when you just want to print int %reg126, not the
 | 
						|
// whole instruction that generated it.
 | 
						|
//
 | 
						|
static void WriteAsOperandInternal(ostream &Out, const Value *V, bool PrintName,
 | 
						|
                                   map<const Type *, string> &TypeTable,
 | 
						|
                                   SlotCalculator *Table) {
 | 
						|
  Out << " ";
 | 
						|
  if (PrintName && V->hasName()) {
 | 
						|
    Out << "%" << V->getName();
 | 
						|
  } else {
 | 
						|
    if (const Constant *CV = dyn_cast<const Constant>(V)) {
 | 
						|
      WriteConstantInt(Out, CV, PrintName, TypeTable, Table);
 | 
						|
    } else {
 | 
						|
      int Slot;
 | 
						|
      if (Table) {
 | 
						|
	Slot = Table->getValSlot(V);
 | 
						|
      } else {
 | 
						|
        if (const Type *Ty = dyn_cast<const Type>(V)) {
 | 
						|
          Out << Ty->getDescription();
 | 
						|
          return;
 | 
						|
        }
 | 
						|
 | 
						|
        Table = createSlotCalculator(V);
 | 
						|
        if (Table == 0) { Out << "BAD VALUE TYPE!"; return; }
 | 
						|
 | 
						|
	Slot = Table->getValSlot(V);
 | 
						|
	delete Table;
 | 
						|
      }
 | 
						|
      if (Slot >= 0)  Out << "%" << Slot;
 | 
						|
      else if (PrintName)
 | 
						|
        Out << "<badref>";     // Not embeded into a location?
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
// WriteAsOperand - Write the name of the specified value out to the specified
 | 
						|
// ostream.  This can be useful when you just want to print int %reg126, not the
 | 
						|
// whole instruction that generated it.
 | 
						|
//
 | 
						|
ostream &WriteAsOperand(ostream &Out, const Value *V, bool PrintType, 
 | 
						|
			bool PrintName, const Module *Context) {
 | 
						|
  map<const Type *, string> TypeNames;
 | 
						|
  if (Context == 0) Context = getModuleFromVal(V);
 | 
						|
 | 
						|
  if (Context && Context->hasSymbolTable())
 | 
						|
    fillTypeNameTable(Context, TypeNames);
 | 
						|
 | 
						|
  if (PrintType)
 | 
						|
    printTypeInt(Out, V->getType(), TypeNames);
 | 
						|
  
 | 
						|
  WriteAsOperandInternal(Out, V, PrintName, TypeNames, 0);
 | 
						|
  return Out;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
class AssemblyWriter {
 | 
						|
  ostream &Out;
 | 
						|
  SlotCalculator &Table;
 | 
						|
  const Module *TheModule;
 | 
						|
  map<const Type *, string> TypeNames;
 | 
						|
public:
 | 
						|
  inline AssemblyWriter(ostream &o, SlotCalculator &Tab, const Module *M)
 | 
						|
    : Out(o), Table(Tab), TheModule(M) {
 | 
						|
 | 
						|
    // If the module has a symbol table, take all global types and stuff their
 | 
						|
    // names into the TypeNames map.
 | 
						|
    //
 | 
						|
    fillTypeNameTable(M, TypeNames);
 | 
						|
  }
 | 
						|
 | 
						|
  inline void write(const Module *M)         { printModule(M);      }
 | 
						|
  inline void write(const GlobalVariable *G) { printGlobal(G);      }
 | 
						|
  inline void write(const Function *F)       { printFunction(F);    }
 | 
						|
  inline void write(const BasicBlock *BB)    { printBasicBlock(BB); }
 | 
						|
  inline void write(const Instruction *I)    { printInstruction(*I); }
 | 
						|
  inline void write(const Constant *CPV)     { printConstant(CPV);  }
 | 
						|
  inline void write(const Type *Ty)          { printType(Ty);       }
 | 
						|
 | 
						|
  void writeOperand(const Value *Op, bool PrintType, bool PrintName = true);
 | 
						|
 | 
						|
private :
 | 
						|
  void printModule(const Module *M);
 | 
						|
  void printSymbolTable(const SymbolTable &ST);
 | 
						|
  void printConstant(const Constant *CPV);
 | 
						|
  void printGlobal(const GlobalVariable *GV);
 | 
						|
  void printFunction(const Function *F);
 | 
						|
  void printArgument(const Argument *FA);
 | 
						|
  void printBasicBlock(const BasicBlock *BB);
 | 
						|
  void printInstruction(const Instruction &I);
 | 
						|
 | 
						|
  // printType - Go to extreme measures to attempt to print out a short,
 | 
						|
  // symbolic version of a type name.
 | 
						|
  //
 | 
						|
  ostream &printType(const Type *Ty) {
 | 
						|
    return printTypeInt(Out, Ty, TypeNames);
 | 
						|
  }
 | 
						|
 | 
						|
  // printTypeAtLeastOneLevel - Print out one level of the possibly complex type
 | 
						|
  // without considering any symbolic types that we may have equal to it.
 | 
						|
  //
 | 
						|
  ostream &printTypeAtLeastOneLevel(const Type *Ty);
 | 
						|
 | 
						|
  // printInfoComment - Print a little comment after the instruction indicating
 | 
						|
  // which slot it occupies.
 | 
						|
  void printInfoComment(const Value &V);
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
// printTypeAtLeastOneLevel - Print out one level of the possibly complex type
 | 
						|
// without considering any symbolic types that we may have equal to it.
 | 
						|
//
 | 
						|
ostream &AssemblyWriter::printTypeAtLeastOneLevel(const Type *Ty) {
 | 
						|
  if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
 | 
						|
    printType(FTy->getReturnType()) << " (";
 | 
						|
    for (FunctionType::ParamTypes::const_iterator
 | 
						|
           I = FTy->getParamTypes().begin(),
 | 
						|
           E = FTy->getParamTypes().end(); I != E; ++I) {
 | 
						|
      if (I != FTy->getParamTypes().begin())
 | 
						|
        Out << ", ";
 | 
						|
      printType(*I);
 | 
						|
    }
 | 
						|
    if (FTy->isVarArg()) {
 | 
						|
      if (!FTy->getParamTypes().empty()) Out << ", ";
 | 
						|
      Out << "...";
 | 
						|
    }
 | 
						|
    Out << ")";
 | 
						|
  } else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
 | 
						|
    Out << "{ ";
 | 
						|
    for (StructType::ElementTypes::const_iterator
 | 
						|
           I = STy->getElementTypes().begin(),
 | 
						|
           E = STy->getElementTypes().end(); I != E; ++I) {
 | 
						|
      if (I != STy->getElementTypes().begin())
 | 
						|
        Out << ", ";
 | 
						|
      printType(*I);
 | 
						|
    }
 | 
						|
    Out << " }";
 | 
						|
  } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
 | 
						|
    printType(PTy->getElementType()) << "*";
 | 
						|
  } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
 | 
						|
    Out << "[" << ATy->getNumElements() << " x ";
 | 
						|
    printType(ATy->getElementType()) << "]";
 | 
						|
  } else if (const OpaqueType *OTy = dyn_cast<OpaqueType>(Ty)) {
 | 
						|
    Out << OTy->getDescription();
 | 
						|
  } else {
 | 
						|
    if (!Ty->isPrimitiveType())
 | 
						|
      Out << "<unknown derived type>";
 | 
						|
    printType(Ty);
 | 
						|
  }
 | 
						|
  return Out;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType, 
 | 
						|
				  bool PrintName) {
 | 
						|
  if (PrintType) { Out << " "; printType(Operand->getType()); }
 | 
						|
  WriteAsOperandInternal(Out, Operand, PrintName, TypeNames, &Table);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void AssemblyWriter::printModule(const Module *M) {
 | 
						|
  // Loop over the symbol table, emitting all named constants...
 | 
						|
  if (M->hasSymbolTable())
 | 
						|
    printSymbolTable(*M->getSymbolTable());
 | 
						|
  
 | 
						|
  for (Module::const_giterator I = M->gbegin(), E = M->gend(); I != E; ++I)
 | 
						|
    printGlobal(I);
 | 
						|
 | 
						|
  Out << "\nimplementation   ; Functions:\n";
 | 
						|
  
 | 
						|
  // Output all of the functions...
 | 
						|
  for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
 | 
						|
    printFunction(I);
 | 
						|
}
 | 
						|
 | 
						|
void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
 | 
						|
  if (GV->hasName()) Out << "%" << GV->getName() << " = ";
 | 
						|
 | 
						|
  if (GV->hasInternalLinkage()) Out << "internal ";
 | 
						|
  if (!GV->hasInitializer()) Out << "uninitialized ";
 | 
						|
 | 
						|
  Out << (GV->isConstant() ? "constant " : "global ");
 | 
						|
  printType(GV->getType()->getElementType());
 | 
						|
 | 
						|
  if (GV->hasInitializer())
 | 
						|
    writeOperand(GV->getInitializer(), false, false);
 | 
						|
 | 
						|
  printInfoComment(*GV);
 | 
						|
  Out << "\n";
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// printSymbolTable - Run through symbol table looking for named constants
 | 
						|
// if a named constant is found, emit it's declaration...
 | 
						|
//
 | 
						|
void AssemblyWriter::printSymbolTable(const SymbolTable &ST) {
 | 
						|
  for (SymbolTable::const_iterator TI = ST.begin(); TI != ST.end(); ++TI) {
 | 
						|
    SymbolTable::type_const_iterator I = ST.type_begin(TI->first);
 | 
						|
    SymbolTable::type_const_iterator End = ST.type_end(TI->first);
 | 
						|
    
 | 
						|
    for (; I != End; ++I) {
 | 
						|
      const Value *V = I->second;
 | 
						|
      if (const Constant *CPV = dyn_cast<const Constant>(V)) {
 | 
						|
	printConstant(CPV);
 | 
						|
      } else if (const Type *Ty = dyn_cast<const Type>(V)) {
 | 
						|
	Out << "\t%" << I->first << " = type ";
 | 
						|
 | 
						|
        // Make sure we print out at least one level of the type structure, so
 | 
						|
        // that we do not get %FILE = type %FILE
 | 
						|
        //
 | 
						|
        printTypeAtLeastOneLevel(Ty) << "\n";
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// printConstant - Print out a constant pool entry...
 | 
						|
//
 | 
						|
void AssemblyWriter::printConstant(const Constant *CPV) {
 | 
						|
  // Don't print out unnamed constants, they will be inlined
 | 
						|
  if (!CPV->hasName()) return;
 | 
						|
 | 
						|
  // Print out name...
 | 
						|
  Out << "\t%" << CPV->getName() << " =";
 | 
						|
 | 
						|
  // Write the value out now...
 | 
						|
  writeOperand(CPV, true, false);
 | 
						|
 | 
						|
  printInfoComment(*CPV);
 | 
						|
  Out << "\n";
 | 
						|
}
 | 
						|
 | 
						|
// printFunction - Print all aspects of a function.
 | 
						|
//
 | 
						|
void AssemblyWriter::printFunction(const Function *F) {
 | 
						|
  // Print out the return type and name...
 | 
						|
  Out << "\n" << (F->isExternal() ? "declare " : "")
 | 
						|
      << (F->hasInternalLinkage() ? "internal " : "");
 | 
						|
  printType(F->getReturnType()) << " %" << F->getName() << "(";
 | 
						|
  Table.incorporateFunction(F);
 | 
						|
 | 
						|
  // Loop over the arguments, printing them...
 | 
						|
  const FunctionType *FT = F->getFunctionType();
 | 
						|
 | 
						|
  if (!F->isExternal()) {
 | 
						|
    for(Function::const_aiterator I = F->abegin(), E = F->aend(); I != E; ++I)
 | 
						|
      printArgument(I);
 | 
						|
  } else {
 | 
						|
    // Loop over the arguments, printing them...
 | 
						|
    for (FunctionType::ParamTypes::const_iterator I = FT->getParamTypes().begin(),
 | 
						|
	   E = FT->getParamTypes().end(); I != E; ++I) {
 | 
						|
      if (I != FT->getParamTypes().begin()) Out << ", ";
 | 
						|
      printType(*I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Finish printing arguments...
 | 
						|
  if (FT->isVarArg()) {
 | 
						|
    if (FT->getParamTypes().size()) Out << ", ";
 | 
						|
    Out << "...";  // Output varargs portion of signature!
 | 
						|
  }
 | 
						|
  Out << ")";
 | 
						|
 | 
						|
  if (F->isExternal()) {
 | 
						|
    Out << "\n";
 | 
						|
  } else {
 | 
						|
    Out << " {";
 | 
						|
  
 | 
						|
    // Output all of its basic blocks... for the function
 | 
						|
    for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
 | 
						|
      printBasicBlock(I);
 | 
						|
 | 
						|
    Out << "}\n";
 | 
						|
  }
 | 
						|
 | 
						|
  Table.purgeFunction();
 | 
						|
}
 | 
						|
 | 
						|
// printArgument - This member is called for every argument that 
 | 
						|
// is passed into the function.  Simply print it out
 | 
						|
//
 | 
						|
void AssemblyWriter::printArgument(const Argument *Arg) {
 | 
						|
  // Insert commas as we go... the first arg doesn't get a comma
 | 
						|
  if (Arg != &Arg->getParent()->afront()) Out << ", ";
 | 
						|
 | 
						|
  // Output type...
 | 
						|
  printType(Arg->getType());
 | 
						|
  
 | 
						|
  // Output name, if available...
 | 
						|
  if (Arg->hasName())
 | 
						|
    Out << " %" << Arg->getName();
 | 
						|
  else if (Table.getValSlot(Arg) < 0)
 | 
						|
    Out << "<badref>";
 | 
						|
}
 | 
						|
 | 
						|
// printBasicBlock - This member is called for each basic block in a methd.
 | 
						|
//
 | 
						|
void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
 | 
						|
  if (BB->hasName()) {              // Print out the label if it exists...
 | 
						|
    Out << "\n" << BB->getName() << ":\t\t\t\t\t;[#uses="
 | 
						|
        << BB->use_size() << "]";  // Output # uses
 | 
						|
  } else if (!BB->use_empty()) {      // Don't print block # of no uses...
 | 
						|
    int Slot = Table.getValSlot(BB);
 | 
						|
    Out << "\n; <label>:";
 | 
						|
    if (Slot >= 0) 
 | 
						|
      Out << Slot;         // Extra newline seperates out label's
 | 
						|
    else 
 | 
						|
      Out << "<badref>"; 
 | 
						|
    Out << "\t\t\t\t\t;[#uses=" << BB->use_size() << "]";  // Output # uses
 | 
						|
  }
 | 
						|
  
 | 
						|
  Out << "\n";
 | 
						|
 | 
						|
  // Output all of the instructions in the basic block...
 | 
						|
  for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | 
						|
    printInstruction(*I);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// printInfoComment - Print a little comment after the instruction indicating
 | 
						|
// which slot it occupies.
 | 
						|
//
 | 
						|
void AssemblyWriter::printInfoComment(const Value &V) {
 | 
						|
  if (V.getType() != Type::VoidTy) {
 | 
						|
    Out << "\t\t; <";
 | 
						|
    printType(V.getType()) << ">";
 | 
						|
 | 
						|
    if (!V.hasName()) {
 | 
						|
      int Slot = Table.getValSlot(&V); // Print out the def slot taken...
 | 
						|
      if (Slot >= 0) Out << ":" << Slot;
 | 
						|
      else Out << ":<badref>";
 | 
						|
    }
 | 
						|
    Out << " [#uses=" << V.use_size() << "]";  // Output # uses
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// printInstruction - This member is called for each Instruction in a methd.
 | 
						|
//
 | 
						|
void AssemblyWriter::printInstruction(const Instruction &I) {
 | 
						|
  Out << "\t";
 | 
						|
 | 
						|
  // Print out name if it exists...
 | 
						|
  if (I.hasName())
 | 
						|
    Out << "%" << I.getName() << " = ";
 | 
						|
 | 
						|
  // Print out the opcode...
 | 
						|
  Out << I.getOpcodeName();
 | 
						|
 | 
						|
  // Print out the type of the operands...
 | 
						|
  const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
 | 
						|
 | 
						|
  // Special case conditional branches to swizzle the condition out to the front
 | 
						|
  if (isa<BranchInst>(I) && I.getNumOperands() > 1) {
 | 
						|
    writeOperand(I.getOperand(2), true);
 | 
						|
    Out << ",";
 | 
						|
    writeOperand(Operand, true);
 | 
						|
    Out << ",";
 | 
						|
    writeOperand(I.getOperand(1), true);
 | 
						|
 | 
						|
  } else if (isa<SwitchInst>(I)) {
 | 
						|
    // Special case switch statement to get formatting nice and correct...
 | 
						|
    writeOperand(Operand        , true); Out << ",";
 | 
						|
    writeOperand(I.getOperand(1), true); Out << " [";
 | 
						|
 | 
						|
    for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
 | 
						|
      Out << "\n\t\t";
 | 
						|
      writeOperand(I.getOperand(op  ), true); Out << ",";
 | 
						|
      writeOperand(I.getOperand(op+1), true);
 | 
						|
    }
 | 
						|
    Out << "\n\t]";
 | 
						|
  } else if (isa<PHINode>(I)) {
 | 
						|
    Out << " ";
 | 
						|
    printType(I.getType());
 | 
						|
    Out << " ";
 | 
						|
 | 
						|
    for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
 | 
						|
      if (op) Out << ", ";
 | 
						|
      Out << "[";  
 | 
						|
      writeOperand(I.getOperand(op  ), false); Out << ",";
 | 
						|
      writeOperand(I.getOperand(op+1), false); Out << " ]";
 | 
						|
    }
 | 
						|
  } else if (isa<ReturnInst>(I) && !Operand) {
 | 
						|
    Out << " void";
 | 
						|
  } else if (isa<CallInst>(I)) {
 | 
						|
    const PointerType *PTy = dyn_cast<PointerType>(Operand->getType());
 | 
						|
    const FunctionType*MTy = PTy ? dyn_cast<FunctionType>(PTy->getElementType()):0;
 | 
						|
    const Type      *RetTy = MTy ? MTy->getReturnType() : 0;
 | 
						|
 | 
						|
    // If possible, print out the short form of the call instruction, but we can
 | 
						|
    // only do this if the first argument is a pointer to a nonvararg function,
 | 
						|
    // and if the value returned is not a pointer to a function.
 | 
						|
    //
 | 
						|
    if (RetTy && MTy && !MTy->isVarArg() &&
 | 
						|
        (!isa<PointerType>(RetTy) || 
 | 
						|
         !isa<FunctionType>(cast<PointerType>(RetTy)->getElementType()))) {
 | 
						|
      Out << " "; printType(RetTy);
 | 
						|
      writeOperand(Operand, false);
 | 
						|
    } else {
 | 
						|
      writeOperand(Operand, true);
 | 
						|
    }
 | 
						|
    Out << "(";
 | 
						|
    if (I.getNumOperands() > 1) writeOperand(I.getOperand(1), true);
 | 
						|
    for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; ++op) {
 | 
						|
      Out << ",";
 | 
						|
      writeOperand(I.getOperand(op), true);
 | 
						|
    }
 | 
						|
 | 
						|
    Out << " )";
 | 
						|
  } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
 | 
						|
    // TODO: Should try to print out short form of the Invoke instruction
 | 
						|
    writeOperand(Operand, true);
 | 
						|
    Out << "(";
 | 
						|
    if (I.getNumOperands() > 3) writeOperand(I.getOperand(3), true);
 | 
						|
    for (unsigned op = 4, Eop = I.getNumOperands(); op < Eop; ++op) {
 | 
						|
      Out << ",";
 | 
						|
      writeOperand(I.getOperand(op), true);
 | 
						|
    }
 | 
						|
 | 
						|
    Out << " )\n\t\t\tto";
 | 
						|
    writeOperand(II->getNormalDest(), true);
 | 
						|
    Out << " except";
 | 
						|
    writeOperand(II->getExceptionalDest(), true);
 | 
						|
 | 
						|
  } else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
 | 
						|
    Out << " ";
 | 
						|
    printType(AI->getType()->getElementType());
 | 
						|
    if (AI->isArrayAllocation()) {
 | 
						|
      Out << ",";
 | 
						|
      writeOperand(AI->getArraySize(), true);
 | 
						|
    }
 | 
						|
  } else if (isa<CastInst>(I)) {
 | 
						|
    if (Operand) writeOperand(Operand, true);
 | 
						|
    Out << " to ";
 | 
						|
    printType(I.getType());
 | 
						|
  } else if (Operand) {   // Print the normal way...
 | 
						|
 | 
						|
    // PrintAllTypes - Instructions who have operands of all the same type 
 | 
						|
    // omit the type from all but the first operand.  If the instruction has
 | 
						|
    // different type operands (for example br), then they are all printed.
 | 
						|
    bool PrintAllTypes = false;
 | 
						|
    const Type *TheType = Operand->getType();
 | 
						|
 | 
						|
    for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
 | 
						|
      Operand = I.getOperand(i);
 | 
						|
      if (Operand->getType() != TheType) {
 | 
						|
	PrintAllTypes = true;       // We have differing types!  Print them all!
 | 
						|
	break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Shift Left & Right print both types even for Ubyte LHS
 | 
						|
    if (isa<ShiftInst>(I)) PrintAllTypes = true;
 | 
						|
 | 
						|
    if (!PrintAllTypes) {
 | 
						|
      Out << " ";
 | 
						|
      printType(I.getOperand(0)->getType());
 | 
						|
    }
 | 
						|
 | 
						|
    for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
 | 
						|
      if (i) Out << ",";
 | 
						|
      writeOperand(I.getOperand(i), PrintAllTypes);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  printInfoComment(I);
 | 
						|
  Out << "\n";
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                       External Interface declarations
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
 | 
						|
void Module::print(std::ostream &o) const {
 | 
						|
  SlotCalculator SlotTable(this, true);
 | 
						|
  AssemblyWriter W(o, SlotTable, this);
 | 
						|
  W.write(this);
 | 
						|
}
 | 
						|
 | 
						|
void GlobalVariable::print(std::ostream &o) const {
 | 
						|
  SlotCalculator SlotTable(getParent(), true);
 | 
						|
  AssemblyWriter W(o, SlotTable, getParent());
 | 
						|
  W.write(this);
 | 
						|
}
 | 
						|
 | 
						|
void Function::print(std::ostream &o) const {
 | 
						|
  SlotCalculator SlotTable(getParent(), true);
 | 
						|
  AssemblyWriter W(o, SlotTable, getParent());
 | 
						|
 | 
						|
  W.write(this);
 | 
						|
}
 | 
						|
 | 
						|
void BasicBlock::print(std::ostream &o) const {
 | 
						|
  SlotCalculator SlotTable(getParent(), true);
 | 
						|
  AssemblyWriter W(o, SlotTable, 
 | 
						|
                   getParent() ? getParent()->getParent() : 0);
 | 
						|
  W.write(this);
 | 
						|
}
 | 
						|
 | 
						|
void Instruction::print(std::ostream &o) const {
 | 
						|
  const Function *F = getParent() ? getParent()->getParent() : 0;
 | 
						|
  SlotCalculator SlotTable(F, true);
 | 
						|
  AssemblyWriter W(o, SlotTable, F ? F->getParent() : 0);
 | 
						|
 | 
						|
  W.write(this);
 | 
						|
}
 | 
						|
 | 
						|
void Constant::print(std::ostream &o) const {
 | 
						|
  if (this == 0) { o << "<null> constant value\n"; return; }
 | 
						|
 | 
						|
  // Handle CPR's special, because they have context information...
 | 
						|
  if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(this)) {
 | 
						|
    CPR->getValue()->print(o);  // Print as a global value, with context info.
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  o << " " << getType()->getDescription() << " ";
 | 
						|
 | 
						|
  map<const Type *, string> TypeTable;
 | 
						|
  WriteConstantInt(o, this, false, TypeTable, 0);
 | 
						|
}
 | 
						|
 | 
						|
void Type::print(std::ostream &o) const { 
 | 
						|
  if (this == 0)
 | 
						|
    o << "<null Type>";
 | 
						|
  else
 | 
						|
    o << getDescription();
 | 
						|
}
 | 
						|
 | 
						|
void Argument::print(std::ostream &o) const {
 | 
						|
  o << getType() << " " << getName();
 | 
						|
}
 | 
						|
 | 
						|
void Value::dump() const { print(std::cerr); }
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//  CachedWriter Class Implementation
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
void CachedWriter::setModule(const Module *M) {
 | 
						|
  delete SC; delete AW;
 | 
						|
  if (M) {
 | 
						|
    SC = new SlotCalculator(M, true);
 | 
						|
    AW = new AssemblyWriter(Out, *SC, M);
 | 
						|
  } else {
 | 
						|
    SC = 0; AW = 0;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
CachedWriter::~CachedWriter() {
 | 
						|
  delete AW;
 | 
						|
  delete SC;
 | 
						|
}
 | 
						|
 | 
						|
CachedWriter &CachedWriter::operator<<(const Value *V) {
 | 
						|
  assert(AW && SC && "CachedWriter does not have a current module!");
 | 
						|
  switch (V->getValueType()) {
 | 
						|
  case Value::ConstantVal:
 | 
						|
  case Value::ArgumentVal:       AW->writeOperand(V, true, true); break;
 | 
						|
  case Value::TypeVal:           AW->write(cast<const Type>(V)); break;
 | 
						|
  case Value::InstructionVal:    AW->write(cast<Instruction>(V)); break;
 | 
						|
  case Value::BasicBlockVal:     AW->write(cast<BasicBlock>(V)); break;
 | 
						|
  case Value::FunctionVal:       AW->write(cast<Function>(V)); break;
 | 
						|
  case Value::GlobalVariableVal: AW->write(cast<GlobalVariable>(V)); break;
 | 
						|
  default: Out << "<unknown value type: " << V->getValueType() << ">"; break;
 | 
						|
  }
 | 
						|
  return *this;
 | 
						|
}
 |