mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152000 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			765 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			765 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- llvm/ADT/Hashing.h - Utilities for hashing --------------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the newly proposed standard C++ interfaces for hashing
 | |
| // arbitrary data and building hash functions for user-defined types. This
 | |
| // interface was originally proposed in N3333[1] and is currently under review
 | |
| // for inclusion in a future TR and/or standard.
 | |
| //
 | |
| // The primary interfaces provide are comprised of one type and three functions:
 | |
| //
 | |
| //  -- 'hash_code' class is an opaque type representing the hash code for some
 | |
| //     data. It is the intended product of hashing, and can be used to implement
 | |
| //     hash tables, checksumming, and other common uses of hashes. It is not an
 | |
| //     integer type (although it can be converted to one) because it is risky
 | |
| //     to assume much about the internals of a hash_code. In particular, each
 | |
| //     execution of the program has a high probability of producing a different
 | |
| //     hash_code for a given input. Thus their values are not stable to save or
 | |
| //     persist, and should only be used during the execution for the
 | |
| //     construction of hashing datastructures.
 | |
| //
 | |
| //  -- 'hash_value' is a function designed to be overloaded for each
 | |
| //     user-defined type which wishes to be used within a hashing context. It
 | |
| //     should be overloaded within the user-defined type's namespace and found
 | |
| //     via ADL. Overloads for primitive types are provided by this library.
 | |
| //
 | |
| //  -- 'hash_combine' and 'hash_combine_range' are functions designed to aid
 | |
| //      programmers in easily and intuitively combining a set of data into
 | |
| //      a single hash_code for their object. They should only logically be used
 | |
| //      within the implementation of a 'hash_value' routine or similar context.
 | |
| //
 | |
| // Note that 'hash_combine_range' contains very special logic for hashing
 | |
| // a contiguous array of integers or pointers. This logic is *extremely* fast,
 | |
| // on a modern Intel "Gainestown" Xeon (Nehalem uarch) @2.2 GHz, these were
 | |
| // benchmarked at over 6.5 GiB/s for large keys, and <20 cycles/hash for keys
 | |
| // under 32-bytes.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #ifndef LLVM_ADT_HASHING_H
 | |
| #define LLVM_ADT_HASHING_H
 | |
| 
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include "llvm/Support/DataTypes.h"
 | |
| #include "llvm/Support/Host.h"
 | |
| #include "llvm/Support/SwapByteOrder.h"
 | |
| #include "llvm/Support/type_traits.h"
 | |
| #include <algorithm>
 | |
| #include <cassert>
 | |
| #include <cstring>
 | |
| #include <iterator>
 | |
| #include <utility>
 | |
| 
 | |
| // Allow detecting C++11 feature availability when building with Clang without
 | |
| // breaking other compilers.
 | |
| #ifndef __has_feature
 | |
| # define __has_feature(x) 0
 | |
| #endif
 | |
| 
 | |
| namespace llvm {
 | |
| 
 | |
| /// \brief An opaque object representing a hash code.
 | |
| ///
 | |
| /// This object represents the result of hashing some entity. It is intended to
 | |
| /// be used to implement hashtables or other hashing-based data structures.
 | |
| /// While it wraps and exposes a numeric value, this value should not be
 | |
| /// trusted to be stable or predictable across processes or executions.
 | |
| ///
 | |
| /// In order to obtain the hash_code for an object 'x':
 | |
| /// \code
 | |
| ///   using llvm::hash_value;
 | |
| ///   llvm::hash_code code = hash_value(x);
 | |
| /// \endcode
 | |
| ///
 | |
| /// Also note that there are two numerical values which are reserved, and the
 | |
| /// implementation ensures will never be produced for real hash_codes. These
 | |
| /// can be used as sentinels within hashing data structures.
 | |
| class hash_code {
 | |
|   size_t value;
 | |
| 
 | |
| public:
 | |
|   /// \brief Default construct a hash_code.
 | |
|   /// Note that this leaves the value uninitialized.
 | |
|   hash_code() {}
 | |
| 
 | |
|   /// \brief Form a hash code directly from a numerical value.
 | |
|   hash_code(size_t value) : value(value) {}
 | |
| 
 | |
|   /// \brief Convert the hash code to its numerical value for use.
 | |
|   /*explicit*/ operator size_t() const { return value; }
 | |
| 
 | |
|   friend bool operator==(const hash_code &lhs, const hash_code &rhs) {
 | |
|     return lhs.value == rhs.value;
 | |
|   }
 | |
|   friend bool operator!=(const hash_code &lhs, const hash_code &rhs) {
 | |
|     return lhs.value != rhs.value;
 | |
|   }
 | |
| 
 | |
|   /// \brief Allow a hash_code to be directly run through hash_value.
 | |
|   friend size_t hash_value(const hash_code &code) { return code.value; }
 | |
| };
 | |
| 
 | |
| /// \brief Compute a hash_code for any integer value.
 | |
| ///
 | |
| /// Note that this function is intended to compute the same hash_code for
 | |
| /// a particular value without regard to the pre-promotion type. This is in
 | |
| /// contrast to hash_combine which may produce different hash_codes for
 | |
| /// differing argument types even if they would implicit promote to a common
 | |
| /// type without changing the value.
 | |
| template <typename T>
 | |
| typename enable_if<is_integral<T>, hash_code>::type hash_value(T value);
 | |
| 
 | |
| /// \brief Compute a hash_code for a pointer's address.
 | |
| ///
 | |
| /// N.B.: This hashes the *address*. Not the value and not the type.
 | |
| template <typename T> hash_code hash_value(const T *ptr);
 | |
| 
 | |
| /// \brief Compute a hash_code for a pair of objects.
 | |
| template <typename T, typename U>
 | |
| hash_code hash_value(const std::pair<T, U> &arg);
 | |
| 
 | |
| /// \brief Compute a hash_code for a standard string.
 | |
| template <typename T>
 | |
| hash_code hash_value(const std::basic_string<T> &arg);
 | |
| 
 | |
| 
 | |
| /// \brief Override the execution seed with a fixed value.
 | |
| ///
 | |
| /// This hashing library uses a per-execution seed designed to change on each
 | |
| /// run with high probability in order to ensure that the hash codes are not
 | |
| /// attackable and to ensure that output which is intended to be stable does
 | |
| /// not rely on the particulars of the hash codes produced.
 | |
| ///
 | |
| /// That said, there are use cases where it is important to be able to
 | |
| /// reproduce *exactly* a specific behavior. To that end, we provide a function
 | |
| /// which will forcibly set the seed to a fixed value. This must be done at the
 | |
| /// start of the program, before any hashes are computed. Also, it cannot be
 | |
| /// undone. This makes it thread-hostile and very hard to use outside of
 | |
| /// immediately on start of a simple program designed for reproducible
 | |
| /// behavior.
 | |
| void set_fixed_execution_hash_seed(size_t fixed_value);
 | |
| 
 | |
| 
 | |
| // All of the implementation details of actually computing the various hash
 | |
| // code values are held within this namespace. These routines are included in
 | |
| // the header file mainly to allow inlining and constant propagation.
 | |
| namespace hashing {
 | |
| namespace detail {
 | |
| 
 | |
| inline uint64_t fetch64(const char *p) {
 | |
|   uint64_t result;
 | |
|   memcpy(&result, p, sizeof(result));
 | |
|   if (sys::isBigEndianHost())
 | |
|     return sys::SwapByteOrder(result);
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| inline uint32_t fetch32(const char *p) {
 | |
|   uint32_t result;
 | |
|   memcpy(&result, p, sizeof(result));
 | |
|   if (sys::isBigEndianHost())
 | |
|     return sys::SwapByteOrder(result);
 | |
|   return result;
 | |
| }
 | |
| 
 | |
| /// Some primes between 2^63 and 2^64 for various uses.
 | |
| static const uint64_t k0 = 0xc3a5c85c97cb3127ULL;
 | |
| static const uint64_t k1 = 0xb492b66fbe98f273ULL;
 | |
| static const uint64_t k2 = 0x9ae16a3b2f90404fULL;
 | |
| static const uint64_t k3 = 0xc949d7c7509e6557ULL;
 | |
| 
 | |
| /// \brief Bitwise right rotate.
 | |
| /// Normally this will compile to a single instruction, especially if the
 | |
| /// shift is a manifest constant.
 | |
| inline uint64_t rotate(uint64_t val, size_t shift) {
 | |
|   // Avoid shifting by 64: doing so yields an undefined result.
 | |
|   return shift == 0 ? val : ((val >> shift) | (val << (64 - shift)));
 | |
| }
 | |
| 
 | |
| inline uint64_t shift_mix(uint64_t val) {
 | |
|   return val ^ (val >> 47);
 | |
| }
 | |
| 
 | |
| inline uint64_t hash_16_bytes(uint64_t low, uint64_t high) {
 | |
|   // Murmur-inspired hashing.
 | |
|   const uint64_t kMul = 0x9ddfea08eb382d69ULL;
 | |
|   uint64_t a = (low ^ high) * kMul;
 | |
|   a ^= (a >> 47);
 | |
|   uint64_t b = (high ^ a) * kMul;
 | |
|   b ^= (b >> 47);
 | |
|   b *= kMul;
 | |
|   return b;
 | |
| }
 | |
| 
 | |
| inline uint64_t hash_1to3_bytes(const char *s, size_t len, uint64_t seed) {
 | |
|   uint8_t a = s[0];
 | |
|   uint8_t b = s[len >> 1];
 | |
|   uint8_t c = s[len - 1];
 | |
|   uint32_t y = static_cast<uint32_t>(a) + (static_cast<uint32_t>(b) << 8);
 | |
|   uint32_t z = len + (static_cast<uint32_t>(c) << 2);
 | |
|   return shift_mix(y * k2 ^ z * k3 ^ seed) * k2;
 | |
| }
 | |
| 
 | |
| inline uint64_t hash_4to8_bytes(const char *s, size_t len, uint64_t seed) {
 | |
|   uint64_t a = fetch32(s);
 | |
|   return hash_16_bytes(len + (a << 3), seed ^ fetch32(s + len - 4));
 | |
| }
 | |
| 
 | |
| inline uint64_t hash_9to16_bytes(const char *s, size_t len, uint64_t seed) {
 | |
|   uint64_t a = fetch64(s);
 | |
|   uint64_t b = fetch64(s + len - 8);
 | |
|   return hash_16_bytes(seed ^ a, rotate(b + len, len)) ^ b;
 | |
| }
 | |
| 
 | |
| inline uint64_t hash_17to32_bytes(const char *s, size_t len, uint64_t seed) {
 | |
|   uint64_t a = fetch64(s) * k1;
 | |
|   uint64_t b = fetch64(s + 8);
 | |
|   uint64_t c = fetch64(s + len - 8) * k2;
 | |
|   uint64_t d = fetch64(s + len - 16) * k0;
 | |
|   return hash_16_bytes(rotate(a - b, 43) + rotate(c ^ seed, 30) + d,
 | |
|                        a + rotate(b ^ k3, 20) - c + len + seed);
 | |
| }
 | |
| 
 | |
| inline uint64_t hash_33to64_bytes(const char *s, size_t len, uint64_t seed) {
 | |
|   uint64_t z = fetch64(s + 24);
 | |
|   uint64_t a = fetch64(s) + (len + fetch64(s + len - 16)) * k0;
 | |
|   uint64_t b = rotate(a + z, 52);
 | |
|   uint64_t c = rotate(a, 37);
 | |
|   a += fetch64(s + 8);
 | |
|   c += rotate(a, 7);
 | |
|   a += fetch64(s + 16);
 | |
|   uint64_t vf = a + z;
 | |
|   uint64_t vs = b + rotate(a, 31) + c;
 | |
|   a = fetch64(s + 16) + fetch64(s + len - 32);
 | |
|   z = fetch64(s + len - 8);
 | |
|   b = rotate(a + z, 52);
 | |
|   c = rotate(a, 37);
 | |
|   a += fetch64(s + len - 24);
 | |
|   c += rotate(a, 7);
 | |
|   a += fetch64(s + len - 16);
 | |
|   uint64_t wf = a + z;
 | |
|   uint64_t ws = b + rotate(a, 31) + c;
 | |
|   uint64_t r = shift_mix((vf + ws) * k2 + (wf + vs) * k0);
 | |
|   return shift_mix((seed ^ (r * k0)) + vs) * k2;
 | |
| }
 | |
| 
 | |
| inline uint64_t hash_short(const char *s, size_t length, uint64_t seed) {
 | |
|   if (length >= 4 && length <= 8)
 | |
|     return hash_4to8_bytes(s, length, seed);
 | |
|   if (length > 8 && length <= 16)
 | |
|     return hash_9to16_bytes(s, length, seed);
 | |
|   if (length > 16 && length <= 32)
 | |
|     return hash_17to32_bytes(s, length, seed);
 | |
|   if (length > 32)
 | |
|     return hash_33to64_bytes(s, length, seed);
 | |
|   if (length != 0)
 | |
|     return hash_1to3_bytes(s, length, seed);
 | |
| 
 | |
|   return k2 ^ seed;
 | |
| }
 | |
| 
 | |
| /// \brief The intermediate state used during hashing.
 | |
| /// Currently, the algorithm for computing hash codes is based on CityHash and
 | |
| /// keeps 56 bytes of arbitrary state.
 | |
| struct hash_state {
 | |
|   uint64_t h0, h1, h2, h3, h4, h5, h6;
 | |
|   uint64_t seed;
 | |
| 
 | |
|   /// \brief Create a new hash_state structure and initialize it based on the
 | |
|   /// seed and the first 64-byte chunk.
 | |
|   /// This effectively performs the initial mix.
 | |
|   static hash_state create(const char *s, uint64_t seed) {
 | |
|     hash_state state = {
 | |
|       0, seed, hash_16_bytes(seed, k1), rotate(seed ^ k1, 49),
 | |
|       seed * k1, shift_mix(seed), 0, seed };
 | |
|     state.h6 = hash_16_bytes(state.h4, state.h5);
 | |
|     state.mix(s);
 | |
|     return state;
 | |
|   }
 | |
| 
 | |
|   /// \brief Mix 32-bytes from the input sequence into the 16-bytes of 'a'
 | |
|   /// and 'b', including whatever is already in 'a' and 'b'.
 | |
|   static void mix_32_bytes(const char *s, uint64_t &a, uint64_t &b) {
 | |
|     a += fetch64(s);
 | |
|     uint64_t c = fetch64(s + 24);
 | |
|     b = rotate(b + a + c, 21);
 | |
|     uint64_t d = a;
 | |
|     a += fetch64(s + 8) + fetch64(s + 16);
 | |
|     b += rotate(a, 44) + d;
 | |
|     a += c;
 | |
|   }
 | |
| 
 | |
|   /// \brief Mix in a 64-byte buffer of data.
 | |
|   /// We mix all 64 bytes even when the chunk length is smaller, but we
 | |
|   /// record the actual length.
 | |
|   void mix(const char *s) {
 | |
|     h0 = rotate(h0 + h1 + h3 + fetch64(s + 8), 37) * k1;
 | |
|     h1 = rotate(h1 + h4 + fetch64(s + 48), 42) * k1;
 | |
|     h0 ^= h6;
 | |
|     h1 += h3 + fetch64(s + 40);
 | |
|     h2 = rotate(h2 + h5, 33) * k1;
 | |
|     h3 = h4 * k1;
 | |
|     h4 = h0 + h5;
 | |
|     mix_32_bytes(s, h3, h4);
 | |
|     h5 = h2 + h6;
 | |
|     h6 = h1 + fetch64(s + 16);
 | |
|     mix_32_bytes(s + 32, h5, h6);
 | |
|     std::swap(h2, h0);
 | |
|   }
 | |
| 
 | |
|   /// \brief Compute the final 64-bit hash code value based on the current
 | |
|   /// state and the length of bytes hashed.
 | |
|   uint64_t finalize(size_t length) {
 | |
|     return hash_16_bytes(hash_16_bytes(h3, h5) + shift_mix(h1) * k1 + h2,
 | |
|                          hash_16_bytes(h4, h6) + shift_mix(length) * k1 + h0);
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| /// \brief A global, fixed seed-override variable.
 | |
| ///
 | |
| /// This variable can be set using the \see llvm::set_fixed_execution_seed
 | |
| /// function. See that function for details. Do not, under any circumstances,
 | |
| /// set or read this variable.
 | |
| extern size_t fixed_seed_override;
 | |
| 
 | |
| inline size_t get_execution_seed() {
 | |
|   // FIXME: This needs to be a per-execution seed. This is just a placeholder
 | |
|   // implementation. Switching to a per-execution seed is likely to flush out
 | |
|   // instability bugs and so will happen as its own commit.
 | |
|   //
 | |
|   // However, if there is a fixed seed override set the first time this is
 | |
|   // called, return that instead of the per-execution seed.
 | |
|   const uint64_t seed_prime = 0xff51afd7ed558ccdULL;
 | |
|   static size_t seed = fixed_seed_override ? fixed_seed_override
 | |
|                                            : static_cast<size_t>(seed_prime);
 | |
|   return seed;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// \brief Trait to indicate whether a type's bits can be hashed directly.
 | |
| ///
 | |
| /// A type trait which is true if we want to combine values for hashing by
 | |
| /// reading the underlying data. It is false if values of this type must
 | |
| /// first be passed to hash_value, and the resulting hash_codes combined.
 | |
| //
 | |
| // FIXME: We want to replace is_integral and is_pointer here with a predicate
 | |
| // which asserts that comparing the underlying storage of two values of the
 | |
| // type for equality is equivalent to comparing the two values for equality.
 | |
| // For all the platforms we care about, this holds for integers and pointers,
 | |
| // but there are platforms where it doesn't and we would like to support
 | |
| // user-defined types which happen to satisfy this property.
 | |
| template <typename T> struct is_hashable_data
 | |
|   : integral_constant<bool, ((is_integral<T>::value || is_pointer<T>::value) &&
 | |
|                              64 % sizeof(T) == 0)> {};
 | |
| 
 | |
| // Special case std::pair to detect when both types are viable and when there
 | |
| // is no alignment-derived padding in the pair. This is a bit of a lie because
 | |
| // std::pair isn't truly POD, but it's close enough in all reasonable
 | |
| // implementations for our use case of hashing the underlying data.
 | |
| template <typename T, typename U> struct is_hashable_data<std::pair<T, U> >
 | |
|   : integral_constant<bool, (is_hashable_data<T>::value &&
 | |
|                              is_hashable_data<U>::value &&
 | |
|                              (sizeof(T) + sizeof(U)) ==
 | |
|                               sizeof(std::pair<T, U>))> {};
 | |
| 
 | |
| /// \brief Helper to get the hashable data representation for a type.
 | |
| /// This variant is enabled when the type itself can be used.
 | |
| template <typename T>
 | |
| typename enable_if<is_hashable_data<T>, T>::type
 | |
| get_hashable_data(const T &value) {
 | |
|   return value;
 | |
| }
 | |
| /// \brief Helper to get the hashable data representation for a type.
 | |
| /// This variant is enabled when we must first call hash_value and use the
 | |
| /// result as our data.
 | |
| template <typename T>
 | |
| typename enable_if_c<!is_hashable_data<T>::value, size_t>::type
 | |
| get_hashable_data(const T &value) {
 | |
|   using ::llvm::hash_value;
 | |
|   return hash_value(value);
 | |
| }
 | |
| 
 | |
| /// \brief Helper to store data from a value into a buffer and advance the
 | |
| /// pointer into that buffer.
 | |
| ///
 | |
| /// This routine first checks whether there is enough space in the provided
 | |
| /// buffer, and if not immediately returns false. If there is space, it
 | |
| /// copies the underlying bytes of value into the buffer, advances the
 | |
| /// buffer_ptr past the copied bytes, and returns true.
 | |
| template <typename T>
 | |
| bool store_and_advance(char *&buffer_ptr, char *buffer_end, const T& value,
 | |
|                        size_t offset = 0) {
 | |
|   size_t store_size = sizeof(value) - offset;
 | |
|   if (buffer_ptr + store_size > buffer_end)
 | |
|     return false;
 | |
|   const char *value_data = reinterpret_cast<const char *>(&value);
 | |
|   memcpy(buffer_ptr, value_data + offset, store_size);
 | |
|   buffer_ptr += store_size;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| /// \brief Implement the combining of integral values into a hash_code.
 | |
| ///
 | |
| /// This overload is selected when the value type of the iterator is
 | |
| /// integral. Rather than computing a hash_code for each object and then
 | |
| /// combining them, this (as an optimization) directly combines the integers.
 | |
| template <typename InputIteratorT>
 | |
| hash_code hash_combine_range_impl(InputIteratorT first, InputIteratorT last) {
 | |
|   typedef typename std::iterator_traits<InputIteratorT>::value_type ValueT;
 | |
|   const size_t seed = get_execution_seed();
 | |
|   char buffer[64], *buffer_ptr = buffer;
 | |
|   char *const buffer_end = buffer_ptr + array_lengthof(buffer);
 | |
|   while (first != last && store_and_advance(buffer_ptr, buffer_end,
 | |
|                                             get_hashable_data(*first)))
 | |
|     ++first;
 | |
| /// \brief Metafunction that determines whether the given type is an integral
 | |
| /// type.
 | |
|   if (first == last)
 | |
|     return hash_short(buffer, buffer_ptr - buffer, seed);
 | |
|   assert(buffer_ptr == buffer_end);
 | |
| 
 | |
|   hash_state state = state.create(buffer, seed);
 | |
|   size_t length = 64;
 | |
|   while (first != last) {
 | |
|     // Fill up the buffer. We don't clear it, which re-mixes the last round
 | |
|     // when only a partial 64-byte chunk is left.
 | |
|     buffer_ptr = buffer;
 | |
|     while (first != last && store_and_advance(buffer_ptr, buffer_end,
 | |
|                                               get_hashable_data(*first)))
 | |
|       ++first;
 | |
| 
 | |
|     // Rotate the buffer if we did a partial fill in order to simulate doing
 | |
|     // a mix of the last 64-bytes. That is how the algorithm works when we
 | |
|     // have a contiguous byte sequence, and we want to emulate that here.
 | |
|     std::rotate(buffer, buffer_ptr, buffer_end);
 | |
| 
 | |
|     // Mix this chunk into the current state.
 | |
|     state.mix(buffer);
 | |
|     length += buffer_ptr - buffer;
 | |
|   };
 | |
| 
 | |
|   return state.finalize(length);
 | |
| }
 | |
| 
 | |
| /// \brief Implement the combining of integral values into a hash_code.
 | |
| ///
 | |
| /// This overload is selected when the value type of the iterator is integral
 | |
| /// and when the input iterator is actually a pointer. Rather than computing
 | |
| /// a hash_code for each object and then combining them, this (as an
 | |
| /// optimization) directly combines the integers. Also, because the integers
 | |
| /// are stored in contiguous memory, this routine avoids copying each value
 | |
| /// and directly reads from the underlying memory.
 | |
| template <typename ValueT>
 | |
| typename enable_if<is_hashable_data<ValueT>, hash_code>::type
 | |
| hash_combine_range_impl(const ValueT *first, const ValueT *last) {
 | |
|   const size_t seed = get_execution_seed();
 | |
|   const char *s_begin = reinterpret_cast<const char *>(first);
 | |
|   const char *s_end = reinterpret_cast<const char *>(last);
 | |
|   const size_t length = std::distance(s_begin, s_end);
 | |
|   if (length <= 64)
 | |
|     return hash_short(s_begin, length, seed);
 | |
| 
 | |
|   const char *s_aligned_end = s_begin + (length & ~63);
 | |
|   hash_state state = state.create(s_begin, seed);
 | |
|   s_begin += 64;
 | |
|   while (s_begin != s_aligned_end) {
 | |
|     state.mix(s_begin);
 | |
|     s_begin += 64;
 | |
|   }
 | |
|   if (length & 63)
 | |
|     state.mix(s_end - 64);
 | |
| 
 | |
|   return state.finalize(length);
 | |
| }
 | |
| 
 | |
| } // namespace detail
 | |
| } // namespace hashing
 | |
| 
 | |
| 
 | |
| /// \brief Compute a hash_code for a sequence of values.
 | |
| ///
 | |
| /// This hashes a sequence of values. It produces the same hash_code as
 | |
| /// 'hash_combine(a, b, c, ...)', but can run over arbitrary sized sequences
 | |
| /// and is significantly faster given pointers and types which can be hashed as
 | |
| /// a sequence of bytes.
 | |
| template <typename InputIteratorT>
 | |
| hash_code hash_combine_range(InputIteratorT first, InputIteratorT last) {
 | |
|   return ::llvm::hashing::detail::hash_combine_range_impl(first, last);
 | |
| }
 | |
| 
 | |
| 
 | |
| // Implementation details for hash_combine.
 | |
| namespace hashing {
 | |
| namespace detail {
 | |
| 
 | |
| /// \brief Helper class to manage the recursive combining of hash_combine
 | |
| /// arguments.
 | |
| ///
 | |
| /// This class exists to manage the state and various calls involved in the
 | |
| /// recursive combining of arguments used in hash_combine. It is particularly
 | |
| /// useful at minimizing the code in the recursive calls to ease the pain
 | |
| /// caused by a lack of variadic functions.
 | |
| class hash_combine_recursive_helper {
 | |
|   const size_t seed;
 | |
|   char buffer[64];
 | |
|   char *const buffer_end;
 | |
|   char *buffer_ptr;
 | |
|   size_t length;
 | |
|   hash_state state;
 | |
| 
 | |
| public:
 | |
|   /// \brief Construct a recursive hash combining helper.
 | |
|   ///
 | |
|   /// This sets up the state for a recursive hash combine, including getting
 | |
|   /// the seed and buffer setup.
 | |
|   hash_combine_recursive_helper()
 | |
|     : seed(get_execution_seed()),
 | |
|       buffer_end(buffer + array_lengthof(buffer)),
 | |
|       buffer_ptr(buffer),
 | |
|       length(0) {}
 | |
| 
 | |
|   /// \brief Combine one chunk of data into the current in-flight hash.
 | |
|   ///
 | |
|   /// This merges one chunk of data into the hash. First it tries to buffer
 | |
|   /// the data. If the buffer is full, it hashes the buffer into its
 | |
|   /// hash_state, empties it, and then merges the new chunk in. This also
 | |
|   /// handles cases where the data straddles the end of the buffer.
 | |
|   template <typename T> void combine_data(T data) {
 | |
|     if (!store_and_advance(buffer_ptr, buffer_end, data)) {
 | |
|       // Check for skew which prevents the buffer from being packed, and do
 | |
|       // a partial store into the buffer to fill it. This is only a concern
 | |
|       // with the variadic combine because that formation can have varying
 | |
|       // argument types.
 | |
|       size_t partial_store_size = buffer_end - buffer_ptr;
 | |
|       memcpy(buffer_ptr, &data, partial_store_size);
 | |
| 
 | |
|       // If the store fails, our buffer is full and ready to hash. We have to
 | |
|       // either initialize the hash state (on the first full buffer) or mix
 | |
|       // this buffer into the existing hash state. Length tracks the *hashed*
 | |
|       // length, not the buffered length.
 | |
|       if (length == 0) {
 | |
|         state = state.create(buffer, seed);
 | |
|         length = 64;
 | |
|       } else {
 | |
|         // Mix this chunk into the current state and bump length up by 64.
 | |
|         state.mix(buffer);
 | |
|         length += 64;
 | |
|       }
 | |
|       // Reset the buffer_ptr to the head of the buffer for the next chunk of
 | |
|       // data.
 | |
|       buffer_ptr = buffer;
 | |
| 
 | |
|       // Try again to store into the buffer -- this cannot fail as we only
 | |
|       // store types smaller than the buffer.
 | |
|       if (!store_and_advance(buffer_ptr, buffer_end, data,
 | |
|                              partial_store_size))
 | |
|         abort();
 | |
|     }
 | |
|   }
 | |
| 
 | |
| #if defined(__has_feature) && __has_feature(__cxx_variadic_templates__)
 | |
| 
 | |
|   /// \brief Recursive, variadic combining method.
 | |
|   ///
 | |
|   /// This function recurses through each argument, combining that argument
 | |
|   /// into a single hash.
 | |
|   template <typename T, typename ...Ts>
 | |
|   hash_code combine(const T &arg, const Ts &...args) {
 | |
|     combine_data( get_hashable_data(arg));
 | |
| 
 | |
|     // Recurse to the next argument.
 | |
|     return combine(args...);
 | |
|   }
 | |
| 
 | |
| #else
 | |
|   // Manually expanded recursive combining methods. See variadic above for
 | |
|   // documentation.
 | |
| 
 | |
|   template <typename T1, typename T2, typename T3, typename T4, typename T5,
 | |
|             typename T6>
 | |
|   hash_code combine(const T1 &arg1, const T2 &arg2, const T3 &arg3,
 | |
|                     const T4 &arg4, const T5 &arg5, const T6 &arg6) {
 | |
|     combine_data(get_hashable_data(arg1));
 | |
|     return combine(arg2, arg3, arg4, arg5, arg6);
 | |
|   }
 | |
|   template <typename T1, typename T2, typename T3, typename T4, typename T5>
 | |
|   hash_code combine(const T1 &arg1, const T2 &arg2, const T3 &arg3,
 | |
|                     const T4 &arg4, const T5 &arg5) {
 | |
|     combine_data(get_hashable_data(arg1));
 | |
|     return combine(arg2, arg3, arg4, arg5);
 | |
|   }
 | |
|   template <typename T1, typename T2, typename T3, typename T4>
 | |
|   hash_code combine(const T1 &arg1, const T2 &arg2, const T3 &arg3,
 | |
|                     const T4 &arg4) {
 | |
|     combine_data(get_hashable_data(arg1));
 | |
|     return combine(arg2, arg3, arg4);
 | |
|   }
 | |
|   template <typename T1, typename T2, typename T3>
 | |
|   hash_code combine(const T1 &arg1, const T2 &arg2, const T3 &arg3) {
 | |
|     combine_data(get_hashable_data(arg1));
 | |
|     return combine(arg2, arg3);
 | |
|   }
 | |
|   template <typename T1, typename T2>
 | |
|   hash_code combine(const T1 &arg1, const T2 &arg2) {
 | |
|     combine_data(get_hashable_data(arg1));
 | |
|     return combine(arg2);
 | |
|   }
 | |
|   template <typename T1>
 | |
|   hash_code combine(const T1 &arg1) {
 | |
|     combine_data(get_hashable_data(arg1));
 | |
|     return combine();
 | |
|   }
 | |
| 
 | |
| #endif
 | |
| 
 | |
|   /// \brief Base case for recursive, variadic combining.
 | |
|   ///
 | |
|   /// The base case when combining arguments recursively is reached when all
 | |
|   /// arguments have been handled. It flushes the remaining buffer and
 | |
|   /// constructs a hash_code.
 | |
|   hash_code combine() {
 | |
|     // Check whether the entire set of values fit in the buffer. If so, we'll
 | |
|     // use the optimized short hashing routine and skip state entirely.
 | |
|     if (length == 0)
 | |
|       return hash_short(buffer, buffer_ptr - buffer, seed);
 | |
| 
 | |
|     // Mix the final buffer, rotating it if we did a partial fill in order to
 | |
|     // simulate doing a mix of the last 64-bytes. That is how the algorithm
 | |
|     // works when we have a contiguous byte sequence, and we want to emulate
 | |
|     // that here.
 | |
|     std::rotate(buffer, buffer_ptr, buffer_end);
 | |
| 
 | |
|     // Mix this chunk into the current state.
 | |
|     state.mix(buffer);
 | |
|     length += buffer_ptr - buffer;
 | |
| 
 | |
|     return state.finalize(length);
 | |
|   }
 | |
| };
 | |
| 
 | |
| } // namespace detail
 | |
| } // namespace hashing
 | |
| 
 | |
| 
 | |
| #if __has_feature(__cxx_variadic_templates__)
 | |
| 
 | |
| /// \brief Combine values into a single hash_code.
 | |
| ///
 | |
| /// This routine accepts a varying number of arguments of any type. It will
 | |
| /// attempt to combine them into a single hash_code. For user-defined types it
 | |
| /// attempts to call a \see hash_value overload (via ADL) for the type. For
 | |
| /// integer and pointer types it directly combines their data into the
 | |
| /// resulting hash_code.
 | |
| ///
 | |
| /// The result is suitable for returning from a user's hash_value
 | |
| /// *implementation* for their user-defined type. Consumers of a type should
 | |
| /// *not* call this routine, they should instead call 'hash_value'.
 | |
| template <typename ...Ts> hash_code hash_combine(const Ts &...args) {
 | |
|   // Recursively hash each argument using a helper class.
 | |
|   ::llvm::hashing::detail::hash_combine_recursive_helper helper;
 | |
|   return helper.combine(args...);
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| // What follows are manually exploded overloads for each argument width. See
 | |
| // the above variadic definition for documentation and specification.
 | |
| 
 | |
| template <typename T1, typename T2, typename T3, typename T4, typename T5,
 | |
|           typename T6>
 | |
| hash_code hash_combine(const T1 &arg1, const T2 &arg2, const T3 &arg3,
 | |
|                   const T4 &arg4, const T5 &arg5, const T6 &arg6) {
 | |
|   ::llvm::hashing::detail::hash_combine_recursive_helper helper;
 | |
|   return helper.combine(arg1, arg2, arg3, arg4, arg5, arg6);
 | |
| }
 | |
| template <typename T1, typename T2, typename T3, typename T4, typename T5>
 | |
| hash_code hash_combine(const T1 &arg1, const T2 &arg2, const T3 &arg3,
 | |
|                   const T4 &arg4, const T5 &arg5) {
 | |
|   ::llvm::hashing::detail::hash_combine_recursive_helper helper;
 | |
|   return helper.combine(arg1, arg2, arg3, arg4, arg5);
 | |
| }
 | |
| template <typename T1, typename T2, typename T3, typename T4>
 | |
| hash_code hash_combine(const T1 &arg1, const T2 &arg2, const T3 &arg3,
 | |
|                   const T4 &arg4) {
 | |
|   ::llvm::hashing::detail::hash_combine_recursive_helper helper;
 | |
|   return helper.combine(arg1, arg2, arg3, arg4);
 | |
| }
 | |
| template <typename T1, typename T2, typename T3>
 | |
| hash_code hash_combine(const T1 &arg1, const T2 &arg2, const T3 &arg3) {
 | |
|   ::llvm::hashing::detail::hash_combine_recursive_helper helper;
 | |
|   return helper.combine(arg1, arg2, arg3);
 | |
| }
 | |
| template <typename T1, typename T2>
 | |
| hash_code hash_combine(const T1 &arg1, const T2 &arg2) {
 | |
|   ::llvm::hashing::detail::hash_combine_recursive_helper helper;
 | |
|   return helper.combine(arg1, arg2);
 | |
| }
 | |
| template <typename T1>
 | |
| hash_code hash_combine(const T1 &arg1) {
 | |
|   ::llvm::hashing::detail::hash_combine_recursive_helper helper;
 | |
|   return helper.combine(arg1);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| 
 | |
| // Implementation details for implementatinos of hash_value overloads provided
 | |
| // here.
 | |
| namespace hashing {
 | |
| namespace detail {
 | |
| 
 | |
| /// \brief Helper to hash the value of a single integer.
 | |
| ///
 | |
| /// Overloads for smaller integer types are not provided to ensure consistent
 | |
| /// behavior in the presence of integral promotions. Essentially,
 | |
| /// "hash_value('4')" and "hash_value('0' + 4)" should be the same.
 | |
| inline hash_code hash_integer_value(uint64_t value) {
 | |
|   // Similar to hash_4to8_bytes but using a seed instead of length.
 | |
|   const uint64_t seed = get_execution_seed();
 | |
|   const char *s = reinterpret_cast<const char *>(&value);
 | |
|   const uint64_t a = fetch32(s);
 | |
|   return hash_16_bytes(seed + (a << 3), fetch32(s + 4));
 | |
| }
 | |
| 
 | |
| } // namespace detail
 | |
| } // namespace hashing
 | |
| 
 | |
| // Declared and documented above, but defined here so that any of the hashing
 | |
| // infrastructure is available.
 | |
| template <typename T>
 | |
| typename enable_if<is_integral<T>, hash_code>::type hash_value(T value) {
 | |
|   return ::llvm::hashing::detail::hash_integer_value(value);
 | |
| }
 | |
| 
 | |
| // Declared and documented above, but defined here so that any of the hashing
 | |
| // infrastructure is available.
 | |
| template <typename T> hash_code hash_value(const T *ptr) {
 | |
|   return ::llvm::hashing::detail::hash_integer_value(
 | |
|     reinterpret_cast<uintptr_t>(ptr));
 | |
| }
 | |
| 
 | |
| // Declared and documented above, but defined here so that any of the hashing
 | |
| // infrastructure is available.
 | |
| template <typename T, typename U>
 | |
| hash_code hash_value(const std::pair<T, U> &arg) {
 | |
|   return hash_combine(arg.first, arg.second);
 | |
| }
 | |
| 
 | |
| // Declared and documented above, but defined here so that any of the hashing
 | |
| // infrastructure is available.
 | |
| template <typename T>
 | |
| hash_code hash_value(const std::basic_string<T> &arg) {
 | |
|   return hash_combine_range(arg.begin(), arg.end());
 | |
| }
 | |
| 
 | |
| } // namespace llvm
 | |
| 
 | |
| #endif
 |