mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209763 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			255 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			255 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- ScalarEvolutionNormalization.cpp - See below -------------*- C++ -*-===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements utilities for working with "normalized" expressions.
 | |
| // See the comments at the top of ScalarEvolutionNormalization.h for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/IR/Dominators.h"
 | |
| #include "llvm/Analysis/LoopInfo.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h"
 | |
| #include "llvm/Analysis/ScalarEvolutionNormalization.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| /// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression
 | |
| /// and now we need to decide whether the user should use the preinc or post-inc
 | |
| /// value.  If this user should use the post-inc version of the IV, return true.
 | |
| ///
 | |
| /// Choosing wrong here can break dominance properties (if we choose to use the
 | |
| /// post-inc value when we cannot) or it can end up adding extra live-ranges to
 | |
| /// the loop, resulting in reg-reg copies (if we use the pre-inc value when we
 | |
| /// should use the post-inc value).
 | |
| static bool IVUseShouldUsePostIncValue(Instruction *User, Value *Operand,
 | |
|                                        const Loop *L, DominatorTree *DT) {
 | |
|   // If the user is in the loop, use the preinc value.
 | |
|   if (L->contains(User)) return false;
 | |
| 
 | |
|   BasicBlock *LatchBlock = L->getLoopLatch();
 | |
|   if (!LatchBlock)
 | |
|     return false;
 | |
| 
 | |
|   // Ok, the user is outside of the loop.  If it is dominated by the latch
 | |
|   // block, use the post-inc value.
 | |
|   if (DT->dominates(LatchBlock, User->getParent()))
 | |
|     return true;
 | |
| 
 | |
|   // There is one case we have to be careful of: PHI nodes.  These little guys
 | |
|   // can live in blocks that are not dominated by the latch block, but (since
 | |
|   // their uses occur in the predecessor block, not the block the PHI lives in)
 | |
|   // should still use the post-inc value.  Check for this case now.
 | |
|   PHINode *PN = dyn_cast<PHINode>(User);
 | |
|   if (!PN || !Operand) return false; // not a phi, not dominated by latch block.
 | |
| 
 | |
|   // Look at all of the uses of Operand by the PHI node.  If any use corresponds
 | |
|   // to a block that is not dominated by the latch block, give up and use the
 | |
|   // preincremented value.
 | |
|   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|     if (PN->getIncomingValue(i) == Operand &&
 | |
|         !DT->dominates(LatchBlock, PN->getIncomingBlock(i)))
 | |
|       return false;
 | |
| 
 | |
|   // Okay, all uses of Operand by PN are in predecessor blocks that really are
 | |
|   // dominated by the latch block.  Use the post-incremented value.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| namespace {
 | |
| 
 | |
| /// Hold the state used during post-inc expression transformation, including a
 | |
| /// map of transformed expressions.
 | |
| class PostIncTransform {
 | |
|   TransformKind Kind;
 | |
|   PostIncLoopSet &Loops;
 | |
|   ScalarEvolution &SE;
 | |
|   DominatorTree &DT;
 | |
| 
 | |
|   DenseMap<const SCEV*, const SCEV*> Transformed;
 | |
| 
 | |
| public:
 | |
|   PostIncTransform(TransformKind kind, PostIncLoopSet &loops,
 | |
|                    ScalarEvolution &se, DominatorTree &dt):
 | |
|     Kind(kind), Loops(loops), SE(se), DT(dt) {}
 | |
| 
 | |
|   const SCEV *TransformSubExpr(const SCEV *S, Instruction *User,
 | |
|                                Value *OperandValToReplace);
 | |
| 
 | |
| protected:
 | |
|   const SCEV *TransformImpl(const SCEV *S, Instruction *User,
 | |
|                             Value *OperandValToReplace);
 | |
| };
 | |
| 
 | |
| } // namespace
 | |
| 
 | |
| /// Implement post-inc transformation for all valid expression types.
 | |
| const SCEV *PostIncTransform::
 | |
| TransformImpl(const SCEV *S, Instruction *User, Value *OperandValToReplace) {
 | |
| 
 | |
|   if (const SCEVCastExpr *X = dyn_cast<SCEVCastExpr>(S)) {
 | |
|     const SCEV *O = X->getOperand();
 | |
|     const SCEV *N = TransformSubExpr(O, User, OperandValToReplace);
 | |
|     if (O != N)
 | |
|       switch (S->getSCEVType()) {
 | |
|       case scZeroExtend: return SE.getZeroExtendExpr(N, S->getType());
 | |
|       case scSignExtend: return SE.getSignExtendExpr(N, S->getType());
 | |
|       case scTruncate: return SE.getTruncateExpr(N, S->getType());
 | |
|       default: llvm_unreachable("Unexpected SCEVCastExpr kind!");
 | |
|       }
 | |
|     return S;
 | |
|   }
 | |
| 
 | |
|   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
 | |
|     // An addrec. This is the interesting part.
 | |
|     SmallVector<const SCEV *, 8> Operands;
 | |
|     const Loop *L = AR->getLoop();
 | |
|     // The addrec conceptually uses its operands at loop entry.
 | |
|     Instruction *LUser = L->getHeader()->begin();
 | |
|     // Transform each operand.
 | |
|     for (SCEVNAryExpr::op_iterator I = AR->op_begin(), E = AR->op_end();
 | |
|          I != E; ++I) {
 | |
|       Operands.push_back(TransformSubExpr(*I, LUser, nullptr));
 | |
|     }
 | |
|     // Conservatively use AnyWrap until/unless we need FlagNW.
 | |
|     const SCEV *Result = SE.getAddRecExpr(Operands, L, SCEV::FlagAnyWrap);
 | |
|     switch (Kind) {
 | |
|     case NormalizeAutodetect:
 | |
|       // Normalize this SCEV by subtracting the expression for the final step.
 | |
|       // We only allow affine AddRecs to be normalized, otherwise we would not
 | |
|       // be able to correctly denormalize.
 | |
|       // e.g. {1,+,3,+,2} == {-2,+,1,+,2} + {3,+,2}
 | |
|       // Normalized form:   {-2,+,1,+,2}
 | |
|       // Denormalized form: {1,+,3,+,2}
 | |
|       //
 | |
|       // However, denormalization would use the a different step expression than
 | |
|       // normalization (see getPostIncExpr), generating the wrong final
 | |
|       // expression: {-2,+,1,+,2} + {1,+,2} => {-1,+,3,+,2}
 | |
|       if (AR->isAffine() &&
 | |
|           IVUseShouldUsePostIncValue(User, OperandValToReplace, L, &DT)) {
 | |
|         const SCEV *TransformedStep =
 | |
|           TransformSubExpr(AR->getStepRecurrence(SE),
 | |
|                            User, OperandValToReplace);
 | |
|         Result = SE.getMinusSCEV(Result, TransformedStep);
 | |
|         Loops.insert(L);
 | |
|       }
 | |
| #if 0
 | |
|       // This assert is conceptually correct, but ScalarEvolution currently
 | |
|       // sometimes fails to canonicalize two equal SCEVs to exactly the same
 | |
|       // form. It's possibly a pessimization when this happens, but it isn't a
 | |
|       // correctness problem, so disable this assert for now.
 | |
|       assert(S == TransformSubExpr(Result, User, OperandValToReplace) &&
 | |
|              "SCEV normalization is not invertible!");
 | |
| #endif
 | |
|       break;
 | |
|     case Normalize:
 | |
|       // We want to normalize step expression, because otherwise we might not be
 | |
|       // able to denormalize to the original expression.
 | |
|       //
 | |
|       // Here is an example what will happen if we don't normalize step:
 | |
|       //  ORIGINAL ISE:
 | |
|       //    {(100 /u {1,+,1}<%bb16>),+,(100 /u {1,+,1}<%bb16>)}<%bb25>
 | |
|       //  NORMALIZED ISE:
 | |
|       //    {((-1 * (100 /u {1,+,1}<%bb16>)) + (100 /u {0,+,1}<%bb16>)),+,
 | |
|       //     (100 /u {0,+,1}<%bb16>)}<%bb25>
 | |
|       //  DENORMALIZED BACK ISE:
 | |
|       //    {((2 * (100 /u {1,+,1}<%bb16>)) + (-1 * (100 /u {2,+,1}<%bb16>))),+,
 | |
|       //     (100 /u {1,+,1}<%bb16>)}<%bb25>
 | |
|       //  Note that the initial value changes after normalization +
 | |
|       //  denormalization, which isn't correct.
 | |
|       if (Loops.count(L)) {
 | |
|         const SCEV *TransformedStep =
 | |
|           TransformSubExpr(AR->getStepRecurrence(SE),
 | |
|                            User, OperandValToReplace);
 | |
|         Result = SE.getMinusSCEV(Result, TransformedStep);
 | |
|       }
 | |
| #if 0
 | |
|       // See the comment on the assert above.
 | |
|       assert(S == TransformSubExpr(Result, User, OperandValToReplace) &&
 | |
|              "SCEV normalization is not invertible!");
 | |
| #endif
 | |
|       break;
 | |
|     case Denormalize:
 | |
|       // Here we want to normalize step expressions for the same reasons, as
 | |
|       // stated above.
 | |
|       if (Loops.count(L)) {
 | |
|         const SCEV *TransformedStep =
 | |
|           TransformSubExpr(AR->getStepRecurrence(SE),
 | |
|                            User, OperandValToReplace);
 | |
|         Result = SE.getAddExpr(Result, TransformedStep);
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   if (const SCEVNAryExpr *X = dyn_cast<SCEVNAryExpr>(S)) {
 | |
|     SmallVector<const SCEV *, 8> Operands;
 | |
|     bool Changed = false;
 | |
|     // Transform each operand.
 | |
|     for (SCEVNAryExpr::op_iterator I = X->op_begin(), E = X->op_end();
 | |
|          I != E; ++I) {
 | |
|       const SCEV *O = *I;
 | |
|       const SCEV *N = TransformSubExpr(O, User, OperandValToReplace);
 | |
|       Changed |= N != O;
 | |
|       Operands.push_back(N);
 | |
|     }
 | |
|     // If any operand actually changed, return a transformed result.
 | |
|     if (Changed)
 | |
|       switch (S->getSCEVType()) {
 | |
|       case scAddExpr: return SE.getAddExpr(Operands);
 | |
|       case scMulExpr: return SE.getMulExpr(Operands);
 | |
|       case scSMaxExpr: return SE.getSMaxExpr(Operands);
 | |
|       case scUMaxExpr: return SE.getUMaxExpr(Operands);
 | |
|       default: llvm_unreachable("Unexpected SCEVNAryExpr kind!");
 | |
|       }
 | |
|     return S;
 | |
|   }
 | |
| 
 | |
|   if (const SCEVUDivExpr *X = dyn_cast<SCEVUDivExpr>(S)) {
 | |
|     const SCEV *LO = X->getLHS();
 | |
|     const SCEV *RO = X->getRHS();
 | |
|     const SCEV *LN = TransformSubExpr(LO, User, OperandValToReplace);
 | |
|     const SCEV *RN = TransformSubExpr(RO, User, OperandValToReplace);
 | |
|     if (LO != LN || RO != RN)
 | |
|       return SE.getUDivExpr(LN, RN);
 | |
|     return S;
 | |
|   }
 | |
| 
 | |
|   llvm_unreachable("Unexpected SCEV kind!");
 | |
| }
 | |
| 
 | |
| /// Manage recursive transformation across an expression DAG. Revisiting
 | |
| /// expressions would lead to exponential recursion.
 | |
| const SCEV *PostIncTransform::
 | |
| TransformSubExpr(const SCEV *S, Instruction *User, Value *OperandValToReplace) {
 | |
| 
 | |
|   if (isa<SCEVConstant>(S) || isa<SCEVUnknown>(S))
 | |
|     return S;
 | |
| 
 | |
|   const SCEV *Result = Transformed.lookup(S);
 | |
|   if (Result)
 | |
|     return Result;
 | |
| 
 | |
|   Result = TransformImpl(S, User, OperandValToReplace);
 | |
|   Transformed[S] = Result;
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// Top level driver for transforming an expression DAG into its requested
 | |
| /// post-inc form (either "Normalized" or "Denormalized").
 | |
| const SCEV *llvm::TransformForPostIncUse(TransformKind Kind,
 | |
|                                          const SCEV *S,
 | |
|                                          Instruction *User,
 | |
|                                          Value *OperandValToReplace,
 | |
|                                          PostIncLoopSet &Loops,
 | |
|                                          ScalarEvolution &SE,
 | |
|                                          DominatorTree &DT) {
 | |
|   PostIncTransform Transform(Kind, Loops, SE, DT);
 | |
|   return Transform.TransformSubExpr(S, User, OperandValToReplace);
 | |
| }
 |