mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@210869 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			468 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			468 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- R600MachineScheduler.cpp - R600 Scheduler Interface -*- C++ -*-----===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
/// \file
 | 
						|
/// \brief R600 Machine Scheduler interface
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "R600MachineScheduler.h"
 | 
						|
#include "AMDGPUSubtarget.h"
 | 
						|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/PassManager.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "misched"
 | 
						|
 | 
						|
void R600SchedStrategy::initialize(ScheduleDAGMI *dag) {
 | 
						|
  assert(dag->hasVRegLiveness() && "R600SchedStrategy needs vreg liveness");
 | 
						|
  DAG = static_cast<ScheduleDAGMILive*>(dag);
 | 
						|
  TII = static_cast<const R600InstrInfo*>(DAG->TII);
 | 
						|
  TRI = static_cast<const R600RegisterInfo*>(DAG->TRI);
 | 
						|
  VLIW5 = !DAG->MF.getTarget().getSubtarget<AMDGPUSubtarget>().hasCaymanISA();
 | 
						|
  MRI = &DAG->MRI;
 | 
						|
  CurInstKind = IDOther;
 | 
						|
  CurEmitted = 0;
 | 
						|
  OccupedSlotsMask = 31;
 | 
						|
  InstKindLimit[IDAlu] = TII->getMaxAlusPerClause();
 | 
						|
  InstKindLimit[IDOther] = 32;
 | 
						|
 | 
						|
  const AMDGPUSubtarget &ST = DAG->TM.getSubtarget<AMDGPUSubtarget>();
 | 
						|
  InstKindLimit[IDFetch] = ST.getTexVTXClauseSize();
 | 
						|
  AluInstCount = 0;
 | 
						|
  FetchInstCount = 0;
 | 
						|
}
 | 
						|
 | 
						|
void R600SchedStrategy::MoveUnits(std::vector<SUnit *> &QSrc,
 | 
						|
                                  std::vector<SUnit *> &QDst)
 | 
						|
{
 | 
						|
  QDst.insert(QDst.end(), QSrc.begin(), QSrc.end());
 | 
						|
  QSrc.clear();
 | 
						|
}
 | 
						|
 | 
						|
static
 | 
						|
unsigned getWFCountLimitedByGPR(unsigned GPRCount) {
 | 
						|
  assert (GPRCount && "GPRCount cannot be 0");
 | 
						|
  return 248 / GPRCount;
 | 
						|
}
 | 
						|
 | 
						|
SUnit* R600SchedStrategy::pickNode(bool &IsTopNode) {
 | 
						|
  SUnit *SU = nullptr;
 | 
						|
  NextInstKind = IDOther;
 | 
						|
 | 
						|
  IsTopNode = false;
 | 
						|
 | 
						|
  // check if we might want to switch current clause type
 | 
						|
  bool AllowSwitchToAlu = (CurEmitted >= InstKindLimit[CurInstKind]) ||
 | 
						|
      (Available[CurInstKind].empty());
 | 
						|
  bool AllowSwitchFromAlu = (CurEmitted >= InstKindLimit[CurInstKind]) &&
 | 
						|
      (!Available[IDFetch].empty() || !Available[IDOther].empty());
 | 
						|
 | 
						|
  if (CurInstKind == IDAlu && !Available[IDFetch].empty()) {
 | 
						|
    // We use the heuristic provided by AMD Accelerated Parallel Processing
 | 
						|
    // OpenCL Programming Guide :
 | 
						|
    // The approx. number of WF that allows TEX inst to hide ALU inst is :
 | 
						|
    // 500 (cycles for TEX) / (AluFetchRatio * 8 (cycles for ALU))
 | 
						|
    float ALUFetchRationEstimate =
 | 
						|
        (AluInstCount + AvailablesAluCount() + Pending[IDAlu].size()) /
 | 
						|
        (FetchInstCount + Available[IDFetch].size());
 | 
						|
    unsigned NeededWF = 62.5f / ALUFetchRationEstimate;
 | 
						|
    DEBUG( dbgs() << NeededWF << " approx. Wavefronts Required\n" );
 | 
						|
    // We assume the local GPR requirements to be "dominated" by the requirement
 | 
						|
    // of the TEX clause (which consumes 128 bits regs) ; ALU inst before and
 | 
						|
    // after TEX are indeed likely to consume or generate values from/for the
 | 
						|
    // TEX clause.
 | 
						|
    // Available[IDFetch].size() * 2 : GPRs required in the Fetch clause
 | 
						|
    // We assume that fetch instructions are either TnXYZW = TEX TnXYZW (need
 | 
						|
    // one GPR) or TmXYZW = TnXYZW (need 2 GPR).
 | 
						|
    // (TODO : use RegisterPressure)
 | 
						|
    // If we are going too use too many GPR, we flush Fetch instruction to lower
 | 
						|
    // register pressure on 128 bits regs.
 | 
						|
    unsigned NearRegisterRequirement = 2 * Available[IDFetch].size();
 | 
						|
    if (NeededWF > getWFCountLimitedByGPR(NearRegisterRequirement))
 | 
						|
      AllowSwitchFromAlu = true;
 | 
						|
  }
 | 
						|
 | 
						|
  if (!SU && ((AllowSwitchToAlu && CurInstKind != IDAlu) ||
 | 
						|
      (!AllowSwitchFromAlu && CurInstKind == IDAlu))) {
 | 
						|
    // try to pick ALU
 | 
						|
    SU = pickAlu();
 | 
						|
    if (!SU && !PhysicalRegCopy.empty()) {
 | 
						|
      SU = PhysicalRegCopy.front();
 | 
						|
      PhysicalRegCopy.erase(PhysicalRegCopy.begin());
 | 
						|
    }
 | 
						|
    if (SU) {
 | 
						|
      if (CurEmitted >= InstKindLimit[IDAlu])
 | 
						|
        CurEmitted = 0;
 | 
						|
      NextInstKind = IDAlu;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!SU) {
 | 
						|
    // try to pick FETCH
 | 
						|
    SU = pickOther(IDFetch);
 | 
						|
    if (SU)
 | 
						|
      NextInstKind = IDFetch;
 | 
						|
  }
 | 
						|
 | 
						|
  // try to pick other
 | 
						|
  if (!SU) {
 | 
						|
    SU = pickOther(IDOther);
 | 
						|
    if (SU)
 | 
						|
      NextInstKind = IDOther;
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(
 | 
						|
      if (SU) {
 | 
						|
        dbgs() << " ** Pick node **\n";
 | 
						|
        SU->dump(DAG);
 | 
						|
      } else {
 | 
						|
        dbgs() << "NO NODE \n";
 | 
						|
        for (unsigned i = 0; i < DAG->SUnits.size(); i++) {
 | 
						|
          const SUnit &S = DAG->SUnits[i];
 | 
						|
          if (!S.isScheduled)
 | 
						|
            S.dump(DAG);
 | 
						|
        }
 | 
						|
      }
 | 
						|
  );
 | 
						|
 | 
						|
  return SU;
 | 
						|
}
 | 
						|
 | 
						|
void R600SchedStrategy::schedNode(SUnit *SU, bool IsTopNode) {
 | 
						|
  if (NextInstKind != CurInstKind) {
 | 
						|
    DEBUG(dbgs() << "Instruction Type Switch\n");
 | 
						|
    if (NextInstKind != IDAlu)
 | 
						|
      OccupedSlotsMask |= 31;
 | 
						|
    CurEmitted = 0;
 | 
						|
    CurInstKind = NextInstKind;
 | 
						|
  }
 | 
						|
 | 
						|
  if (CurInstKind == IDAlu) {
 | 
						|
    AluInstCount ++;
 | 
						|
    switch (getAluKind(SU)) {
 | 
						|
    case AluT_XYZW:
 | 
						|
      CurEmitted += 4;
 | 
						|
      break;
 | 
						|
    case AluDiscarded:
 | 
						|
      break;
 | 
						|
    default: {
 | 
						|
      ++CurEmitted;
 | 
						|
      for (MachineInstr::mop_iterator It = SU->getInstr()->operands_begin(),
 | 
						|
          E = SU->getInstr()->operands_end(); It != E; ++It) {
 | 
						|
        MachineOperand &MO = *It;
 | 
						|
        if (MO.isReg() && MO.getReg() == AMDGPU::ALU_LITERAL_X)
 | 
						|
          ++CurEmitted;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    ++CurEmitted;
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  DEBUG(dbgs() << CurEmitted << " Instructions Emitted in this clause\n");
 | 
						|
 | 
						|
  if (CurInstKind != IDFetch) {
 | 
						|
    MoveUnits(Pending[IDFetch], Available[IDFetch]);
 | 
						|
  } else
 | 
						|
    FetchInstCount++;
 | 
						|
}
 | 
						|
 | 
						|
static bool
 | 
						|
isPhysicalRegCopy(MachineInstr *MI) {
 | 
						|
  if (MI->getOpcode() != AMDGPU::COPY)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return !TargetRegisterInfo::isVirtualRegister(MI->getOperand(1).getReg());
 | 
						|
}
 | 
						|
 | 
						|
void R600SchedStrategy::releaseTopNode(SUnit *SU) {
 | 
						|
  DEBUG(dbgs() << "Top Releasing ";SU->dump(DAG););
 | 
						|
}
 | 
						|
 | 
						|
void R600SchedStrategy::releaseBottomNode(SUnit *SU) {
 | 
						|
  DEBUG(dbgs() << "Bottom Releasing ";SU->dump(DAG););
 | 
						|
  if (isPhysicalRegCopy(SU->getInstr())) {
 | 
						|
    PhysicalRegCopy.push_back(SU);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  int IK = getInstKind(SU);
 | 
						|
 | 
						|
  // There is no export clause, we can schedule one as soon as its ready
 | 
						|
  if (IK == IDOther)
 | 
						|
    Available[IDOther].push_back(SU);
 | 
						|
  else
 | 
						|
    Pending[IK].push_back(SU);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
bool R600SchedStrategy::regBelongsToClass(unsigned Reg,
 | 
						|
                                          const TargetRegisterClass *RC) const {
 | 
						|
  if (!TargetRegisterInfo::isVirtualRegister(Reg)) {
 | 
						|
    return RC->contains(Reg);
 | 
						|
  } else {
 | 
						|
    return MRI->getRegClass(Reg) == RC;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
R600SchedStrategy::AluKind R600SchedStrategy::getAluKind(SUnit *SU) const {
 | 
						|
  MachineInstr *MI = SU->getInstr();
 | 
						|
 | 
						|
  if (TII->isTransOnly(MI))
 | 
						|
    return AluTrans;
 | 
						|
 | 
						|
    switch (MI->getOpcode()) {
 | 
						|
    case AMDGPU::PRED_X:
 | 
						|
      return AluPredX;
 | 
						|
    case AMDGPU::INTERP_PAIR_XY:
 | 
						|
    case AMDGPU::INTERP_PAIR_ZW:
 | 
						|
    case AMDGPU::INTERP_VEC_LOAD:
 | 
						|
    case AMDGPU::DOT_4:
 | 
						|
      return AluT_XYZW;
 | 
						|
    case AMDGPU::COPY:
 | 
						|
      if (MI->getOperand(1).isUndef()) {
 | 
						|
        // MI will become a KILL, don't considers it in scheduling
 | 
						|
        return AluDiscarded;
 | 
						|
      }
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Does the instruction take a whole IG ?
 | 
						|
    // XXX: Is it possible to add a helper function in R600InstrInfo that can
 | 
						|
    // be used here and in R600PacketizerList::isSoloInstruction() ?
 | 
						|
    if(TII->isVector(*MI) ||
 | 
						|
        TII->isCubeOp(MI->getOpcode()) ||
 | 
						|
        TII->isReductionOp(MI->getOpcode()) ||
 | 
						|
        MI->getOpcode() == AMDGPU::GROUP_BARRIER) {
 | 
						|
      return AluT_XYZW;
 | 
						|
    }
 | 
						|
 | 
						|
    if (TII->isLDSInstr(MI->getOpcode())) {
 | 
						|
      return AluT_X;
 | 
						|
    }
 | 
						|
 | 
						|
    // Is the result already assigned to a channel ?
 | 
						|
    unsigned DestSubReg = MI->getOperand(0).getSubReg();
 | 
						|
    switch (DestSubReg) {
 | 
						|
    case AMDGPU::sub0:
 | 
						|
      return AluT_X;
 | 
						|
    case AMDGPU::sub1:
 | 
						|
      return AluT_Y;
 | 
						|
    case AMDGPU::sub2:
 | 
						|
      return AluT_Z;
 | 
						|
    case AMDGPU::sub3:
 | 
						|
      return AluT_W;
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Is the result already member of a X/Y/Z/W class ?
 | 
						|
    unsigned DestReg = MI->getOperand(0).getReg();
 | 
						|
    if (regBelongsToClass(DestReg, &AMDGPU::R600_TReg32_XRegClass) ||
 | 
						|
        regBelongsToClass(DestReg, &AMDGPU::R600_AddrRegClass))
 | 
						|
      return AluT_X;
 | 
						|
    if (regBelongsToClass(DestReg, &AMDGPU::R600_TReg32_YRegClass))
 | 
						|
      return AluT_Y;
 | 
						|
    if (regBelongsToClass(DestReg, &AMDGPU::R600_TReg32_ZRegClass))
 | 
						|
      return AluT_Z;
 | 
						|
    if (regBelongsToClass(DestReg, &AMDGPU::R600_TReg32_WRegClass))
 | 
						|
      return AluT_W;
 | 
						|
    if (regBelongsToClass(DestReg, &AMDGPU::R600_Reg128RegClass))
 | 
						|
      return AluT_XYZW;
 | 
						|
 | 
						|
    // LDS src registers cannot be used in the Trans slot.
 | 
						|
    if (TII->readsLDSSrcReg(MI))
 | 
						|
      return AluT_XYZW;
 | 
						|
 | 
						|
    return AluAny;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
int R600SchedStrategy::getInstKind(SUnit* SU) {
 | 
						|
  int Opcode = SU->getInstr()->getOpcode();
 | 
						|
 | 
						|
  if (TII->usesTextureCache(Opcode) || TII->usesVertexCache(Opcode))
 | 
						|
    return IDFetch;
 | 
						|
 | 
						|
  if (TII->isALUInstr(Opcode)) {
 | 
						|
    return IDAlu;
 | 
						|
  }
 | 
						|
 | 
						|
  switch (Opcode) {
 | 
						|
  case AMDGPU::PRED_X:
 | 
						|
  case AMDGPU::COPY:
 | 
						|
  case AMDGPU::CONST_COPY:
 | 
						|
  case AMDGPU::INTERP_PAIR_XY:
 | 
						|
  case AMDGPU::INTERP_PAIR_ZW:
 | 
						|
  case AMDGPU::INTERP_VEC_LOAD:
 | 
						|
  case AMDGPU::DOT_4:
 | 
						|
    return IDAlu;
 | 
						|
  default:
 | 
						|
    return IDOther;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
SUnit *R600SchedStrategy::PopInst(std::vector<SUnit *> &Q, bool AnyALU) {
 | 
						|
  if (Q.empty())
 | 
						|
    return nullptr;
 | 
						|
  for (std::vector<SUnit *>::reverse_iterator It = Q.rbegin(), E = Q.rend();
 | 
						|
      It != E; ++It) {
 | 
						|
    SUnit *SU = *It;
 | 
						|
    InstructionsGroupCandidate.push_back(SU->getInstr());
 | 
						|
    if (TII->fitsConstReadLimitations(InstructionsGroupCandidate)
 | 
						|
        && (!AnyALU || !TII->isVectorOnly(SU->getInstr()))
 | 
						|
    ) {
 | 
						|
      InstructionsGroupCandidate.pop_back();
 | 
						|
      Q.erase((It + 1).base());
 | 
						|
      return SU;
 | 
						|
    } else {
 | 
						|
      InstructionsGroupCandidate.pop_back();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
void R600SchedStrategy::LoadAlu() {
 | 
						|
  std::vector<SUnit *> &QSrc = Pending[IDAlu];
 | 
						|
  for (unsigned i = 0, e = QSrc.size(); i < e; ++i) {
 | 
						|
    AluKind AK = getAluKind(QSrc[i]);
 | 
						|
    AvailableAlus[AK].push_back(QSrc[i]);
 | 
						|
  }
 | 
						|
  QSrc.clear();
 | 
						|
}
 | 
						|
 | 
						|
void R600SchedStrategy::PrepareNextSlot() {
 | 
						|
  DEBUG(dbgs() << "New Slot\n");
 | 
						|
  assert (OccupedSlotsMask && "Slot wasn't filled");
 | 
						|
  OccupedSlotsMask = 0;
 | 
						|
//  if (HwGen == AMDGPUSubtarget::NORTHERN_ISLANDS)
 | 
						|
//    OccupedSlotsMask |= 16;
 | 
						|
  InstructionsGroupCandidate.clear();
 | 
						|
  LoadAlu();
 | 
						|
}
 | 
						|
 | 
						|
void R600SchedStrategy::AssignSlot(MachineInstr* MI, unsigned Slot) {
 | 
						|
  int DstIndex = TII->getOperandIdx(MI->getOpcode(), AMDGPU::OpName::dst);
 | 
						|
  if (DstIndex == -1) {
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  unsigned DestReg = MI->getOperand(DstIndex).getReg();
 | 
						|
  // PressureRegister crashes if an operand is def and used in the same inst
 | 
						|
  // and we try to constraint its regclass
 | 
						|
  for (MachineInstr::mop_iterator It = MI->operands_begin(),
 | 
						|
      E = MI->operands_end(); It != E; ++It) {
 | 
						|
    MachineOperand &MO = *It;
 | 
						|
    if (MO.isReg() && !MO.isDef() &&
 | 
						|
        MO.getReg() == DestReg)
 | 
						|
      return;
 | 
						|
  }
 | 
						|
  // Constrains the regclass of DestReg to assign it to Slot
 | 
						|
  switch (Slot) {
 | 
						|
  case 0:
 | 
						|
    MRI->constrainRegClass(DestReg, &AMDGPU::R600_TReg32_XRegClass);
 | 
						|
    break;
 | 
						|
  case 1:
 | 
						|
    MRI->constrainRegClass(DestReg, &AMDGPU::R600_TReg32_YRegClass);
 | 
						|
    break;
 | 
						|
  case 2:
 | 
						|
    MRI->constrainRegClass(DestReg, &AMDGPU::R600_TReg32_ZRegClass);
 | 
						|
    break;
 | 
						|
  case 3:
 | 
						|
    MRI->constrainRegClass(DestReg, &AMDGPU::R600_TReg32_WRegClass);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
SUnit *R600SchedStrategy::AttemptFillSlot(unsigned Slot, bool AnyAlu) {
 | 
						|
  static const AluKind IndexToID[] = {AluT_X, AluT_Y, AluT_Z, AluT_W};
 | 
						|
  SUnit *SlotedSU = PopInst(AvailableAlus[IndexToID[Slot]], AnyAlu);
 | 
						|
  if (SlotedSU)
 | 
						|
    return SlotedSU;
 | 
						|
  SUnit *UnslotedSU = PopInst(AvailableAlus[AluAny], AnyAlu);
 | 
						|
  if (UnslotedSU)
 | 
						|
    AssignSlot(UnslotedSU->getInstr(), Slot);
 | 
						|
  return UnslotedSU;
 | 
						|
}
 | 
						|
 | 
						|
unsigned R600SchedStrategy::AvailablesAluCount() const {
 | 
						|
  return AvailableAlus[AluAny].size() + AvailableAlus[AluT_XYZW].size() +
 | 
						|
      AvailableAlus[AluT_X].size() + AvailableAlus[AluT_Y].size() +
 | 
						|
      AvailableAlus[AluT_Z].size() + AvailableAlus[AluT_W].size() +
 | 
						|
      AvailableAlus[AluTrans].size() + AvailableAlus[AluDiscarded].size() +
 | 
						|
      AvailableAlus[AluPredX].size();
 | 
						|
}
 | 
						|
 | 
						|
SUnit* R600SchedStrategy::pickAlu() {
 | 
						|
  while (AvailablesAluCount() || !Pending[IDAlu].empty()) {
 | 
						|
    if (!OccupedSlotsMask) {
 | 
						|
      // Bottom up scheduling : predX must comes first
 | 
						|
      if (!AvailableAlus[AluPredX].empty()) {
 | 
						|
        OccupedSlotsMask |= 31;
 | 
						|
        return PopInst(AvailableAlus[AluPredX], false);
 | 
						|
      }
 | 
						|
      // Flush physical reg copies (RA will discard them)
 | 
						|
      if (!AvailableAlus[AluDiscarded].empty()) {
 | 
						|
        OccupedSlotsMask |= 31;
 | 
						|
        return PopInst(AvailableAlus[AluDiscarded], false);
 | 
						|
      }
 | 
						|
      // If there is a T_XYZW alu available, use it
 | 
						|
      if (!AvailableAlus[AluT_XYZW].empty()) {
 | 
						|
        OccupedSlotsMask |= 15;
 | 
						|
        return PopInst(AvailableAlus[AluT_XYZW], false);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    bool TransSlotOccuped = OccupedSlotsMask & 16;
 | 
						|
    if (!TransSlotOccuped && VLIW5) {
 | 
						|
      if (!AvailableAlus[AluTrans].empty()) {
 | 
						|
        OccupedSlotsMask |= 16;
 | 
						|
        return PopInst(AvailableAlus[AluTrans], false);
 | 
						|
      }
 | 
						|
      SUnit *SU = AttemptFillSlot(3, true);
 | 
						|
      if (SU) {
 | 
						|
        OccupedSlotsMask |= 16;
 | 
						|
        return SU;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    for (int Chan = 3; Chan > -1; --Chan) {
 | 
						|
      bool isOccupied = OccupedSlotsMask & (1 << Chan);
 | 
						|
      if (!isOccupied) {
 | 
						|
        SUnit *SU = AttemptFillSlot(Chan, false);
 | 
						|
        if (SU) {
 | 
						|
          OccupedSlotsMask |= (1 << Chan);
 | 
						|
          InstructionsGroupCandidate.push_back(SU->getInstr());
 | 
						|
          return SU;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    PrepareNextSlot();
 | 
						|
  }
 | 
						|
  return nullptr;
 | 
						|
}
 | 
						|
 | 
						|
SUnit* R600SchedStrategy::pickOther(int QID) {
 | 
						|
  SUnit *SU = nullptr;
 | 
						|
  std::vector<SUnit *> &AQ = Available[QID];
 | 
						|
 | 
						|
  if (AQ.empty()) {
 | 
						|
    MoveUnits(Pending[QID], AQ);
 | 
						|
  }
 | 
						|
  if (!AQ.empty()) {
 | 
						|
    SU = AQ.back();
 | 
						|
    AQ.resize(AQ.size() - 1);
 | 
						|
  }
 | 
						|
  return SU;
 | 
						|
}
 |