mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	using Function::arg_{iterator|begin|end}.  Likewise Module::g* -> Module::global_*.
This patch is contributed by Gabor Greif, thanks!
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@20597 91177308-0d34-0410-b5e6-96231b3b80d8
		
	
		
			
				
	
	
		
			2260 lines
		
	
	
		
			79 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2260 lines
		
	
	
		
			79 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- Reader.cpp - Code to read bytecode files ---------------------------===//
 | |
| // 
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| // 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This library implements the functionality defined in llvm/Bytecode/Reader.h
 | |
| //
 | |
| // Note that this library should be as fast as possible, reentrant, and 
 | |
| // threadsafe!!
 | |
| //
 | |
| // TODO: Allow passing in an option to ignore the symbol table
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "Reader.h"
 | |
| #include "llvm/Bytecode/BytecodeHandler.h"
 | |
| #include "llvm/BasicBlock.h"
 | |
| #include "llvm/Config/alloca.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/SymbolTable.h"
 | |
| #include "llvm/Bytecode/Format.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/Support/Compressor.h"
 | |
| #include "llvm/ADT/StringExtras.h"
 | |
| #include <sstream>
 | |
| #include <algorithm>
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
|   /// @brief A class for maintaining the slot number definition
 | |
|   /// as a placeholder for the actual definition for forward constants defs.
 | |
|   class ConstantPlaceHolder : public ConstantExpr {
 | |
|     ConstantPlaceHolder();                       // DO NOT IMPLEMENT
 | |
|     void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
 | |
|   public:
 | |
|     Use Op;
 | |
|     ConstantPlaceHolder(const Type *Ty) 
 | |
|       : ConstantExpr(Ty, Instruction::UserOp1, &Op, 1),
 | |
|         Op(UndefValue::get(Type::IntTy), this) {
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| // Provide some details on error
 | |
| inline void BytecodeReader::error(std::string err) {
 | |
|   err +=  " (Vers=" ;
 | |
|   err += itostr(RevisionNum) ;
 | |
|   err += ", Pos=" ;
 | |
|   err += itostr(At-MemStart);
 | |
|   err += ")";
 | |
|   throw err;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Bytecode Reading Methods
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// Determine if the current block being read contains any more data.
 | |
| inline bool BytecodeReader::moreInBlock() {
 | |
|   return At < BlockEnd;
 | |
| }
 | |
| 
 | |
| /// Throw an error if we've read past the end of the current block
 | |
| inline void BytecodeReader::checkPastBlockEnd(const char * block_name) {
 | |
|   if (At > BlockEnd)
 | |
|     error(std::string("Attempt to read past the end of ") + block_name +
 | |
|           " block.");
 | |
| }
 | |
| 
 | |
| /// Align the buffer position to a 32 bit boundary
 | |
| inline void BytecodeReader::align32() {
 | |
|   if (hasAlignment) {
 | |
|     BufPtr Save = At;
 | |
|     At = (const unsigned char *)((unsigned long)(At+3) & (~3UL));
 | |
|     if (At > Save) 
 | |
|       if (Handler) Handler->handleAlignment(At - Save);
 | |
|     if (At > BlockEnd) 
 | |
|       error("Ran out of data while aligning!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Read a whole unsigned integer
 | |
| inline unsigned BytecodeReader::read_uint() {
 | |
|   if (At+4 > BlockEnd) 
 | |
|     error("Ran out of data reading uint!");
 | |
|   At += 4;
 | |
|   return At[-4] | (At[-3] << 8) | (At[-2] << 16) | (At[-1] << 24);
 | |
| }
 | |
| 
 | |
| /// Read a variable-bit-rate encoded unsigned integer
 | |
| inline unsigned BytecodeReader::read_vbr_uint() {
 | |
|   unsigned Shift = 0;
 | |
|   unsigned Result = 0;
 | |
|   BufPtr Save = At;
 | |
|   
 | |
|   do {
 | |
|     if (At == BlockEnd) 
 | |
|       error("Ran out of data reading vbr_uint!");
 | |
|     Result |= (unsigned)((*At++) & 0x7F) << Shift;
 | |
|     Shift += 7;
 | |
|   } while (At[-1] & 0x80);
 | |
|   if (Handler) Handler->handleVBR32(At-Save);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// Read a variable-bit-rate encoded unsigned 64-bit integer.
 | |
| inline uint64_t BytecodeReader::read_vbr_uint64() {
 | |
|   unsigned Shift = 0;
 | |
|   uint64_t Result = 0;
 | |
|   BufPtr Save = At;
 | |
|   
 | |
|   do {
 | |
|     if (At == BlockEnd) 
 | |
|       error("Ran out of data reading vbr_uint64!");
 | |
|     Result |= (uint64_t)((*At++) & 0x7F) << Shift;
 | |
|     Shift += 7;
 | |
|   } while (At[-1] & 0x80);
 | |
|   if (Handler) Handler->handleVBR64(At-Save);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| /// Read a variable-bit-rate encoded signed 64-bit integer.
 | |
| inline int64_t BytecodeReader::read_vbr_int64() {
 | |
|   uint64_t R = read_vbr_uint64();
 | |
|   if (R & 1) {
 | |
|     if (R != 1)
 | |
|       return -(int64_t)(R >> 1);
 | |
|     else   // There is no such thing as -0 with integers.  "-0" really means
 | |
|            // 0x8000000000000000.
 | |
|       return 1LL << 63;
 | |
|   } else
 | |
|     return  (int64_t)(R >> 1);
 | |
| }
 | |
| 
 | |
| /// Read a pascal-style string (length followed by text)
 | |
| inline std::string BytecodeReader::read_str() {
 | |
|   unsigned Size = read_vbr_uint();
 | |
|   const unsigned char *OldAt = At;
 | |
|   At += Size;
 | |
|   if (At > BlockEnd)             // Size invalid?
 | |
|     error("Ran out of data reading a string!");
 | |
|   return std::string((char*)OldAt, Size);
 | |
| }
 | |
| 
 | |
| /// Read an arbitrary block of data
 | |
| inline void BytecodeReader::read_data(void *Ptr, void *End) {
 | |
|   unsigned char *Start = (unsigned char *)Ptr;
 | |
|   unsigned Amount = (unsigned char *)End - Start;
 | |
|   if (At+Amount > BlockEnd) 
 | |
|     error("Ran out of data!");
 | |
|   std::copy(At, At+Amount, Start);
 | |
|   At += Amount;
 | |
| }
 | |
| 
 | |
| /// Read a float value in little-endian order
 | |
| inline void BytecodeReader::read_float(float& FloatVal) {
 | |
|   /// FIXME: This isn't optimal, it has size problems on some platforms
 | |
|   /// where FP is not IEEE.
 | |
|   union {
 | |
|     float f;
 | |
|     uint32_t i;
 | |
|   } FloatUnion;
 | |
|   FloatUnion.i = At[0] | (At[1] << 8) | (At[2] << 16) | (At[3] << 24);
 | |
|   At+=sizeof(uint32_t);
 | |
|   FloatVal = FloatUnion.f;
 | |
| }
 | |
| 
 | |
| /// Read a double value in little-endian order
 | |
| inline void BytecodeReader::read_double(double& DoubleVal) {
 | |
|   /// FIXME: This isn't optimal, it has size problems on some platforms
 | |
|   /// where FP is not IEEE.
 | |
|   union {
 | |
|     double d;
 | |
|     uint64_t i;
 | |
|   } DoubleUnion;
 | |
|   DoubleUnion.i = (uint64_t(At[0]) <<  0) | (uint64_t(At[1]) << 8) | 
 | |
|                   (uint64_t(At[2]) << 16) | (uint64_t(At[3]) << 24) |
 | |
|                   (uint64_t(At[4]) << 32) | (uint64_t(At[5]) << 40) | 
 | |
|                   (uint64_t(At[6]) << 48) | (uint64_t(At[7]) << 56);
 | |
|   At+=sizeof(uint64_t);
 | |
|   DoubleVal = DoubleUnion.d;
 | |
| }
 | |
| 
 | |
| /// Read a block header and obtain its type and size
 | |
| inline void BytecodeReader::read_block(unsigned &Type, unsigned &Size) {
 | |
|   if ( hasLongBlockHeaders ) {
 | |
|     Type = read_uint();
 | |
|     Size = read_uint();
 | |
|     switch (Type) {
 | |
|     case BytecodeFormat::Reserved_DoNotUse : 
 | |
|       error("Reserved_DoNotUse used as Module Type?");
 | |
|       Type = BytecodeFormat::ModuleBlockID; break;
 | |
|     case BytecodeFormat::Module: 
 | |
|       Type = BytecodeFormat::ModuleBlockID; break;
 | |
|     case BytecodeFormat::Function:
 | |
|       Type = BytecodeFormat::FunctionBlockID; break;
 | |
|     case BytecodeFormat::ConstantPool:
 | |
|       Type = BytecodeFormat::ConstantPoolBlockID; break;
 | |
|     case BytecodeFormat::SymbolTable:
 | |
|       Type = BytecodeFormat::SymbolTableBlockID; break;
 | |
|     case BytecodeFormat::ModuleGlobalInfo:
 | |
|       Type = BytecodeFormat::ModuleGlobalInfoBlockID; break;
 | |
|     case BytecodeFormat::GlobalTypePlane:
 | |
|       Type = BytecodeFormat::GlobalTypePlaneBlockID; break;
 | |
|     case BytecodeFormat::InstructionList:
 | |
|       Type = BytecodeFormat::InstructionListBlockID; break;
 | |
|     case BytecodeFormat::CompactionTable:
 | |
|       Type = BytecodeFormat::CompactionTableBlockID; break;
 | |
|     case BytecodeFormat::BasicBlock:
 | |
|       /// This block type isn't used after version 1.1. However, we have to
 | |
|       /// still allow the value in case this is an old bc format file.
 | |
|       /// We just let its value creep thru.
 | |
|       break;
 | |
|     default:
 | |
|       error("Invalid block id found: " + utostr(Type));
 | |
|       break;
 | |
|     }
 | |
|   } else {
 | |
|     Size = read_uint();
 | |
|     Type = Size & 0x1F; // mask low order five bits
 | |
|     Size >>= 5; // get rid of five low order bits, leaving high 27
 | |
|   }
 | |
|   BlockStart = At;
 | |
|   if (At + Size > BlockEnd)
 | |
|     error("Attempt to size a block past end of memory");
 | |
|   BlockEnd = At + Size;
 | |
|   if (Handler) Handler->handleBlock(Type, BlockStart, Size);
 | |
| }
 | |
| 
 | |
| 
 | |
| /// In LLVM 1.2 and before, Types were derived from Value and so they were
 | |
| /// written as part of the type planes along with any other Value. In LLVM
 | |
| /// 1.3 this changed so that Type does not derive from Value. Consequently,
 | |
| /// the BytecodeReader's containers for Values can't contain Types because
 | |
| /// there's no inheritance relationship. This means that the "Type Type"
 | |
| /// plane is defunct along with the Type::TypeTyID TypeID. In LLVM 1.3 
 | |
| /// whenever a bytecode construct must have both types and values together, 
 | |
| /// the types are always read/written first and then the Values. Furthermore
 | |
| /// since Type::TypeTyID no longer exists, its value (12) now corresponds to
 | |
| /// Type::LabelTyID. In order to overcome this we must "sanitize" all the
 | |
| /// type TypeIDs we encounter. For LLVM 1.3 bytecode files, there's no change.
 | |
| /// For LLVM 1.2 and before, this function will decrement the type id by
 | |
| /// one to account for the missing Type::TypeTyID enumerator if the value is
 | |
| /// larger than 12 (Type::LabelTyID). If the value is exactly 12, then this
 | |
| /// function returns true, otherwise false. This helps detect situations
 | |
| /// where the pre 1.3 bytecode is indicating that what follows is a type.
 | |
| /// @returns true iff type id corresponds to pre 1.3 "type type" 
 | |
| inline bool BytecodeReader::sanitizeTypeId(unsigned &TypeId) {
 | |
|   if (hasTypeDerivedFromValue) { /// do nothing if 1.3 or later
 | |
|     if (TypeId == Type::LabelTyID) {
 | |
|       TypeId = Type::VoidTyID; // sanitize it
 | |
|       return true; // indicate we got TypeTyID in pre 1.3 bytecode
 | |
|     } else if (TypeId > Type::LabelTyID)
 | |
|       --TypeId; // shift all planes down because type type plane is missing
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Reads a vbr uint to read in a type id and does the necessary
 | |
| /// conversion on it by calling sanitizeTypeId.
 | |
| /// @returns true iff \p TypeId read corresponds to a pre 1.3 "type type"
 | |
| /// @see sanitizeTypeId
 | |
| inline bool BytecodeReader::read_typeid(unsigned &TypeId) {
 | |
|   TypeId = read_vbr_uint();
 | |
|   if ( !has32BitTypes )
 | |
|     if ( TypeId == 0x00FFFFFF )
 | |
|       TypeId = read_vbr_uint();
 | |
|   return sanitizeTypeId(TypeId);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // IR Lookup Methods
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// Determine if a type id has an implicit null value
 | |
| inline bool BytecodeReader::hasImplicitNull(unsigned TyID) {
 | |
|   if (!hasExplicitPrimitiveZeros)
 | |
|     return TyID != Type::LabelTyID && TyID != Type::VoidTyID;
 | |
|   return TyID >= Type::FirstDerivedTyID;
 | |
| }
 | |
| 
 | |
| /// Obtain a type given a typeid and account for things like compaction tables,
 | |
| /// function level vs module level, and the offsetting for the primitive types.
 | |
| const Type *BytecodeReader::getType(unsigned ID) {
 | |
|   if (ID < Type::FirstDerivedTyID)
 | |
|     if (const Type *T = Type::getPrimitiveType((Type::TypeID)ID))
 | |
|       return T;   // Asked for a primitive type...
 | |
| 
 | |
|   // Otherwise, derived types need offset...
 | |
|   ID -= Type::FirstDerivedTyID;
 | |
| 
 | |
|   if (!CompactionTypes.empty()) {
 | |
|     if (ID >= CompactionTypes.size())
 | |
|       error("Type ID out of range for compaction table!");
 | |
|     return CompactionTypes[ID].first;
 | |
|   }
 | |
| 
 | |
|   // Is it a module-level type?
 | |
|   if (ID < ModuleTypes.size())
 | |
|     return ModuleTypes[ID].get();
 | |
| 
 | |
|   // Nope, is it a function-level type?
 | |
|   ID -= ModuleTypes.size();
 | |
|   if (ID < FunctionTypes.size())
 | |
|     return FunctionTypes[ID].get();
 | |
| 
 | |
|   error("Illegal type reference!");
 | |
|   return Type::VoidTy;
 | |
| }
 | |
| 
 | |
| /// Get a sanitized type id. This just makes sure that the \p ID
 | |
| /// is both sanitized and not the "type type" of pre-1.3 bytecode.
 | |
| /// @see sanitizeTypeId
 | |
| inline const Type* BytecodeReader::getSanitizedType(unsigned& ID) {
 | |
|   if (sanitizeTypeId(ID))
 | |
|     error("Invalid type id encountered");
 | |
|   return getType(ID);
 | |
| }
 | |
| 
 | |
| /// This method just saves some coding. It uses read_typeid to read
 | |
| /// in a sanitized type id, errors that its not the type type, and
 | |
| /// then calls getType to return the type value.
 | |
| inline const Type* BytecodeReader::readSanitizedType() {
 | |
|   unsigned ID;
 | |
|   if (read_typeid(ID))
 | |
|     error("Invalid type id encountered");
 | |
|   return getType(ID);
 | |
| }
 | |
| 
 | |
| /// Get the slot number associated with a type accounting for primitive
 | |
| /// types, compaction tables, and function level vs module level.
 | |
| unsigned BytecodeReader::getTypeSlot(const Type *Ty) {
 | |
|   if (Ty->isPrimitiveType())
 | |
|     return Ty->getTypeID();
 | |
| 
 | |
|   // Scan the compaction table for the type if needed.
 | |
|   if (!CompactionTypes.empty()) {
 | |
|     for (unsigned i = 0, e = CompactionTypes.size(); i != e; ++i)
 | |
|       if (CompactionTypes[i].first == Ty)
 | |
|         return Type::FirstDerivedTyID + i; 
 | |
| 
 | |
|     error("Couldn't find type specified in compaction table!");
 | |
|   }
 | |
| 
 | |
|   // Check the function level types first...
 | |
|   TypeListTy::iterator I = std::find(FunctionTypes.begin(),
 | |
|                                      FunctionTypes.end(), Ty);
 | |
| 
 | |
|   if (I != FunctionTypes.end())
 | |
|     return Type::FirstDerivedTyID + ModuleTypes.size() + 
 | |
|            (&*I - &FunctionTypes[0]);
 | |
| 
 | |
|   // Check the module level types now...
 | |
|   I = std::find(ModuleTypes.begin(), ModuleTypes.end(), Ty);
 | |
|   if (I == ModuleTypes.end())
 | |
|     error("Didn't find type in ModuleTypes.");
 | |
|   return Type::FirstDerivedTyID + (&*I - &ModuleTypes[0]);
 | |
| }
 | |
| 
 | |
| /// This is just like getType, but when a compaction table is in use, it is
 | |
| /// ignored.  It also ignores function level types.
 | |
| /// @see getType
 | |
| const Type *BytecodeReader::getGlobalTableType(unsigned Slot) {
 | |
|   if (Slot < Type::FirstDerivedTyID) {
 | |
|     const Type *Ty = Type::getPrimitiveType((Type::TypeID)Slot);
 | |
|     if (!Ty)
 | |
|       error("Not a primitive type ID?");
 | |
|     return Ty;
 | |
|   }
 | |
|   Slot -= Type::FirstDerivedTyID;
 | |
|   if (Slot >= ModuleTypes.size())
 | |
|     error("Illegal compaction table type reference!");
 | |
|   return ModuleTypes[Slot];
 | |
| }
 | |
| 
 | |
| /// This is just like getTypeSlot, but when a compaction table is in use, it
 | |
| /// is ignored. It also ignores function level types.
 | |
| unsigned BytecodeReader::getGlobalTableTypeSlot(const Type *Ty) {
 | |
|   if (Ty->isPrimitiveType())
 | |
|     return Ty->getTypeID();
 | |
|   TypeListTy::iterator I = std::find(ModuleTypes.begin(),
 | |
|                                       ModuleTypes.end(), Ty);
 | |
|   if (I == ModuleTypes.end())
 | |
|     error("Didn't find type in ModuleTypes.");
 | |
|   return Type::FirstDerivedTyID + (&*I - &ModuleTypes[0]);
 | |
| }
 | |
| 
 | |
| /// Retrieve a value of a given type and slot number, possibly creating 
 | |
| /// it if it doesn't already exist. 
 | |
| Value * BytecodeReader::getValue(unsigned type, unsigned oNum, bool Create) {
 | |
|   assert(type != Type::LabelTyID && "getValue() cannot get blocks!");
 | |
|   unsigned Num = oNum;
 | |
| 
 | |
|   // If there is a compaction table active, it defines the low-level numbers.
 | |
|   // If not, the module values define the low-level numbers.
 | |
|   if (CompactionValues.size() > type && !CompactionValues[type].empty()) {
 | |
|     if (Num < CompactionValues[type].size())
 | |
|       return CompactionValues[type][Num];
 | |
|     Num -= CompactionValues[type].size();
 | |
|   } else {
 | |
|     // By default, the global type id is the type id passed in
 | |
|     unsigned GlobalTyID = type;
 | |
| 
 | |
|     // If the type plane was compactified, figure out the global type ID by
 | |
|     // adding the derived type ids and the distance.
 | |
|     if (!CompactionTypes.empty() && type >= Type::FirstDerivedTyID)
 | |
|       GlobalTyID = CompactionTypes[type-Type::FirstDerivedTyID].second;
 | |
| 
 | |
|     if (hasImplicitNull(GlobalTyID)) {
 | |
|       if (Num == 0)
 | |
|         return Constant::getNullValue(getType(type));
 | |
|       --Num;
 | |
|     }
 | |
| 
 | |
|     if (GlobalTyID < ModuleValues.size() && ModuleValues[GlobalTyID]) {
 | |
|       if (Num < ModuleValues[GlobalTyID]->size())
 | |
|         return ModuleValues[GlobalTyID]->getOperand(Num);
 | |
|       Num -= ModuleValues[GlobalTyID]->size();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (FunctionValues.size() > type && 
 | |
|       FunctionValues[type] && 
 | |
|       Num < FunctionValues[type]->size())
 | |
|     return FunctionValues[type]->getOperand(Num);
 | |
| 
 | |
|   if (!Create) return 0;  // Do not create a placeholder?
 | |
| 
 | |
|   // Did we already create a place holder?
 | |
|   std::pair<unsigned,unsigned> KeyValue(type, oNum);
 | |
|   ForwardReferenceMap::iterator I = ForwardReferences.lower_bound(KeyValue);
 | |
|   if (I != ForwardReferences.end() && I->first == KeyValue)
 | |
|     return I->second;   // We have already created this placeholder
 | |
| 
 | |
|   // If the type exists (it should)
 | |
|   if (const Type* Ty = getType(type)) {
 | |
|     // Create the place holder
 | |
|     Value *Val = new Argument(Ty);
 | |
|     ForwardReferences.insert(I, std::make_pair(KeyValue, Val));
 | |
|     return Val;
 | |
|   }
 | |
|   throw "Can't create placeholder for value of type slot #" + utostr(type);
 | |
| }
 | |
| 
 | |
| /// This is just like getValue, but when a compaction table is in use, it 
 | |
| /// is ignored.  Also, no forward references or other fancy features are 
 | |
| /// supported.
 | |
| Value* BytecodeReader::getGlobalTableValue(unsigned TyID, unsigned SlotNo) {
 | |
|   if (SlotNo == 0)
 | |
|     return Constant::getNullValue(getType(TyID));
 | |
| 
 | |
|   if (!CompactionTypes.empty() && TyID >= Type::FirstDerivedTyID) {
 | |
|     TyID -= Type::FirstDerivedTyID;
 | |
|     if (TyID >= CompactionTypes.size())
 | |
|       error("Type ID out of range for compaction table!");
 | |
|     TyID = CompactionTypes[TyID].second;
 | |
|   }
 | |
| 
 | |
|   --SlotNo;
 | |
| 
 | |
|   if (TyID >= ModuleValues.size() || ModuleValues[TyID] == 0 ||
 | |
|       SlotNo >= ModuleValues[TyID]->size()) {
 | |
|     if (TyID >= ModuleValues.size() || ModuleValues[TyID] == 0)
 | |
|       error("Corrupt compaction table entry!"
 | |
|             + utostr(TyID) + ", " + utostr(SlotNo) + ": " 
 | |
|             + utostr(ModuleValues.size()));
 | |
|     else 
 | |
|       error("Corrupt compaction table entry!"
 | |
|             + utostr(TyID) + ", " + utostr(SlotNo) + ": " 
 | |
|             + utostr(ModuleValues.size()) + ", "
 | |
|             + utohexstr(reinterpret_cast<uint64_t>(((void*)ModuleValues[TyID])))
 | |
|             + ", "
 | |
|             + utostr(ModuleValues[TyID]->size()));
 | |
|   }
 | |
|   return ModuleValues[TyID]->getOperand(SlotNo);
 | |
| }
 | |
| 
 | |
| /// Just like getValue, except that it returns a null pointer
 | |
| /// only on error.  It always returns a constant (meaning that if the value is
 | |
| /// defined, but is not a constant, that is an error).  If the specified
 | |
| /// constant hasn't been parsed yet, a placeholder is defined and used.  
 | |
| /// Later, after the real value is parsed, the placeholder is eliminated.
 | |
| Constant* BytecodeReader::getConstantValue(unsigned TypeSlot, unsigned Slot) {
 | |
|   if (Value *V = getValue(TypeSlot, Slot, false))
 | |
|     if (Constant *C = dyn_cast<Constant>(V))
 | |
|       return C;   // If we already have the value parsed, just return it
 | |
|     else
 | |
|       error("Value for slot " + utostr(Slot) + 
 | |
|             " is expected to be a constant!");
 | |
| 
 | |
|   std::pair<unsigned, unsigned> Key(TypeSlot, Slot);
 | |
|   ConstantRefsType::iterator I = ConstantFwdRefs.lower_bound(Key);
 | |
| 
 | |
|   if (I != ConstantFwdRefs.end() && I->first == Key) {
 | |
|     return I->second;
 | |
|   } else {
 | |
|     // Create a placeholder for the constant reference and
 | |
|     // keep track of the fact that we have a forward ref to recycle it
 | |
|     Constant *C = new ConstantPlaceHolder(getType(TypeSlot));
 | |
|     
 | |
|     // Keep track of the fact that we have a forward ref to recycle it
 | |
|     ConstantFwdRefs.insert(I, std::make_pair(Key, C));
 | |
|     return C;
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // IR Construction Methods
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// As values are created, they are inserted into the appropriate place
 | |
| /// with this method. The ValueTable argument must be one of ModuleValues
 | |
| /// or FunctionValues data members of this class.
 | |
| unsigned BytecodeReader::insertValue(Value *Val, unsigned type, 
 | |
|                                       ValueTable &ValueTab) {
 | |
|   assert((!isa<Constant>(Val) || !cast<Constant>(Val)->isNullValue()) ||
 | |
|           !hasImplicitNull(type) &&
 | |
|          "Cannot read null values from bytecode!");
 | |
| 
 | |
|   if (ValueTab.size() <= type)
 | |
|     ValueTab.resize(type+1);
 | |
| 
 | |
|   if (!ValueTab[type]) ValueTab[type] = new ValueList();
 | |
| 
 | |
|   ValueTab[type]->push_back(Val);
 | |
| 
 | |
|   bool HasOffset = hasImplicitNull(type);
 | |
|   return ValueTab[type]->size()-1 + HasOffset;
 | |
| }
 | |
| 
 | |
| /// Insert the arguments of a function as new values in the reader.
 | |
| void BytecodeReader::insertArguments(Function* F) {
 | |
|   const FunctionType *FT = F->getFunctionType();
 | |
|   Function::arg_iterator AI = F->arg_begin();
 | |
|   for (FunctionType::param_iterator It = FT->param_begin();
 | |
|        It != FT->param_end(); ++It, ++AI)
 | |
|     insertValue(AI, getTypeSlot(AI->getType()), FunctionValues);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Bytecode Parsing Methods
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// This method parses a single instruction. The instruction is
 | |
| /// inserted at the end of the \p BB provided. The arguments of
 | |
| /// the instruction are provided in the \p Oprnds vector.
 | |
| void BytecodeReader::ParseInstruction(std::vector<unsigned> &Oprnds,
 | |
|                                       BasicBlock* BB) {
 | |
|   BufPtr SaveAt = At;
 | |
| 
 | |
|   // Clear instruction data
 | |
|   Oprnds.clear();
 | |
|   unsigned iType = 0;
 | |
|   unsigned Opcode = 0;
 | |
|   unsigned Op = read_uint();
 | |
| 
 | |
|   // bits   Instruction format:        Common to all formats
 | |
|   // --------------------------
 | |
|   // 01-00: Opcode type, fixed to 1.
 | |
|   // 07-02: Opcode
 | |
|   Opcode    = (Op >> 2) & 63;
 | |
|   Oprnds.resize((Op >> 0) & 03);
 | |
| 
 | |
|   // Extract the operands
 | |
|   switch (Oprnds.size()) {
 | |
|   case 1:
 | |
|     // bits   Instruction format:
 | |
|     // --------------------------
 | |
|     // 19-08: Resulting type plane
 | |
|     // 31-20: Operand #1 (if set to (2^12-1), then zero operands)
 | |
|     //
 | |
|     iType   = (Op >>  8) & 4095;
 | |
|     Oprnds[0] = (Op >> 20) & 4095;
 | |
|     if (Oprnds[0] == 4095)    // Handle special encoding for 0 operands...
 | |
|       Oprnds.resize(0);
 | |
|     break;
 | |
|   case 2:
 | |
|     // bits   Instruction format:
 | |
|     // --------------------------
 | |
|     // 15-08: Resulting type plane
 | |
|     // 23-16: Operand #1
 | |
|     // 31-24: Operand #2  
 | |
|     //
 | |
|     iType   = (Op >>  8) & 255;
 | |
|     Oprnds[0] = (Op >> 16) & 255;
 | |
|     Oprnds[1] = (Op >> 24) & 255;
 | |
|     break;
 | |
|   case 3:
 | |
|     // bits   Instruction format:
 | |
|     // --------------------------
 | |
|     // 13-08: Resulting type plane
 | |
|     // 19-14: Operand #1
 | |
|     // 25-20: Operand #2
 | |
|     // 31-26: Operand #3
 | |
|     //
 | |
|     iType   = (Op >>  8) & 63;
 | |
|     Oprnds[0] = (Op >> 14) & 63;
 | |
|     Oprnds[1] = (Op >> 20) & 63;
 | |
|     Oprnds[2] = (Op >> 26) & 63;
 | |
|     break;
 | |
|   case 0:
 | |
|     At -= 4;  // Hrm, try this again...
 | |
|     Opcode = read_vbr_uint();
 | |
|     Opcode >>= 2;
 | |
|     iType = read_vbr_uint();
 | |
| 
 | |
|     unsigned NumOprnds = read_vbr_uint();
 | |
|     Oprnds.resize(NumOprnds);
 | |
| 
 | |
|     if (NumOprnds == 0)
 | |
|       error("Zero-argument instruction found; this is invalid.");
 | |
| 
 | |
|     for (unsigned i = 0; i != NumOprnds; ++i)
 | |
|       Oprnds[i] = read_vbr_uint();
 | |
|     align32();
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   const Type *InstTy = getSanitizedType(iType);
 | |
| 
 | |
|   // We have enough info to inform the handler now.
 | |
|   if (Handler) Handler->handleInstruction(Opcode, InstTy, Oprnds, At-SaveAt);
 | |
| 
 | |
|   // Declare the resulting instruction we'll build.
 | |
|   Instruction *Result = 0;
 | |
| 
 | |
|   // If this is a bytecode format that did not include the unreachable
 | |
|   // instruction, bump up all opcodes numbers to make space.
 | |
|   if (hasNoUnreachableInst) {
 | |
|     if (Opcode >= Instruction::Unreachable &&
 | |
|         Opcode < 62) {
 | |
|       ++Opcode;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Handle binary operators
 | |
|   if (Opcode >= Instruction::BinaryOpsBegin &&
 | |
|       Opcode <  Instruction::BinaryOpsEnd  && Oprnds.size() == 2)
 | |
|     Result = BinaryOperator::create((Instruction::BinaryOps)Opcode,
 | |
|                                     getValue(iType, Oprnds[0]),
 | |
|                                     getValue(iType, Oprnds[1]));
 | |
| 
 | |
|   switch (Opcode) {
 | |
|   default: 
 | |
|     if (Result == 0) 
 | |
|       error("Illegal instruction read!");
 | |
|     break;
 | |
|   case Instruction::VAArg:
 | |
|     Result = new VAArgInst(getValue(iType, Oprnds[0]), 
 | |
|                            getSanitizedType(Oprnds[1]));
 | |
|     break;
 | |
|   case Instruction::VANext:
 | |
|     Result = new VANextInst(getValue(iType, Oprnds[0]), 
 | |
|                             getSanitizedType(Oprnds[1]));
 | |
|     break;
 | |
|   case Instruction::Cast:
 | |
|     Result = new CastInst(getValue(iType, Oprnds[0]), 
 | |
|                           getSanitizedType(Oprnds[1]));
 | |
|     break;
 | |
|   case Instruction::Select:
 | |
|     Result = new SelectInst(getValue(Type::BoolTyID, Oprnds[0]),
 | |
|                             getValue(iType, Oprnds[1]),
 | |
|                             getValue(iType, Oprnds[2]));
 | |
|     break;
 | |
|   case Instruction::PHI: {
 | |
|     if (Oprnds.size() == 0 || (Oprnds.size() & 1))
 | |
|       error("Invalid phi node encountered!");
 | |
| 
 | |
|     PHINode *PN = new PHINode(InstTy);
 | |
|     PN->reserveOperandSpace(Oprnds.size());
 | |
|     for (unsigned i = 0, e = Oprnds.size(); i != e; i += 2)
 | |
|       PN->addIncoming(getValue(iType, Oprnds[i]), getBasicBlock(Oprnds[i+1]));
 | |
|     Result = PN;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Instruction::Shl:
 | |
|   case Instruction::Shr:
 | |
|     Result = new ShiftInst((Instruction::OtherOps)Opcode,
 | |
|                            getValue(iType, Oprnds[0]),
 | |
|                            getValue(Type::UByteTyID, Oprnds[1]));
 | |
|     break;
 | |
|   case Instruction::Ret:
 | |
|     if (Oprnds.size() == 0)
 | |
|       Result = new ReturnInst();
 | |
|     else if (Oprnds.size() == 1)
 | |
|       Result = new ReturnInst(getValue(iType, Oprnds[0]));
 | |
|     else
 | |
|       error("Unrecognized instruction!");
 | |
|     break;
 | |
| 
 | |
|   case Instruction::Br:
 | |
|     if (Oprnds.size() == 1)
 | |
|       Result = new BranchInst(getBasicBlock(Oprnds[0]));
 | |
|     else if (Oprnds.size() == 3)
 | |
|       Result = new BranchInst(getBasicBlock(Oprnds[0]), 
 | |
|           getBasicBlock(Oprnds[1]), getValue(Type::BoolTyID , Oprnds[2]));
 | |
|     else
 | |
|       error("Invalid number of operands for a 'br' instruction!");
 | |
|     break;
 | |
|   case Instruction::Switch: {
 | |
|     if (Oprnds.size() & 1)
 | |
|       error("Switch statement with odd number of arguments!");
 | |
| 
 | |
|     SwitchInst *I = new SwitchInst(getValue(iType, Oprnds[0]),
 | |
|                                    getBasicBlock(Oprnds[1]),
 | |
|                                    Oprnds.size()/2-1);
 | |
|     for (unsigned i = 2, e = Oprnds.size(); i != e; i += 2)
 | |
|       I->addCase(cast<ConstantInt>(getValue(iType, Oprnds[i])),
 | |
|                  getBasicBlock(Oprnds[i+1]));
 | |
|     Result = I;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Instruction::Call: {
 | |
|     if (Oprnds.size() == 0)
 | |
|       error("Invalid call instruction encountered!");
 | |
| 
 | |
|     Value *F = getValue(iType, Oprnds[0]);
 | |
| 
 | |
|     // Check to make sure we have a pointer to function type
 | |
|     const PointerType *PTy = dyn_cast<PointerType>(F->getType());
 | |
|     if (PTy == 0) error("Call to non function pointer value!");
 | |
|     const FunctionType *FTy = dyn_cast<FunctionType>(PTy->getElementType());
 | |
|     if (FTy == 0) error("Call to non function pointer value!");
 | |
| 
 | |
|     std::vector<Value *> Params;
 | |
|     if (!FTy->isVarArg()) {
 | |
|       FunctionType::param_iterator It = FTy->param_begin();
 | |
| 
 | |
|       for (unsigned i = 1, e = Oprnds.size(); i != e; ++i) {
 | |
|         if (It == FTy->param_end())
 | |
|           error("Invalid call instruction!");
 | |
|         Params.push_back(getValue(getTypeSlot(*It++), Oprnds[i]));
 | |
|       }
 | |
|       if (It != FTy->param_end())
 | |
|         error("Invalid call instruction!");
 | |
|     } else {
 | |
|       Oprnds.erase(Oprnds.begin(), Oprnds.begin()+1);
 | |
| 
 | |
|       unsigned FirstVariableOperand;
 | |
|       if (Oprnds.size() < FTy->getNumParams())
 | |
|         error("Call instruction missing operands!");
 | |
| 
 | |
|       // Read all of the fixed arguments
 | |
|       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
 | |
|         Params.push_back(getValue(getTypeSlot(FTy->getParamType(i)),Oprnds[i]));
 | |
|       
 | |
|       FirstVariableOperand = FTy->getNumParams();
 | |
| 
 | |
|       if ((Oprnds.size()-FirstVariableOperand) & 1) 
 | |
|         error("Invalid call instruction!");   // Must be pairs of type/value
 | |
|         
 | |
|       for (unsigned i = FirstVariableOperand, e = Oprnds.size(); 
 | |
|            i != e; i += 2)
 | |
|         Params.push_back(getValue(Oprnds[i], Oprnds[i+1]));
 | |
|     }
 | |
| 
 | |
|     Result = new CallInst(F, Params);
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::Invoke: {
 | |
|     if (Oprnds.size() < 3) 
 | |
|       error("Invalid invoke instruction!");
 | |
|     Value *F = getValue(iType, Oprnds[0]);
 | |
| 
 | |
|     // Check to make sure we have a pointer to function type
 | |
|     const PointerType *PTy = dyn_cast<PointerType>(F->getType());
 | |
|     if (PTy == 0) 
 | |
|       error("Invoke to non function pointer value!");
 | |
|     const FunctionType *FTy = dyn_cast<FunctionType>(PTy->getElementType());
 | |
|     if (FTy == 0) 
 | |
|       error("Invoke to non function pointer value!");
 | |
| 
 | |
|     std::vector<Value *> Params;
 | |
|     BasicBlock *Normal, *Except;
 | |
| 
 | |
|     if (!FTy->isVarArg()) {
 | |
|       Normal = getBasicBlock(Oprnds[1]);
 | |
|       Except = getBasicBlock(Oprnds[2]);
 | |
| 
 | |
|       FunctionType::param_iterator It = FTy->param_begin();
 | |
|       for (unsigned i = 3, e = Oprnds.size(); i != e; ++i) {
 | |
|         if (It == FTy->param_end())
 | |
|           error("Invalid invoke instruction!");
 | |
|         Params.push_back(getValue(getTypeSlot(*It++), Oprnds[i]));
 | |
|       }
 | |
|       if (It != FTy->param_end())
 | |
|         error("Invalid invoke instruction!");
 | |
|     } else {
 | |
|       Oprnds.erase(Oprnds.begin(), Oprnds.begin()+1);
 | |
| 
 | |
|       Normal = getBasicBlock(Oprnds[0]);
 | |
|       Except = getBasicBlock(Oprnds[1]);
 | |
|       
 | |
|       unsigned FirstVariableArgument = FTy->getNumParams()+2;
 | |
|       for (unsigned i = 2; i != FirstVariableArgument; ++i)
 | |
|         Params.push_back(getValue(getTypeSlot(FTy->getParamType(i-2)),
 | |
|                                   Oprnds[i]));
 | |
|       
 | |
|       if (Oprnds.size()-FirstVariableArgument & 1) // Must be type/value pairs
 | |
|         error("Invalid invoke instruction!");
 | |
| 
 | |
|       for (unsigned i = FirstVariableArgument; i < Oprnds.size(); i += 2)
 | |
|         Params.push_back(getValue(Oprnds[i], Oprnds[i+1]));
 | |
|     }
 | |
| 
 | |
|     Result = new InvokeInst(F, Normal, Except, Params);
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::Malloc:
 | |
|     if (Oprnds.size() > 2) 
 | |
|       error("Invalid malloc instruction!");
 | |
|     if (!isa<PointerType>(InstTy))
 | |
|       error("Invalid malloc instruction!");
 | |
| 
 | |
|     Result = new MallocInst(cast<PointerType>(InstTy)->getElementType(),
 | |
|                             Oprnds.size() ? getValue(Type::UIntTyID,
 | |
|                                                    Oprnds[0]) : 0);
 | |
|     break;
 | |
| 
 | |
|   case Instruction::Alloca:
 | |
|     if (Oprnds.size() > 2) 
 | |
|       error("Invalid alloca instruction!");
 | |
|     if (!isa<PointerType>(InstTy))
 | |
|       error("Invalid alloca instruction!");
 | |
| 
 | |
|     Result = new AllocaInst(cast<PointerType>(InstTy)->getElementType(),
 | |
|                             Oprnds.size() ? getValue(Type::UIntTyID, 
 | |
|                             Oprnds[0]) :0);
 | |
|     break;
 | |
|   case Instruction::Free:
 | |
|     if (!isa<PointerType>(InstTy))
 | |
|       error("Invalid free instruction!");
 | |
|     Result = new FreeInst(getValue(iType, Oprnds[0]));
 | |
|     break;
 | |
|   case Instruction::GetElementPtr: {
 | |
|     if (Oprnds.size() == 0 || !isa<PointerType>(InstTy))
 | |
|       error("Invalid getelementptr instruction!");
 | |
| 
 | |
|     std::vector<Value*> Idx;
 | |
| 
 | |
|     const Type *NextTy = InstTy;
 | |
|     for (unsigned i = 1, e = Oprnds.size(); i != e; ++i) {
 | |
|       const CompositeType *TopTy = dyn_cast_or_null<CompositeType>(NextTy);
 | |
|       if (!TopTy) 
 | |
|         error("Invalid getelementptr instruction!"); 
 | |
| 
 | |
|       unsigned ValIdx = Oprnds[i];
 | |
|       unsigned IdxTy = 0;
 | |
|       if (!hasRestrictedGEPTypes) {
 | |
|         // Struct indices are always uints, sequential type indices can be any
 | |
|         // of the 32 or 64-bit integer types.  The actual choice of type is
 | |
|         // encoded in the low two bits of the slot number.
 | |
|         if (isa<StructType>(TopTy))
 | |
|           IdxTy = Type::UIntTyID;
 | |
|         else {
 | |
|           switch (ValIdx & 3) {
 | |
|           default:
 | |
|           case 0: IdxTy = Type::UIntTyID; break;
 | |
|           case 1: IdxTy = Type::IntTyID; break;
 | |
|           case 2: IdxTy = Type::ULongTyID; break;
 | |
|           case 3: IdxTy = Type::LongTyID; break;
 | |
|           }
 | |
|           ValIdx >>= 2;
 | |
|         }
 | |
|       } else {
 | |
|         IdxTy = isa<StructType>(TopTy) ? Type::UByteTyID : Type::LongTyID;
 | |
|       }
 | |
| 
 | |
|       Idx.push_back(getValue(IdxTy, ValIdx));
 | |
| 
 | |
|       // Convert ubyte struct indices into uint struct indices.
 | |
|       if (isa<StructType>(TopTy) && hasRestrictedGEPTypes)
 | |
|         if (ConstantUInt *C = dyn_cast<ConstantUInt>(Idx.back()))
 | |
|           Idx[Idx.size()-1] = ConstantExpr::getCast(C, Type::UIntTy);
 | |
| 
 | |
|       NextTy = GetElementPtrInst::getIndexedType(InstTy, Idx, true);
 | |
|     }
 | |
| 
 | |
|     Result = new GetElementPtrInst(getValue(iType, Oprnds[0]), Idx);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case 62:   // volatile load
 | |
|   case Instruction::Load:
 | |
|     if (Oprnds.size() != 1 || !isa<PointerType>(InstTy))
 | |
|       error("Invalid load instruction!");
 | |
|     Result = new LoadInst(getValue(iType, Oprnds[0]), "", Opcode == 62);
 | |
|     break;
 | |
| 
 | |
|   case 63:   // volatile store 
 | |
|   case Instruction::Store: {
 | |
|     if (!isa<PointerType>(InstTy) || Oprnds.size() != 2)
 | |
|       error("Invalid store instruction!");
 | |
| 
 | |
|     Value *Ptr = getValue(iType, Oprnds[1]);
 | |
|     const Type *ValTy = cast<PointerType>(Ptr->getType())->getElementType();
 | |
|     Result = new StoreInst(getValue(getTypeSlot(ValTy), Oprnds[0]), Ptr,
 | |
|                            Opcode == 63);
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::Unwind:
 | |
|     if (Oprnds.size() != 0) error("Invalid unwind instruction!");
 | |
|     Result = new UnwindInst();
 | |
|     break;
 | |
|   case Instruction::Unreachable:
 | |
|     if (Oprnds.size() != 0) error("Invalid unreachable instruction!");
 | |
|     Result = new UnreachableInst();
 | |
|     break;
 | |
|   }  // end switch(Opcode) 
 | |
| 
 | |
|   unsigned TypeSlot;
 | |
|   if (Result->getType() == InstTy)
 | |
|     TypeSlot = iType;
 | |
|   else
 | |
|     TypeSlot = getTypeSlot(Result->getType());
 | |
| 
 | |
|   insertValue(Result, TypeSlot, FunctionValues);
 | |
|   BB->getInstList().push_back(Result);
 | |
| }
 | |
| 
 | |
| /// Get a particular numbered basic block, which might be a forward reference.
 | |
| /// This works together with ParseBasicBlock to handle these forward references
 | |
| /// in a clean manner.  This function is used when constructing phi, br, switch,
 | |
| /// and other instructions that reference basic blocks. Blocks are numbered
 | |
| /// sequentially as they appear in the function.
 | |
| BasicBlock *BytecodeReader::getBasicBlock(unsigned ID) {
 | |
|   // Make sure there is room in the table...
 | |
|   if (ParsedBasicBlocks.size() <= ID) ParsedBasicBlocks.resize(ID+1);
 | |
| 
 | |
|   // First check to see if this is a backwards reference, i.e., ParseBasicBlock
 | |
|   // has already created this block, or if the forward reference has already
 | |
|   // been created.
 | |
|   if (ParsedBasicBlocks[ID])
 | |
|     return ParsedBasicBlocks[ID];
 | |
| 
 | |
|   // Otherwise, the basic block has not yet been created.  Do so and add it to
 | |
|   // the ParsedBasicBlocks list.
 | |
|   return ParsedBasicBlocks[ID] = new BasicBlock();
 | |
| }
 | |
| 
 | |
| /// In LLVM 1.0 bytecode files, we used to output one basicblock at a time.  
 | |
| /// This method reads in one of the basicblock packets. This method is not used
 | |
| /// for bytecode files after LLVM 1.0
 | |
| /// @returns The basic block constructed.
 | |
| BasicBlock *BytecodeReader::ParseBasicBlock(unsigned BlockNo) {
 | |
|   if (Handler) Handler->handleBasicBlockBegin(BlockNo);
 | |
| 
 | |
|   BasicBlock *BB = 0;
 | |
| 
 | |
|   if (ParsedBasicBlocks.size() == BlockNo)
 | |
|     ParsedBasicBlocks.push_back(BB = new BasicBlock());
 | |
|   else if (ParsedBasicBlocks[BlockNo] == 0)
 | |
|     BB = ParsedBasicBlocks[BlockNo] = new BasicBlock();
 | |
|   else
 | |
|     BB = ParsedBasicBlocks[BlockNo];
 | |
| 
 | |
|   std::vector<unsigned> Operands;
 | |
|   while (moreInBlock())
 | |
|     ParseInstruction(Operands, BB);
 | |
| 
 | |
|   if (Handler) Handler->handleBasicBlockEnd(BlockNo);
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| /// Parse all of the BasicBlock's & Instruction's in the body of a function.
 | |
| /// In post 1.0 bytecode files, we no longer emit basic block individually, 
 | |
| /// in order to avoid per-basic-block overhead.
 | |
| /// @returns Rhe number of basic blocks encountered.
 | |
| unsigned BytecodeReader::ParseInstructionList(Function* F) {
 | |
|   unsigned BlockNo = 0;
 | |
|   std::vector<unsigned> Args;
 | |
| 
 | |
|   while (moreInBlock()) {
 | |
|     if (Handler) Handler->handleBasicBlockBegin(BlockNo);
 | |
|     BasicBlock *BB;
 | |
|     if (ParsedBasicBlocks.size() == BlockNo)
 | |
|       ParsedBasicBlocks.push_back(BB = new BasicBlock());
 | |
|     else if (ParsedBasicBlocks[BlockNo] == 0)
 | |
|       BB = ParsedBasicBlocks[BlockNo] = new BasicBlock();
 | |
|     else
 | |
|       BB = ParsedBasicBlocks[BlockNo];
 | |
|     ++BlockNo;
 | |
|     F->getBasicBlockList().push_back(BB);
 | |
| 
 | |
|     // Read instructions into this basic block until we get to a terminator
 | |
|     while (moreInBlock() && !BB->getTerminator())
 | |
|       ParseInstruction(Args, BB);
 | |
| 
 | |
|     if (!BB->getTerminator())
 | |
|       error("Non-terminated basic block found!");
 | |
| 
 | |
|     if (Handler) Handler->handleBasicBlockEnd(BlockNo-1);
 | |
|   }
 | |
| 
 | |
|   return BlockNo;
 | |
| }
 | |
| 
 | |
| /// Parse a symbol table. This works for both module level and function
 | |
| /// level symbol tables.  For function level symbol tables, the CurrentFunction
 | |
| /// parameter must be non-zero and the ST parameter must correspond to
 | |
| /// CurrentFunction's symbol table. For Module level symbol tables, the
 | |
| /// CurrentFunction argument must be zero.
 | |
| void BytecodeReader::ParseSymbolTable(Function *CurrentFunction,
 | |
|                                       SymbolTable *ST) {
 | |
|   if (Handler) Handler->handleSymbolTableBegin(CurrentFunction,ST);
 | |
| 
 | |
|   // Allow efficient basic block lookup by number.
 | |
|   std::vector<BasicBlock*> BBMap;
 | |
|   if (CurrentFunction)
 | |
|     for (Function::iterator I = CurrentFunction->begin(),
 | |
|            E = CurrentFunction->end(); I != E; ++I)
 | |
|       BBMap.push_back(I);
 | |
| 
 | |
|   /// In LLVM 1.3 we write types separately from values so
 | |
|   /// The types are always first in the symbol table. This is
 | |
|   /// because Type no longer derives from Value.
 | |
|   if (!hasTypeDerivedFromValue) {
 | |
|     // Symtab block header: [num entries]
 | |
|     unsigned NumEntries = read_vbr_uint();
 | |
|     for (unsigned i = 0; i < NumEntries; ++i) {
 | |
|       // Symtab entry: [def slot #][name]
 | |
|       unsigned slot = read_vbr_uint();
 | |
|       std::string Name = read_str();
 | |
|       const Type* T = getType(slot);
 | |
|       ST->insert(Name, T);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   while (moreInBlock()) {
 | |
|     // Symtab block header: [num entries][type id number]
 | |
|     unsigned NumEntries = read_vbr_uint();
 | |
|     unsigned Typ = 0;
 | |
|     bool isTypeType = read_typeid(Typ);
 | |
|     const Type *Ty = getType(Typ);
 | |
| 
 | |
|     for (unsigned i = 0; i != NumEntries; ++i) {
 | |
|       // Symtab entry: [def slot #][name]
 | |
|       unsigned slot = read_vbr_uint();
 | |
|       std::string Name = read_str();
 | |
| 
 | |
|       // if we're reading a pre 1.3 bytecode file and the type plane
 | |
|       // is the "type type", handle it here
 | |
|       if (isTypeType) {
 | |
|         const Type* T = getType(slot);
 | |
|         if (T == 0)
 | |
|           error("Failed type look-up for name '" + Name + "'");
 | |
|         ST->insert(Name, T);
 | |
|         continue; // code below must be short circuited
 | |
|       } else {
 | |
|         Value *V = 0;
 | |
|         if (Typ == Type::LabelTyID) {
 | |
|           if (slot < BBMap.size())
 | |
|             V = BBMap[slot];
 | |
|         } else {
 | |
|           V = getValue(Typ, slot, false); // Find mapping...
 | |
|         }
 | |
|         if (V == 0)
 | |
|           error("Failed value look-up for name '" + Name + "'");
 | |
|         V->setName(Name);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   checkPastBlockEnd("Symbol Table");
 | |
|   if (Handler) Handler->handleSymbolTableEnd();
 | |
| }
 | |
| 
 | |
| /// Read in the types portion of a compaction table. 
 | |
| void BytecodeReader::ParseCompactionTypes(unsigned NumEntries) {
 | |
|   for (unsigned i = 0; i != NumEntries; ++i) {
 | |
|     unsigned TypeSlot = 0;
 | |
|     if (read_typeid(TypeSlot))
 | |
|       error("Invalid type in compaction table: type type");
 | |
|     const Type *Typ = getGlobalTableType(TypeSlot);
 | |
|     CompactionTypes.push_back(std::make_pair(Typ, TypeSlot));
 | |
|     if (Handler) Handler->handleCompactionTableType(i, TypeSlot, Typ);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Parse a compaction table.
 | |
| void BytecodeReader::ParseCompactionTable() {
 | |
| 
 | |
|   // Notify handler that we're beginning a compaction table.
 | |
|   if (Handler) Handler->handleCompactionTableBegin();
 | |
| 
 | |
|   // In LLVM 1.3 Type no longer derives from Value. So, 
 | |
|   // we always write them first in the compaction table
 | |
|   // because they can't occupy a "type plane" where the
 | |
|   // Values reside.
 | |
|   if (! hasTypeDerivedFromValue) {
 | |
|     unsigned NumEntries = read_vbr_uint();
 | |
|     ParseCompactionTypes(NumEntries);
 | |
|   }
 | |
| 
 | |
|   // Compaction tables live in separate blocks so we have to loop
 | |
|   // until we've read the whole thing.
 | |
|   while (moreInBlock()) {
 | |
|     // Read the number of Value* entries in the compaction table
 | |
|     unsigned NumEntries = read_vbr_uint();
 | |
|     unsigned Ty = 0;
 | |
|     unsigned isTypeType = false;
 | |
| 
 | |
|     // Decode the type from value read in. Most compaction table
 | |
|     // planes will have one or two entries in them. If that's the
 | |
|     // case then the length is encoded in the bottom two bits and
 | |
|     // the higher bits encode the type. This saves another VBR value.
 | |
|     if ((NumEntries & 3) == 3) {
 | |
|       // In this case, both low-order bits are set (value 3). This
 | |
|       // is a signal that the typeid follows.
 | |
|       NumEntries >>= 2;
 | |
|       isTypeType = read_typeid(Ty);
 | |
|     } else {
 | |
|       // In this case, the low-order bits specify the number of entries
 | |
|       // and the high order bits specify the type.
 | |
|       Ty = NumEntries >> 2;
 | |
|       isTypeType = sanitizeTypeId(Ty);
 | |
|       NumEntries &= 3;
 | |
|     }
 | |
| 
 | |
|     // if we're reading a pre 1.3 bytecode file and the type plane
 | |
|     // is the "type type", handle it here
 | |
|     if (isTypeType) {
 | |
|       ParseCompactionTypes(NumEntries);
 | |
|     } else {
 | |
|       // Make sure we have enough room for the plane.
 | |
|       if (Ty >= CompactionValues.size())
 | |
|         CompactionValues.resize(Ty+1);
 | |
| 
 | |
|       // Make sure the plane is empty or we have some kind of error.
 | |
|       if (!CompactionValues[Ty].empty())
 | |
|         error("Compaction table plane contains multiple entries!");
 | |
| 
 | |
|       // Notify handler about the plane.
 | |
|       if (Handler) Handler->handleCompactionTablePlane(Ty, NumEntries);
 | |
| 
 | |
|       // Push the implicit zero.
 | |
|       CompactionValues[Ty].push_back(Constant::getNullValue(getType(Ty)));
 | |
| 
 | |
|       // Read in each of the entries, put them in the compaction table
 | |
|       // and notify the handler that we have a new compaction table value.
 | |
|       for (unsigned i = 0; i != NumEntries; ++i) {
 | |
|         unsigned ValSlot = read_vbr_uint();
 | |
|         Value *V = getGlobalTableValue(Ty, ValSlot);
 | |
|         CompactionValues[Ty].push_back(V);
 | |
|         if (Handler) Handler->handleCompactionTableValue(i, Ty, ValSlot);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   // Notify handler that the compaction table is done.
 | |
|   if (Handler) Handler->handleCompactionTableEnd();
 | |
| }
 | |
|     
 | |
| // Parse a single type. The typeid is read in first. If its a primitive type
 | |
| // then nothing else needs to be read, we know how to instantiate it. If its
 | |
| // a derived type, then additional data is read to fill out the type 
 | |
| // definition.
 | |
| const Type *BytecodeReader::ParseType() {
 | |
|   unsigned PrimType = 0;
 | |
|   if (read_typeid(PrimType))
 | |
|     error("Invalid type (type type) in type constants!");
 | |
| 
 | |
|   const Type *Result = 0;
 | |
|   if ((Result = Type::getPrimitiveType((Type::TypeID)PrimType)))
 | |
|     return Result;
 | |
|   
 | |
|   switch (PrimType) {
 | |
|   case Type::FunctionTyID: {
 | |
|     const Type *RetType = readSanitizedType();
 | |
| 
 | |
|     unsigned NumParams = read_vbr_uint();
 | |
| 
 | |
|     std::vector<const Type*> Params;
 | |
|     while (NumParams--) 
 | |
|       Params.push_back(readSanitizedType());
 | |
| 
 | |
|     bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
 | |
|     if (isVarArg) Params.pop_back();
 | |
| 
 | |
|     Result = FunctionType::get(RetType, Params, isVarArg);
 | |
|     break;
 | |
|   }
 | |
|   case Type::ArrayTyID: {
 | |
|     const Type *ElementType = readSanitizedType();
 | |
|     unsigned NumElements = read_vbr_uint();
 | |
|     Result =  ArrayType::get(ElementType, NumElements);
 | |
|     break;
 | |
|   }
 | |
|   case Type::PackedTyID: {
 | |
|     const Type *ElementType = readSanitizedType();
 | |
|     unsigned NumElements = read_vbr_uint();
 | |
|     Result =  PackedType::get(ElementType, NumElements);
 | |
|     break;
 | |
|   }
 | |
|   case Type::StructTyID: {
 | |
|     std::vector<const Type*> Elements;
 | |
|     unsigned Typ = 0;
 | |
|     if (read_typeid(Typ))
 | |
|       error("Invalid element type (type type) for structure!");
 | |
| 
 | |
|     while (Typ) {         // List is terminated by void/0 typeid
 | |
|       Elements.push_back(getType(Typ));
 | |
|       if (read_typeid(Typ))
 | |
|         error("Invalid element type (type type) for structure!");
 | |
|     }
 | |
| 
 | |
|     Result = StructType::get(Elements);
 | |
|     break;
 | |
|   }
 | |
|   case Type::PointerTyID: {
 | |
|     Result = PointerType::get(readSanitizedType());
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Type::OpaqueTyID: {
 | |
|     Result = OpaqueType::get();
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   default:
 | |
|     error("Don't know how to deserialize primitive type " + utostr(PrimType));
 | |
|     break;
 | |
|   }
 | |
|   if (Handler) Handler->handleType(Result);
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| // ParseTypes - We have to use this weird code to handle recursive
 | |
| // types.  We know that recursive types will only reference the current slab of
 | |
| // values in the type plane, but they can forward reference types before they
 | |
| // have been read.  For example, Type #0 might be '{ Ty#1 }' and Type #1 might
 | |
| // be 'Ty#0*'.  When reading Type #0, type number one doesn't exist.  To fix
 | |
| // this ugly problem, we pessimistically insert an opaque type for each type we
 | |
| // are about to read.  This means that forward references will resolve to
 | |
| // something and when we reread the type later, we can replace the opaque type
 | |
| // with a new resolved concrete type.
 | |
| //
 | |
| void BytecodeReader::ParseTypes(TypeListTy &Tab, unsigned NumEntries){
 | |
|   assert(Tab.size() == 0 && "should not have read type constants in before!");
 | |
| 
 | |
|   // Insert a bunch of opaque types to be resolved later...
 | |
|   Tab.reserve(NumEntries);
 | |
|   for (unsigned i = 0; i != NumEntries; ++i)
 | |
|     Tab.push_back(OpaqueType::get());
 | |
| 
 | |
|   if (Handler) 
 | |
|     Handler->handleTypeList(NumEntries);
 | |
| 
 | |
|   // Loop through reading all of the types.  Forward types will make use of the
 | |
|   // opaque types just inserted.
 | |
|   //
 | |
|   for (unsigned i = 0; i != NumEntries; ++i) {
 | |
|     const Type* NewTy = ParseType();
 | |
|     const Type* OldTy = Tab[i].get();
 | |
|     if (NewTy == 0) 
 | |
|       error("Couldn't parse type!");
 | |
| 
 | |
|     // Don't directly push the new type on the Tab. Instead we want to replace 
 | |
|     // the opaque type we previously inserted with the new concrete value. This
 | |
|     // approach helps with forward references to types. The refinement from the
 | |
|     // abstract (opaque) type to the new type causes all uses of the abstract
 | |
|     // type to use the concrete type (NewTy). This will also cause the opaque
 | |
|     // type to be deleted.
 | |
|     cast<DerivedType>(const_cast<Type*>(OldTy))->refineAbstractTypeTo(NewTy);
 | |
| 
 | |
|     // This should have replaced the old opaque type with the new type in the
 | |
|     // value table... or with a preexisting type that was already in the system.
 | |
|     // Let's just make sure it did.
 | |
|     assert(Tab[i] != OldTy && "refineAbstractType didn't work!");
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Parse a single constant value
 | |
| Constant *BytecodeReader::ParseConstantValue(unsigned TypeID) {
 | |
|   // We must check for a ConstantExpr before switching by type because
 | |
|   // a ConstantExpr can be of any type, and has no explicit value.
 | |
|   // 
 | |
|   // 0 if not expr; numArgs if is expr
 | |
|   unsigned isExprNumArgs = read_vbr_uint();
 | |
| 
 | |
|   if (isExprNumArgs) {
 | |
|     // 'undef' is encoded with 'exprnumargs' == 1.
 | |
|     if (!hasNoUndefValue)
 | |
|       if (--isExprNumArgs == 0)
 | |
|         return UndefValue::get(getType(TypeID));
 | |
|   
 | |
|     // FIXME: Encoding of constant exprs could be much more compact!
 | |
|     std::vector<Constant*> ArgVec;
 | |
|     ArgVec.reserve(isExprNumArgs);
 | |
|     unsigned Opcode = read_vbr_uint();
 | |
| 
 | |
|     // Bytecode files before LLVM 1.4 need have a missing terminator inst.
 | |
|     if (hasNoUnreachableInst) Opcode++;
 | |
|     
 | |
|     // Read the slot number and types of each of the arguments
 | |
|     for (unsigned i = 0; i != isExprNumArgs; ++i) {
 | |
|       unsigned ArgValSlot = read_vbr_uint();
 | |
|       unsigned ArgTypeSlot = 0;
 | |
|       if (read_typeid(ArgTypeSlot))
 | |
|         error("Invalid argument type (type type) for constant value");
 | |
|       
 | |
|       // Get the arg value from its slot if it exists, otherwise a placeholder
 | |
|       ArgVec.push_back(getConstantValue(ArgTypeSlot, ArgValSlot));
 | |
|     }
 | |
|     
 | |
|     // Construct a ConstantExpr of the appropriate kind
 | |
|     if (isExprNumArgs == 1) {           // All one-operand expressions
 | |
|       if (Opcode != Instruction::Cast)
 | |
|         error("Only cast instruction has one argument for ConstantExpr");
 | |
| 
 | |
|       Constant* Result = ConstantExpr::getCast(ArgVec[0], getType(TypeID));
 | |
|       if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
 | |
|       return Result;
 | |
|     } else if (Opcode == Instruction::GetElementPtr) { // GetElementPtr
 | |
|       std::vector<Constant*> IdxList(ArgVec.begin()+1, ArgVec.end());
 | |
| 
 | |
|       if (hasRestrictedGEPTypes) {
 | |
|         const Type *BaseTy = ArgVec[0]->getType();
 | |
|         generic_gep_type_iterator<std::vector<Constant*>::iterator>
 | |
|           GTI = gep_type_begin(BaseTy, IdxList.begin(), IdxList.end()),
 | |
|           E = gep_type_end(BaseTy, IdxList.begin(), IdxList.end());
 | |
|         for (unsigned i = 0; GTI != E; ++GTI, ++i)
 | |
|           if (isa<StructType>(*GTI)) {
 | |
|             if (IdxList[i]->getType() != Type::UByteTy)
 | |
|               error("Invalid index for getelementptr!");
 | |
|             IdxList[i] = ConstantExpr::getCast(IdxList[i], Type::UIntTy);
 | |
|           }
 | |
|       }
 | |
| 
 | |
|       Constant* Result = ConstantExpr::getGetElementPtr(ArgVec[0], IdxList);
 | |
|       if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
 | |
|       return Result;
 | |
|     } else if (Opcode == Instruction::Select) {
 | |
|       if (ArgVec.size() != 3)
 | |
|         error("Select instruction must have three arguments.");
 | |
|       Constant* Result = ConstantExpr::getSelect(ArgVec[0], ArgVec[1], 
 | |
|                                                  ArgVec[2]);
 | |
|       if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
 | |
|       return Result;
 | |
|     } else {                            // All other 2-operand expressions
 | |
|       Constant* Result = ConstantExpr::get(Opcode, ArgVec[0], ArgVec[1]);
 | |
|       if (Handler) Handler->handleConstantExpression(Opcode, ArgVec, Result);
 | |
|       return Result;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Ok, not an ConstantExpr.  We now know how to read the given type...
 | |
|   const Type *Ty = getType(TypeID);
 | |
|   switch (Ty->getTypeID()) {
 | |
|   case Type::BoolTyID: {
 | |
|     unsigned Val = read_vbr_uint();
 | |
|     if (Val != 0 && Val != 1) 
 | |
|       error("Invalid boolean value read.");
 | |
|     Constant* Result = ConstantBool::get(Val == 1);
 | |
|     if (Handler) Handler->handleConstantValue(Result);
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case Type::UByteTyID:   // Unsigned integer types...
 | |
|   case Type::UShortTyID:
 | |
|   case Type::UIntTyID: {
 | |
|     unsigned Val = read_vbr_uint();
 | |
|     if (!ConstantUInt::isValueValidForType(Ty, Val)) 
 | |
|       error("Invalid unsigned byte/short/int read.");
 | |
|     Constant* Result =  ConstantUInt::get(Ty, Val);
 | |
|     if (Handler) Handler->handleConstantValue(Result);
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case Type::ULongTyID: {
 | |
|     Constant* Result = ConstantUInt::get(Ty, read_vbr_uint64());
 | |
|     if (Handler) Handler->handleConstantValue(Result);
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case Type::SByteTyID:   // Signed integer types...
 | |
|   case Type::ShortTyID:
 | |
|   case Type::IntTyID: {
 | |
|   case Type::LongTyID:
 | |
|     int64_t Val = read_vbr_int64();
 | |
|     if (!ConstantSInt::isValueValidForType(Ty, Val)) 
 | |
|       error("Invalid signed byte/short/int/long read.");
 | |
|     Constant* Result = ConstantSInt::get(Ty, Val);
 | |
|     if (Handler) Handler->handleConstantValue(Result);
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case Type::FloatTyID: {
 | |
|     float Val;
 | |
|     read_float(Val);
 | |
|     Constant* Result = ConstantFP::get(Ty, Val);
 | |
|     if (Handler) Handler->handleConstantValue(Result);
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case Type::DoubleTyID: {
 | |
|     double Val;
 | |
|     read_double(Val);
 | |
|     Constant* Result = ConstantFP::get(Ty, Val);
 | |
|     if (Handler) Handler->handleConstantValue(Result);
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case Type::ArrayTyID: {
 | |
|     const ArrayType *AT = cast<ArrayType>(Ty);
 | |
|     unsigned NumElements = AT->getNumElements();
 | |
|     unsigned TypeSlot = getTypeSlot(AT->getElementType());
 | |
|     std::vector<Constant*> Elements;
 | |
|     Elements.reserve(NumElements);
 | |
|     while (NumElements--)     // Read all of the elements of the constant.
 | |
|       Elements.push_back(getConstantValue(TypeSlot,
 | |
|                                           read_vbr_uint()));
 | |
|     Constant* Result = ConstantArray::get(AT, Elements);
 | |
|     if (Handler) Handler->handleConstantArray(AT, Elements, TypeSlot, Result);
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case Type::StructTyID: {
 | |
|     const StructType *ST = cast<StructType>(Ty);
 | |
| 
 | |
|     std::vector<Constant *> Elements;
 | |
|     Elements.reserve(ST->getNumElements());
 | |
|     for (unsigned i = 0; i != ST->getNumElements(); ++i)
 | |
|       Elements.push_back(getConstantValue(ST->getElementType(i),
 | |
|                                           read_vbr_uint()));
 | |
| 
 | |
|     Constant* Result = ConstantStruct::get(ST, Elements);
 | |
|     if (Handler) Handler->handleConstantStruct(ST, Elements, Result);
 | |
|     return Result;
 | |
|   }    
 | |
| 
 | |
|   case Type::PackedTyID: {
 | |
|     const PackedType *PT = cast<PackedType>(Ty);
 | |
|     unsigned NumElements = PT->getNumElements();
 | |
|     unsigned TypeSlot = getTypeSlot(PT->getElementType());
 | |
|     std::vector<Constant*> Elements;
 | |
|     Elements.reserve(NumElements);
 | |
|     while (NumElements--)     // Read all of the elements of the constant.
 | |
|       Elements.push_back(getConstantValue(TypeSlot,
 | |
|                                           read_vbr_uint()));
 | |
|     Constant* Result = ConstantPacked::get(PT, Elements);
 | |
|     if (Handler) Handler->handleConstantPacked(PT, Elements, TypeSlot, Result);
 | |
|     return Result;
 | |
|   }
 | |
| 
 | |
|   case Type::PointerTyID: {  // ConstantPointerRef value (backwards compat).
 | |
|     const PointerType *PT = cast<PointerType>(Ty);
 | |
|     unsigned Slot = read_vbr_uint();
 | |
|     
 | |
|     // Check to see if we have already read this global variable...
 | |
|     Value *Val = getValue(TypeID, Slot, false);
 | |
|     if (Val) {
 | |
|       GlobalValue *GV = dyn_cast<GlobalValue>(Val);
 | |
|       if (!GV) error("GlobalValue not in ValueTable!");
 | |
|       if (Handler) Handler->handleConstantPointer(PT, Slot, GV);
 | |
|       return GV;
 | |
|     } else {
 | |
|       error("Forward references are not allowed here.");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   default:
 | |
|     error("Don't know how to deserialize constant value of type '" +
 | |
|                       Ty->getDescription());
 | |
|     break;
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// Resolve references for constants. This function resolves the forward 
 | |
| /// referenced constants in the ConstantFwdRefs map. It uses the 
 | |
| /// replaceAllUsesWith method of Value class to substitute the placeholder
 | |
| /// instance with the actual instance.
 | |
| void BytecodeReader::ResolveReferencesToConstant(Constant *NewV, unsigned Typ,
 | |
|                                                  unsigned Slot) {
 | |
|   ConstantRefsType::iterator I =
 | |
|     ConstantFwdRefs.find(std::make_pair(Typ, Slot));
 | |
|   if (I == ConstantFwdRefs.end()) return;   // Never forward referenced?
 | |
| 
 | |
|   Value *PH = I->second;   // Get the placeholder...
 | |
|   PH->replaceAllUsesWith(NewV);
 | |
|   delete PH;                               // Delete the old placeholder
 | |
|   ConstantFwdRefs.erase(I);                // Remove the map entry for it
 | |
| }
 | |
| 
 | |
| /// Parse the constant strings section.
 | |
| void BytecodeReader::ParseStringConstants(unsigned NumEntries, ValueTable &Tab){
 | |
|   for (; NumEntries; --NumEntries) {
 | |
|     unsigned Typ = 0;
 | |
|     if (read_typeid(Typ))
 | |
|       error("Invalid type (type type) for string constant");
 | |
|     const Type *Ty = getType(Typ);
 | |
|     if (!isa<ArrayType>(Ty))
 | |
|       error("String constant data invalid!");
 | |
|     
 | |
|     const ArrayType *ATy = cast<ArrayType>(Ty);
 | |
|     if (ATy->getElementType() != Type::SByteTy &&
 | |
|         ATy->getElementType() != Type::UByteTy)
 | |
|       error("String constant data invalid!");
 | |
|     
 | |
|     // Read character data.  The type tells us how long the string is.
 | |
|     char *Data = reinterpret_cast<char *>(alloca(ATy->getNumElements())); 
 | |
|     read_data(Data, Data+ATy->getNumElements());
 | |
| 
 | |
|     std::vector<Constant*> Elements(ATy->getNumElements());
 | |
|     if (ATy->getElementType() == Type::SByteTy)
 | |
|       for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
 | |
|         Elements[i] = ConstantSInt::get(Type::SByteTy, (signed char)Data[i]);
 | |
|     else
 | |
|       for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
 | |
|         Elements[i] = ConstantUInt::get(Type::UByteTy, (unsigned char)Data[i]);
 | |
| 
 | |
|     // Create the constant, inserting it as needed.
 | |
|     Constant *C = ConstantArray::get(ATy, Elements);
 | |
|     unsigned Slot = insertValue(C, Typ, Tab);
 | |
|     ResolveReferencesToConstant(C, Typ, Slot);
 | |
|     if (Handler) Handler->handleConstantString(cast<ConstantArray>(C));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Parse the constant pool.
 | |
| void BytecodeReader::ParseConstantPool(ValueTable &Tab, 
 | |
|                                        TypeListTy &TypeTab,
 | |
|                                        bool isFunction) {
 | |
|   if (Handler) Handler->handleGlobalConstantsBegin();
 | |
| 
 | |
|   /// In LLVM 1.3 Type does not derive from Value so the types
 | |
|   /// do not occupy a plane. Consequently, we read the types
 | |
|   /// first in the constant pool.
 | |
|   if (isFunction && !hasTypeDerivedFromValue) {
 | |
|     unsigned NumEntries = read_vbr_uint();
 | |
|     ParseTypes(TypeTab, NumEntries);
 | |
|   }
 | |
| 
 | |
|   while (moreInBlock()) {
 | |
|     unsigned NumEntries = read_vbr_uint();
 | |
|     unsigned Typ = 0;
 | |
|     bool isTypeType = read_typeid(Typ);
 | |
| 
 | |
|     /// In LLVM 1.2 and before, Types were written to the
 | |
|     /// bytecode file in the "Type Type" plane (#12).
 | |
|     /// In 1.3 plane 12 is now the label plane.  Handle this here.
 | |
|     if (isTypeType) {
 | |
|       ParseTypes(TypeTab, NumEntries);
 | |
|     } else if (Typ == Type::VoidTyID) {
 | |
|       /// Use of Type::VoidTyID is a misnomer. It actually means
 | |
|       /// that the following plane is constant strings
 | |
|       assert(&Tab == &ModuleValues && "Cannot read strings in functions!");
 | |
|       ParseStringConstants(NumEntries, Tab);
 | |
|     } else {
 | |
|       for (unsigned i = 0; i < NumEntries; ++i) {
 | |
|         Constant *C = ParseConstantValue(Typ);
 | |
|         assert(C && "ParseConstantValue returned NULL!");
 | |
|         unsigned Slot = insertValue(C, Typ, Tab);
 | |
| 
 | |
|         // If we are reading a function constant table, make sure that we adjust
 | |
|         // the slot number to be the real global constant number.
 | |
|         //
 | |
|         if (&Tab != &ModuleValues && Typ < ModuleValues.size() &&
 | |
|             ModuleValues[Typ])
 | |
|           Slot += ModuleValues[Typ]->size();
 | |
|         ResolveReferencesToConstant(C, Typ, Slot);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // After we have finished parsing the constant pool, we had better not have
 | |
|   // any dangling references left.
 | |
|   if (!ConstantFwdRefs.empty()) {
 | |
|     ConstantRefsType::const_iterator I = ConstantFwdRefs.begin();
 | |
|     Constant* missingConst = I->second;
 | |
|     error(utostr(ConstantFwdRefs.size()) + 
 | |
|           " unresolved constant reference exist. First one is '" + 
 | |
|           missingConst->getName() + "' of type '" + 
 | |
|           missingConst->getType()->getDescription() + "'.");
 | |
|   }
 | |
| 
 | |
|   checkPastBlockEnd("Constant Pool");
 | |
|   if (Handler) Handler->handleGlobalConstantsEnd();
 | |
| }
 | |
| 
 | |
| /// Parse the contents of a function. Note that this function can be
 | |
| /// called lazily by materializeFunction
 | |
| /// @see materializeFunction
 | |
| void BytecodeReader::ParseFunctionBody(Function* F) {
 | |
| 
 | |
|   unsigned FuncSize = BlockEnd - At;
 | |
|   GlobalValue::LinkageTypes Linkage = GlobalValue::ExternalLinkage;
 | |
| 
 | |
|   unsigned LinkageType = read_vbr_uint();
 | |
|   switch (LinkageType) {
 | |
|   case 0: Linkage = GlobalValue::ExternalLinkage; break;
 | |
|   case 1: Linkage = GlobalValue::WeakLinkage; break;
 | |
|   case 2: Linkage = GlobalValue::AppendingLinkage; break;
 | |
|   case 3: Linkage = GlobalValue::InternalLinkage; break;
 | |
|   case 4: Linkage = GlobalValue::LinkOnceLinkage; break;
 | |
|   default:
 | |
|     error("Invalid linkage type for Function.");
 | |
|     Linkage = GlobalValue::InternalLinkage;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   F->setLinkage(Linkage);
 | |
|   if (Handler) Handler->handleFunctionBegin(F,FuncSize);
 | |
| 
 | |
|   // Keep track of how many basic blocks we have read in...
 | |
|   unsigned BlockNum = 0;
 | |
|   bool InsertedArguments = false;
 | |
| 
 | |
|   BufPtr MyEnd = BlockEnd;
 | |
|   while (At < MyEnd) {
 | |
|     unsigned Type, Size;
 | |
|     BufPtr OldAt = At;
 | |
|     read_block(Type, Size);
 | |
| 
 | |
|     switch (Type) {
 | |
|     case BytecodeFormat::ConstantPoolBlockID:
 | |
|       if (!InsertedArguments) {
 | |
|         // Insert arguments into the value table before we parse the first basic
 | |
|         // block in the function, but after we potentially read in the
 | |
|         // compaction table.
 | |
|         insertArguments(F);
 | |
|         InsertedArguments = true;
 | |
|       }
 | |
| 
 | |
|       ParseConstantPool(FunctionValues, FunctionTypes, true);
 | |
|       break;
 | |
| 
 | |
|     case BytecodeFormat::CompactionTableBlockID:
 | |
|       ParseCompactionTable();
 | |
|       break;
 | |
| 
 | |
|     case BytecodeFormat::BasicBlock: {
 | |
|       if (!InsertedArguments) {
 | |
|         // Insert arguments into the value table before we parse the first basic
 | |
|         // block in the function, but after we potentially read in the
 | |
|         // compaction table.
 | |
|         insertArguments(F);
 | |
|         InsertedArguments = true;
 | |
|       }
 | |
| 
 | |
|       BasicBlock *BB = ParseBasicBlock(BlockNum++);
 | |
|       F->getBasicBlockList().push_back(BB);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case BytecodeFormat::InstructionListBlockID: {
 | |
|       // Insert arguments into the value table before we parse the instruction
 | |
|       // list for the function, but after we potentially read in the compaction
 | |
|       // table.
 | |
|       if (!InsertedArguments) {
 | |
|         insertArguments(F);
 | |
|         InsertedArguments = true;
 | |
|       }
 | |
| 
 | |
|       if (BlockNum) 
 | |
|         error("Already parsed basic blocks!");
 | |
|       BlockNum = ParseInstructionList(F);
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     case BytecodeFormat::SymbolTableBlockID:
 | |
|       ParseSymbolTable(F, &F->getSymbolTable());
 | |
|       break;
 | |
| 
 | |
|     default:
 | |
|       At += Size;
 | |
|       if (OldAt > At) 
 | |
|         error("Wrapped around reading bytecode.");
 | |
|       break;
 | |
|     }
 | |
|     BlockEnd = MyEnd;
 | |
| 
 | |
|     // Malformed bc file if read past end of block.
 | |
|     align32();
 | |
|   }
 | |
| 
 | |
|   // Make sure there were no references to non-existant basic blocks.
 | |
|   if (BlockNum != ParsedBasicBlocks.size())
 | |
|     error("Illegal basic block operand reference");
 | |
| 
 | |
|   ParsedBasicBlocks.clear();
 | |
| 
 | |
|   // Resolve forward references.  Replace any uses of a forward reference value
 | |
|   // with the real value.
 | |
|   while (!ForwardReferences.empty()) {
 | |
|     std::map<std::pair<unsigned,unsigned>, Value*>::iterator
 | |
|       I = ForwardReferences.begin();
 | |
|     Value *V = getValue(I->first.first, I->first.second, false);
 | |
|     Value *PlaceHolder = I->second;
 | |
|     PlaceHolder->replaceAllUsesWith(V);
 | |
|     ForwardReferences.erase(I);
 | |
|     delete PlaceHolder;
 | |
|   }
 | |
| 
 | |
|   // Clear out function-level types...
 | |
|   FunctionTypes.clear();
 | |
|   CompactionTypes.clear();
 | |
|   CompactionValues.clear();
 | |
|   freeTable(FunctionValues);
 | |
| 
 | |
|   if (Handler) Handler->handleFunctionEnd(F);
 | |
| }
 | |
| 
 | |
| /// This function parses LLVM functions lazily. It obtains the type of the
 | |
| /// function and records where the body of the function is in the bytecode
 | |
| /// buffer. The caller can then use the ParseNextFunction and 
 | |
| /// ParseAllFunctionBodies to get handler events for the functions.
 | |
| void BytecodeReader::ParseFunctionLazily() {
 | |
|   if (FunctionSignatureList.empty())
 | |
|     error("FunctionSignatureList empty!");
 | |
| 
 | |
|   Function *Func = FunctionSignatureList.back();
 | |
|   FunctionSignatureList.pop_back();
 | |
| 
 | |
|   // Save the information for future reading of the function
 | |
|   LazyFunctionLoadMap[Func] = LazyFunctionInfo(BlockStart, BlockEnd);
 | |
| 
 | |
|   // This function has a body but it's not loaded so it appears `External'.
 | |
|   // Mark it as a `Ghost' instead to notify the users that it has a body.
 | |
|   Func->setLinkage(GlobalValue::GhostLinkage);
 | |
| 
 | |
|   // Pretend we've `parsed' this function
 | |
|   At = BlockEnd;
 | |
| }
 | |
| 
 | |
| /// The ParserFunction method lazily parses one function. Use this method to 
 | |
| /// casue the parser to parse a specific function in the module. Note that 
 | |
| /// this will remove the function from what is to be included by 
 | |
| /// ParseAllFunctionBodies.
 | |
| /// @see ParseAllFunctionBodies
 | |
| /// @see ParseBytecode
 | |
| void BytecodeReader::ParseFunction(Function* Func) {
 | |
|   // Find {start, end} pointers and slot in the map. If not there, we're done.
 | |
|   LazyFunctionMap::iterator Fi = LazyFunctionLoadMap.find(Func);
 | |
| 
 | |
|   // Make sure we found it
 | |
|   if (Fi == LazyFunctionLoadMap.end()) {
 | |
|     error("Unrecognized function of type " + Func->getType()->getDescription());
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   BlockStart = At = Fi->second.Buf;
 | |
|   BlockEnd = Fi->second.EndBuf;
 | |
|   assert(Fi->first == Func && "Found wrong function?");
 | |
| 
 | |
|   LazyFunctionLoadMap.erase(Fi);
 | |
| 
 | |
|   this->ParseFunctionBody(Func);
 | |
| }
 | |
| 
 | |
| /// The ParseAllFunctionBodies method parses through all the previously
 | |
| /// unparsed functions in the bytecode file. If you want to completely parse
 | |
| /// a bytecode file, this method should be called after Parsebytecode because
 | |
| /// Parsebytecode only records the locations in the bytecode file of where
 | |
| /// the function definitions are located. This function uses that information
 | |
| /// to materialize the functions.
 | |
| /// @see ParseBytecode
 | |
| void BytecodeReader::ParseAllFunctionBodies() {
 | |
|   LazyFunctionMap::iterator Fi = LazyFunctionLoadMap.begin();
 | |
|   LazyFunctionMap::iterator Fe = LazyFunctionLoadMap.end();
 | |
| 
 | |
|   while (Fi != Fe) {
 | |
|     Function* Func = Fi->first;
 | |
|     BlockStart = At = Fi->second.Buf;
 | |
|     BlockEnd = Fi->second.EndBuf;
 | |
|     ParseFunctionBody(Func);
 | |
|     ++Fi;
 | |
|   }
 | |
|   LazyFunctionLoadMap.clear();
 | |
| }
 | |
| 
 | |
| /// Parse the global type list
 | |
| void BytecodeReader::ParseGlobalTypes() {
 | |
|   // Read the number of types
 | |
|   unsigned NumEntries = read_vbr_uint();
 | |
| 
 | |
|   // Ignore the type plane identifier for types if the bc file is pre 1.3
 | |
|   if (hasTypeDerivedFromValue)
 | |
|     read_vbr_uint();
 | |
| 
 | |
|   ParseTypes(ModuleTypes, NumEntries);
 | |
| }
 | |
| 
 | |
| /// Parse the Global info (types, global vars, constants)
 | |
| void BytecodeReader::ParseModuleGlobalInfo() {
 | |
| 
 | |
|   if (Handler) Handler->handleModuleGlobalsBegin();
 | |
| 
 | |
|   // Read global variables...
 | |
|   unsigned VarType = read_vbr_uint();
 | |
|   while (VarType != Type::VoidTyID) { // List is terminated by Void
 | |
|     // VarType Fields: bit0 = isConstant, bit1 = hasInitializer, bit2,3,4 =
 | |
|     // Linkage, bit4+ = slot#
 | |
|     unsigned SlotNo = VarType >> 5;
 | |
|     if (sanitizeTypeId(SlotNo))
 | |
|       error("Invalid type (type type) for global var!");
 | |
|     unsigned LinkageID = (VarType >> 2) & 7;
 | |
|     bool isConstant = VarType & 1;
 | |
|     bool hasInitializer = VarType & 2;
 | |
|     GlobalValue::LinkageTypes Linkage;
 | |
| 
 | |
|     switch (LinkageID) {
 | |
|     case 0: Linkage = GlobalValue::ExternalLinkage;  break;
 | |
|     case 1: Linkage = GlobalValue::WeakLinkage;      break;
 | |
|     case 2: Linkage = GlobalValue::AppendingLinkage; break;
 | |
|     case 3: Linkage = GlobalValue::InternalLinkage;  break;
 | |
|     case 4: Linkage = GlobalValue::LinkOnceLinkage;  break;
 | |
|     default: 
 | |
|       error("Unknown linkage type: " + utostr(LinkageID));
 | |
|       Linkage = GlobalValue::InternalLinkage;
 | |
|       break;
 | |
|     }
 | |
| 
 | |
|     const Type *Ty = getType(SlotNo);
 | |
|     if (!Ty) {
 | |
|       error("Global has no type! SlotNo=" + utostr(SlotNo));
 | |
|     }
 | |
| 
 | |
|     if (!isa<PointerType>(Ty)) {
 | |
|       error("Global not a pointer type! Ty= " + Ty->getDescription());
 | |
|     }
 | |
| 
 | |
|     const Type *ElTy = cast<PointerType>(Ty)->getElementType();
 | |
| 
 | |
|     // Create the global variable...
 | |
|     GlobalVariable *GV = new GlobalVariable(ElTy, isConstant, Linkage,
 | |
|                                             0, "", TheModule);
 | |
|     insertValue(GV, SlotNo, ModuleValues);
 | |
| 
 | |
|     unsigned initSlot = 0;
 | |
|     if (hasInitializer) {   
 | |
|       initSlot = read_vbr_uint();
 | |
|       GlobalInits.push_back(std::make_pair(GV, initSlot));
 | |
|     }
 | |
| 
 | |
|     // Notify handler about the global value.
 | |
|     if (Handler)
 | |
|       Handler->handleGlobalVariable(ElTy, isConstant, Linkage, SlotNo,initSlot);
 | |
| 
 | |
|     // Get next item
 | |
|     VarType = read_vbr_uint();
 | |
|   }
 | |
| 
 | |
|   // Read the function objects for all of the functions that are coming
 | |
|   unsigned FnSignature = read_vbr_uint();
 | |
| 
 | |
|   if (hasNoFlagsForFunctions)
 | |
|     FnSignature = (FnSignature << 5) + 1;
 | |
| 
 | |
|   // List is terminated by VoidTy.
 | |
|   while ((FnSignature >> 5) != Type::VoidTyID) {
 | |
|     const Type *Ty = getType(FnSignature >> 5);
 | |
|     if (!isa<PointerType>(Ty) ||
 | |
|         !isa<FunctionType>(cast<PointerType>(Ty)->getElementType())) {
 | |
|       error("Function not a pointer to function type! Ty = " + 
 | |
|             Ty->getDescription());
 | |
|     }
 | |
| 
 | |
|     // We create functions by passing the underlying FunctionType to create...
 | |
|     const FunctionType* FTy = 
 | |
|       cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
 | |
| 
 | |
| 
 | |
|     // Insert the place holder.
 | |
|     Function* Func = new Function(FTy, GlobalValue::ExternalLinkage, 
 | |
|                                   "", TheModule);
 | |
|     insertValue(Func, FnSignature >> 5, ModuleValues);
 | |
| 
 | |
|     // Flags are not used yet.
 | |
|     unsigned Flags = FnSignature & 31;
 | |
| 
 | |
|     // Save this for later so we know type of lazily instantiated functions.
 | |
|     // Note that known-external functions do not have FunctionInfo blocks, so we
 | |
|     // do not add them to the FunctionSignatureList.
 | |
|     if ((Flags & (1 << 4)) == 0)
 | |
|       FunctionSignatureList.push_back(Func);
 | |
| 
 | |
|     if (Handler) Handler->handleFunctionDeclaration(Func);
 | |
| 
 | |
|     // Get the next function signature.
 | |
|     FnSignature = read_vbr_uint();
 | |
|     if (hasNoFlagsForFunctions)
 | |
|       FnSignature = (FnSignature << 5) + 1;
 | |
|   }
 | |
| 
 | |
|   // Now that the function signature list is set up, reverse it so that we can 
 | |
|   // remove elements efficiently from the back of the vector.
 | |
|   std::reverse(FunctionSignatureList.begin(), FunctionSignatureList.end());
 | |
| 
 | |
|   // If this bytecode format has dependent library information in it ..
 | |
|   if (!hasNoDependentLibraries) {
 | |
|     // Read in the number of dependent library items that follow
 | |
|     unsigned num_dep_libs = read_vbr_uint();
 | |
|     std::string dep_lib;
 | |
|     while( num_dep_libs-- ) {
 | |
|       dep_lib = read_str();
 | |
|       TheModule->addLibrary(dep_lib);
 | |
|       if (Handler)
 | |
|         Handler->handleDependentLibrary(dep_lib);
 | |
|     }
 | |
| 
 | |
| 
 | |
|     // Read target triple and place into the module
 | |
|     std::string triple = read_str();
 | |
|     TheModule->setTargetTriple(triple);
 | |
|     if (Handler)
 | |
|       Handler->handleTargetTriple(triple);
 | |
|   }
 | |
| 
 | |
|   if (hasInconsistentModuleGlobalInfo)
 | |
|     align32();
 | |
| 
 | |
|   // This is for future proofing... in the future extra fields may be added that
 | |
|   // we don't understand, so we transparently ignore them.
 | |
|   //
 | |
|   At = BlockEnd;
 | |
| 
 | |
|   if (Handler) Handler->handleModuleGlobalsEnd();
 | |
| }
 | |
| 
 | |
| /// Parse the version information and decode it by setting flags on the
 | |
| /// Reader that enable backward compatibility of the reader.
 | |
| void BytecodeReader::ParseVersionInfo() {
 | |
|   unsigned Version = read_vbr_uint();
 | |
| 
 | |
|   // Unpack version number: low four bits are for flags, top bits = version
 | |
|   Module::Endianness  Endianness;
 | |
|   Module::PointerSize PointerSize;
 | |
|   Endianness  = (Version & 1) ? Module::BigEndian : Module::LittleEndian;
 | |
|   PointerSize = (Version & 2) ? Module::Pointer64 : Module::Pointer32;
 | |
| 
 | |
|   bool hasNoEndianness = Version & 4;
 | |
|   bool hasNoPointerSize = Version & 8;
 | |
|   
 | |
|   RevisionNum = Version >> 4;
 | |
| 
 | |
|   // Default values for the current bytecode version
 | |
|   hasInconsistentModuleGlobalInfo = false;
 | |
|   hasExplicitPrimitiveZeros = false;
 | |
|   hasRestrictedGEPTypes = false;
 | |
|   hasTypeDerivedFromValue = false;
 | |
|   hasLongBlockHeaders = false;
 | |
|   has32BitTypes = false;
 | |
|   hasNoDependentLibraries = false;
 | |
|   hasAlignment = false;
 | |
|   hasInconsistentBBSlotNums = false;
 | |
|   hasVBRByteTypes = false;
 | |
|   hasUnnecessaryModuleBlockId = false;
 | |
|   hasNoUndefValue = false;
 | |
|   hasNoFlagsForFunctions = false;
 | |
|   hasNoUnreachableInst = false;
 | |
| 
 | |
|   switch (RevisionNum) {
 | |
|   case 0:               //  LLVM 1.0, 1.1 (Released)
 | |
|     // Base LLVM 1.0 bytecode format.
 | |
|     hasInconsistentModuleGlobalInfo = true;
 | |
|     hasExplicitPrimitiveZeros = true;
 | |
| 
 | |
|     // FALL THROUGH
 | |
| 
 | |
|   case 1:               // LLVM 1.2 (Released)
 | |
|     // LLVM 1.2 added explicit support for emitting strings efficiently.
 | |
| 
 | |
|     // Also, it fixed the problem where the size of the ModuleGlobalInfo block
 | |
|     // included the size for the alignment at the end, where the rest of the
 | |
|     // blocks did not.
 | |
| 
 | |
|     // LLVM 1.2 and before required that GEP indices be ubyte constants for
 | |
|     // structures and longs for sequential types.
 | |
|     hasRestrictedGEPTypes = true;
 | |
| 
 | |
|     // LLVM 1.2 and before had the Type class derive from Value class. This
 | |
|     // changed in release 1.3 and consequently LLVM 1.3 bytecode files are
 | |
|     // written differently because Types can no longer be part of the 
 | |
|     // type planes for Values.
 | |
|     hasTypeDerivedFromValue = true;
 | |
| 
 | |
|     // FALL THROUGH
 | |
|     
 | |
|   case 2:                // 1.2.5 (Not Released)
 | |
| 
 | |
|     // LLVM 1.2 and earlier had two-word block headers. This is a bit wasteful,
 | |
|     // especially for small files where the 8 bytes per block is a large
 | |
|     // fraction of the total block size. In LLVM 1.3, the block type and length
 | |
|     // are compressed into a single 32-bit unsigned integer. 27 bits for length,
 | |
|     // 5 bits for block type.
 | |
|     hasLongBlockHeaders = true;
 | |
| 
 | |
|     // LLVM 1.2 and earlier wrote type slot numbers as vbr_uint32. In LLVM 1.3
 | |
|     // this has been reduced to vbr_uint24. It shouldn't make much difference
 | |
|     // since we haven't run into a module with > 24 million types, but for
 | |
|     // safety the 24-bit restriction has been enforced in 1.3 to free some bits
 | |
|     // in various places and to ensure consistency.
 | |
|     has32BitTypes = true;
 | |
| 
 | |
|     // LLVM 1.2 and earlier did not provide a target triple nor a list of 
 | |
|     // libraries on which the bytecode is dependent. LLVM 1.3 provides these
 | |
|     // features, for use in future versions of LLVM.
 | |
|     hasNoDependentLibraries = true;
 | |
| 
 | |
|     // FALL THROUGH
 | |
| 
 | |
|   case 3:               // LLVM 1.3 (Released)
 | |
|     // LLVM 1.3 and earlier caused alignment bytes to be written on some block
 | |
|     // boundaries and at the end of some strings. In extreme cases (e.g. lots 
 | |
|     // of GEP references to a constant array), this can increase the file size
 | |
|     // by 30% or more. In version 1.4 alignment is done away with completely.
 | |
|     hasAlignment = true;
 | |
| 
 | |
|     // FALL THROUGH
 | |
|     
 | |
|   case 4:               // 1.3.1 (Not Released)
 | |
|     // In version 4, we did not support the 'undef' constant.
 | |
|     hasNoUndefValue = true;
 | |
| 
 | |
|     // In version 4 and above, we did not include space for flags for functions
 | |
|     // in the module info block.
 | |
|     hasNoFlagsForFunctions = true;
 | |
| 
 | |
|     // In version 4 and above, we did not include the 'unreachable' instruction
 | |
|     // in the opcode numbering in the bytecode file.
 | |
|     hasNoUnreachableInst = true;
 | |
|     break;
 | |
| 
 | |
|     // FALL THROUGH
 | |
| 
 | |
|   case 5:               // 1.x.x (Not Released)
 | |
|     break;
 | |
|     // FIXME: NONE of this is implemented yet!
 | |
| 
 | |
|     // In version 5, basic blocks have a minimum index of 0 whereas all the 
 | |
|     // other primitives have a minimum index of 1 (because 0 is the "null" 
 | |
|     // value. In version 5, we made this consistent.
 | |
|     hasInconsistentBBSlotNums = true;
 | |
| 
 | |
|     // In version 5, the types SByte and UByte were encoded as vbr_uint so that
 | |
|     // signed values > 63 and unsigned values >127 would be encoded as two
 | |
|     // bytes. In version 5, they are encoded directly in a single byte.
 | |
|     hasVBRByteTypes = true;
 | |
| 
 | |
|     // In version 5, modules begin with a "Module Block" which encodes a 4-byte
 | |
|     // integer value 0x01 to identify the module block. This is unnecessary and
 | |
|     // removed in version 5.
 | |
|     hasUnnecessaryModuleBlockId = true;
 | |
| 
 | |
|   default:
 | |
|     error("Unknown bytecode version number: " + itostr(RevisionNum));
 | |
|   }
 | |
| 
 | |
|   if (hasNoEndianness) Endianness  = Module::AnyEndianness;
 | |
|   if (hasNoPointerSize) PointerSize = Module::AnyPointerSize;
 | |
| 
 | |
|   TheModule->setEndianness(Endianness);
 | |
|   TheModule->setPointerSize(PointerSize);
 | |
| 
 | |
|   if (Handler) Handler->handleVersionInfo(RevisionNum, Endianness, PointerSize);
 | |
| }
 | |
| 
 | |
| /// Parse a whole module.
 | |
| void BytecodeReader::ParseModule() {
 | |
|   unsigned Type, Size;
 | |
| 
 | |
|   FunctionSignatureList.clear(); // Just in case...
 | |
| 
 | |
|   // Read into instance variables...
 | |
|   ParseVersionInfo();
 | |
|   align32();
 | |
| 
 | |
|   bool SeenModuleGlobalInfo = false;
 | |
|   bool SeenGlobalTypePlane = false;
 | |
|   BufPtr MyEnd = BlockEnd;
 | |
|   while (At < MyEnd) {
 | |
|     BufPtr OldAt = At;
 | |
|     read_block(Type, Size);
 | |
| 
 | |
|     switch (Type) {
 | |
| 
 | |
|     case BytecodeFormat::GlobalTypePlaneBlockID:
 | |
|       if (SeenGlobalTypePlane)
 | |
|         error("Two GlobalTypePlane Blocks Encountered!");
 | |
| 
 | |
|       if (Size > 0)
 | |
|         ParseGlobalTypes();
 | |
|       SeenGlobalTypePlane = true;
 | |
|       break;
 | |
| 
 | |
|     case BytecodeFormat::ModuleGlobalInfoBlockID: 
 | |
|       if (SeenModuleGlobalInfo)
 | |
|         error("Two ModuleGlobalInfo Blocks Encountered!");
 | |
|       ParseModuleGlobalInfo();
 | |
|       SeenModuleGlobalInfo = true;
 | |
|       break;
 | |
| 
 | |
|     case BytecodeFormat::ConstantPoolBlockID:
 | |
|       ParseConstantPool(ModuleValues, ModuleTypes,false);
 | |
|       break;
 | |
| 
 | |
|     case BytecodeFormat::FunctionBlockID:
 | |
|       ParseFunctionLazily();
 | |
|       break;
 | |
| 
 | |
|     case BytecodeFormat::SymbolTableBlockID:
 | |
|       ParseSymbolTable(0, &TheModule->getSymbolTable());
 | |
|       break;
 | |
| 
 | |
|     default:
 | |
|       At += Size;
 | |
|       if (OldAt > At) {
 | |
|         error("Unexpected Block of Type #" + utostr(Type) + " encountered!");
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     BlockEnd = MyEnd;
 | |
|     align32();
 | |
|   }
 | |
| 
 | |
|   // After the module constant pool has been read, we can safely initialize
 | |
|   // global variables...
 | |
|   while (!GlobalInits.empty()) {
 | |
|     GlobalVariable *GV = GlobalInits.back().first;
 | |
|     unsigned Slot = GlobalInits.back().second;
 | |
|     GlobalInits.pop_back();
 | |
| 
 | |
|     // Look up the initializer value...
 | |
|     // FIXME: Preserve this type ID!
 | |
| 
 | |
|     const llvm::PointerType* GVType = GV->getType();
 | |
|     unsigned TypeSlot = getTypeSlot(GVType->getElementType());
 | |
|     if (Constant *CV = getConstantValue(TypeSlot, Slot)) {
 | |
|       if (GV->hasInitializer()) 
 | |
|         error("Global *already* has an initializer?!");
 | |
|       if (Handler) Handler->handleGlobalInitializer(GV,CV);
 | |
|       GV->setInitializer(CV);
 | |
|     } else
 | |
|       error("Cannot find initializer value.");
 | |
|   }
 | |
| 
 | |
|   /// Make sure we pulled them all out. If we didn't then there's a declaration
 | |
|   /// but a missing body. That's not allowed.
 | |
|   if (!FunctionSignatureList.empty())
 | |
|     error("Function declared, but bytecode stream ended before definition");
 | |
| }
 | |
| 
 | |
| /// This function completely parses a bytecode buffer given by the \p Buf
 | |
| /// and \p Length parameters.
 | |
| void BytecodeReader::ParseBytecode(BufPtr Buf, unsigned Length, 
 | |
|                                    const std::string &ModuleID) {
 | |
| 
 | |
|   try {
 | |
|     RevisionNum = 0;
 | |
|     At = MemStart = BlockStart = Buf;
 | |
|     MemEnd = BlockEnd = Buf + Length;
 | |
| 
 | |
|     // Create the module
 | |
|     TheModule = new Module(ModuleID);
 | |
| 
 | |
|     if (Handler) Handler->handleStart(TheModule, Length);
 | |
| 
 | |
|     // Read the four bytes of the signature.
 | |
|     unsigned Sig = read_uint();
 | |
| 
 | |
|     // If this is a compressed file
 | |
|     if (Sig == ('l' | ('l' << 8) | ('v' << 16) | ('c' << 24))) {
 | |
| 
 | |
|       // Invoke the decompression of the bytecode. Note that we have to skip the
 | |
|       // file's magic number which is not part of the compressed block. Hence,
 | |
|       // the Buf+4 and Length-4. The result goes into decompressedBlock, a data
 | |
|       // member for retention until BytecodeReader is destructed.
 | |
|       unsigned decompressedLength = Compressor::decompressToNewBuffer(
 | |
|           (char*)Buf+4,Length-4,decompressedBlock);
 | |
| 
 | |
|       // We must adjust the buffer pointers used by the bytecode reader to point
 | |
|       // into the new decompressed block. After decompression, the
 | |
|       // decompressedBlock will point to a contiguous memory area that has
 | |
|       // the decompressed data.
 | |
|       At = MemStart = BlockStart = Buf = (BufPtr) decompressedBlock;
 | |
|       MemEnd = BlockEnd = Buf + decompressedLength;
 | |
| 
 | |
|     // else if this isn't a regular (uncompressed) bytecode file, then its
 | |
|     // and error, generate that now.
 | |
|     } else if (Sig != ('l' | ('l' << 8) | ('v' << 16) | ('m' << 24))) {
 | |
|       error("Invalid bytecode signature: " + utohexstr(Sig));
 | |
|     }
 | |
| 
 | |
|     // Tell the handler we're starting a module
 | |
|     if (Handler) Handler->handleModuleBegin(ModuleID);
 | |
| 
 | |
|     // Get the module block and size and verify. This is handled specially
 | |
|     // because the module block/size is always written in long format. Other
 | |
|     // blocks are written in short format so the read_block method is used.
 | |
|     unsigned Type, Size;
 | |
|     Type = read_uint();
 | |
|     Size = read_uint();
 | |
|     if (Type != BytecodeFormat::ModuleBlockID) {
 | |
|       error("Expected Module Block! Type:" + utostr(Type) + ", Size:" 
 | |
|             + utostr(Size));
 | |
|     }
 | |
| 
 | |
|     // It looks like the darwin ranlib program is broken, and adds trailing
 | |
|     // garbage to the end of some bytecode files.  This hack allows the bc
 | |
|     // reader to ignore trailing garbage on bytecode files.
 | |
|     if (At + Size < MemEnd)
 | |
|       MemEnd = BlockEnd = At+Size;
 | |
| 
 | |
|     if (At + Size != MemEnd)
 | |
|       error("Invalid Top Level Block Length! Type:" + utostr(Type)
 | |
|             + ", Size:" + utostr(Size));
 | |
| 
 | |
|     // Parse the module contents
 | |
|     this->ParseModule();
 | |
| 
 | |
|     // Check for missing functions
 | |
|     if (hasFunctions())
 | |
|       error("Function expected, but bytecode stream ended!");
 | |
| 
 | |
|     // Tell the handler we're done with the module
 | |
|     if (Handler) 
 | |
|       Handler->handleModuleEnd(ModuleID);
 | |
| 
 | |
|     // Tell the handler we're finished the parse
 | |
|     if (Handler) Handler->handleFinish();
 | |
| 
 | |
|   } catch (std::string& errstr) {
 | |
|     if (Handler) Handler->handleError(errstr);
 | |
|     freeState();
 | |
|     delete TheModule;
 | |
|     TheModule = 0;
 | |
|     if (decompressedBlock != 0 ) {
 | |
|       ::free(decompressedBlock);
 | |
|       decompressedBlock = 0;
 | |
|     }
 | |
|     throw;
 | |
|   } catch (...) {
 | |
|     std::string msg("Unknown Exception Occurred");
 | |
|     if (Handler) Handler->handleError(msg);
 | |
|     freeState();
 | |
|     delete TheModule;
 | |
|     TheModule = 0;
 | |
|     if (decompressedBlock != 0) {
 | |
|       ::free(decompressedBlock);
 | |
|       decompressedBlock = 0;
 | |
|     }
 | |
|     throw msg;
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //=== Default Implementations of Handler Methods
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| BytecodeHandler::~BytecodeHandler() {}
 | |
| 
 | |
| // vim: sw=2
 |