mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@19881 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1149 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1149 lines
		
	
	
		
			48 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- ConstantFolding.cpp - LLVM constant folder -------------------------===//
 | |
| // 
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| // 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements folding of constants for LLVM.  This implements the
 | |
| // (internal) ConstantFolding.h interface, which is used by the
 | |
| // ConstantExpr::get* methods to automatically fold constants when possible.
 | |
| //
 | |
| // The current constant folding implementation is implemented in two pieces: the
 | |
| // template-based folder for simple primitive constants like ConstantInt, and
 | |
| // the special case hackery that we use to symbolically evaluate expressions
 | |
| // that use ConstantExprs.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "ConstantFolding.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include <cmath>
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
|   struct ConstRules {
 | |
|     ConstRules() {}
 | |
|     
 | |
|     // Binary Operators...
 | |
|     virtual Constant *add(const Constant *V1, const Constant *V2) const = 0;
 | |
|     virtual Constant *sub(const Constant *V1, const Constant *V2) const = 0;
 | |
|     virtual Constant *mul(const Constant *V1, const Constant *V2) const = 0;
 | |
|     virtual Constant *div(const Constant *V1, const Constant *V2) const = 0;
 | |
|     virtual Constant *rem(const Constant *V1, const Constant *V2) const = 0;
 | |
|     virtual Constant *op_and(const Constant *V1, const Constant *V2) const = 0;
 | |
|     virtual Constant *op_or (const Constant *V1, const Constant *V2) const = 0;
 | |
|     virtual Constant *op_xor(const Constant *V1, const Constant *V2) const = 0;
 | |
|     virtual Constant *shl(const Constant *V1, const Constant *V2) const = 0;
 | |
|     virtual Constant *shr(const Constant *V1, const Constant *V2) const = 0;
 | |
|     virtual Constant *lessthan(const Constant *V1, const Constant *V2) const =0;
 | |
|     virtual Constant *equalto(const Constant *V1, const Constant *V2) const = 0;
 | |
| 
 | |
|     // Casting operators.
 | |
|     virtual Constant *castToBool  (const Constant *V) const = 0;
 | |
|     virtual Constant *castToSByte (const Constant *V) const = 0;
 | |
|     virtual Constant *castToUByte (const Constant *V) const = 0;
 | |
|     virtual Constant *castToShort (const Constant *V) const = 0;
 | |
|     virtual Constant *castToUShort(const Constant *V) const = 0;
 | |
|     virtual Constant *castToInt   (const Constant *V) const = 0;
 | |
|     virtual Constant *castToUInt  (const Constant *V) const = 0;
 | |
|     virtual Constant *castToLong  (const Constant *V) const = 0;
 | |
|     virtual Constant *castToULong (const Constant *V) const = 0;
 | |
|     virtual Constant *castToFloat (const Constant *V) const = 0;
 | |
|     virtual Constant *castToDouble(const Constant *V) const = 0;
 | |
|     virtual Constant *castToPointer(const Constant *V,
 | |
|                                     const PointerType *Ty) const = 0;
 | |
|     
 | |
|     // ConstRules::get - Return an instance of ConstRules for the specified
 | |
|     // constant operands.
 | |
|     //
 | |
|     static ConstRules &get(const Constant *V1, const Constant *V2);
 | |
|   private:
 | |
|     ConstRules(const ConstRules &);             // Do not implement
 | |
|     ConstRules &operator=(const ConstRules &);  // Do not implement
 | |
|   };
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                             TemplateRules Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // TemplateRules - Implement a subclass of ConstRules that provides all 
 | |
| // operations as noops.  All other rules classes inherit from this class so 
 | |
| // that if functionality is needed in the future, it can simply be added here 
 | |
| // and to ConstRules without changing anything else...
 | |
| // 
 | |
| // This class also provides subclasses with typesafe implementations of methods
 | |
| // so that don't have to do type casting.
 | |
| //
 | |
| template<class ArgType, class SubClassName>
 | |
| class TemplateRules : public ConstRules {
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Redirecting functions that cast to the appropriate types
 | |
|   //===--------------------------------------------------------------------===//
 | |
| 
 | |
|   virtual Constant *add(const Constant *V1, const Constant *V2) const { 
 | |
|     return SubClassName::Add((const ArgType *)V1, (const ArgType *)V2);  
 | |
|   }
 | |
|   virtual Constant *sub(const Constant *V1, const Constant *V2) const { 
 | |
|     return SubClassName::Sub((const ArgType *)V1, (const ArgType *)V2);  
 | |
|   }
 | |
|   virtual Constant *mul(const Constant *V1, const Constant *V2) const { 
 | |
|     return SubClassName::Mul((const ArgType *)V1, (const ArgType *)V2);  
 | |
|   }
 | |
|   virtual Constant *div(const Constant *V1, const Constant *V2) const { 
 | |
|     return SubClassName::Div((const ArgType *)V1, (const ArgType *)V2);  
 | |
|   }
 | |
|   virtual Constant *rem(const Constant *V1, const Constant *V2) const { 
 | |
|     return SubClassName::Rem((const ArgType *)V1, (const ArgType *)V2);  
 | |
|   }
 | |
|   virtual Constant *op_and(const Constant *V1, const Constant *V2) const { 
 | |
|     return SubClassName::And((const ArgType *)V1, (const ArgType *)V2);  
 | |
|   }
 | |
|   virtual Constant *op_or(const Constant *V1, const Constant *V2) const { 
 | |
|     return SubClassName::Or((const ArgType *)V1, (const ArgType *)V2);  
 | |
|   }
 | |
|   virtual Constant *op_xor(const Constant *V1, const Constant *V2) const { 
 | |
|     return SubClassName::Xor((const ArgType *)V1, (const ArgType *)V2);  
 | |
|   }
 | |
|   virtual Constant *shl(const Constant *V1, const Constant *V2) const { 
 | |
|     return SubClassName::Shl((const ArgType *)V1, (const ArgType *)V2);  
 | |
|   }
 | |
|   virtual Constant *shr(const Constant *V1, const Constant *V2) const { 
 | |
|     return SubClassName::Shr((const ArgType *)V1, (const ArgType *)V2);  
 | |
|   }
 | |
| 
 | |
|   virtual Constant *lessthan(const Constant *V1, const Constant *V2) const { 
 | |
|     return SubClassName::LessThan((const ArgType *)V1, (const ArgType *)V2);
 | |
|   }
 | |
|   virtual Constant *equalto(const Constant *V1, const Constant *V2) const { 
 | |
|     return SubClassName::EqualTo((const ArgType *)V1, (const ArgType *)V2);
 | |
|   }
 | |
| 
 | |
|   // Casting operators.  ick
 | |
|   virtual Constant *castToBool(const Constant *V) const {
 | |
|     return SubClassName::CastToBool((const ArgType*)V);
 | |
|   }
 | |
|   virtual Constant *castToSByte(const Constant *V) const {
 | |
|     return SubClassName::CastToSByte((const ArgType*)V);
 | |
|   }
 | |
|   virtual Constant *castToUByte(const Constant *V) const {
 | |
|     return SubClassName::CastToUByte((const ArgType*)V);
 | |
|   }
 | |
|   virtual Constant *castToShort(const Constant *V) const {
 | |
|     return SubClassName::CastToShort((const ArgType*)V);
 | |
|   }
 | |
|   virtual Constant *castToUShort(const Constant *V) const {
 | |
|     return SubClassName::CastToUShort((const ArgType*)V);
 | |
|   }
 | |
|   virtual Constant *castToInt(const Constant *V) const {
 | |
|     return SubClassName::CastToInt((const ArgType*)V);
 | |
|   }
 | |
|   virtual Constant *castToUInt(const Constant *V) const {
 | |
|     return SubClassName::CastToUInt((const ArgType*)V);
 | |
|   }
 | |
|   virtual Constant *castToLong(const Constant *V) const {
 | |
|     return SubClassName::CastToLong((const ArgType*)V);
 | |
|   }
 | |
|   virtual Constant *castToULong(const Constant *V) const {
 | |
|     return SubClassName::CastToULong((const ArgType*)V);
 | |
|   }
 | |
|   virtual Constant *castToFloat(const Constant *V) const {
 | |
|     return SubClassName::CastToFloat((const ArgType*)V);
 | |
|   }
 | |
|   virtual Constant *castToDouble(const Constant *V) const {
 | |
|     return SubClassName::CastToDouble((const ArgType*)V);
 | |
|   }
 | |
|   virtual Constant *castToPointer(const Constant *V, 
 | |
|                                   const PointerType *Ty) const {
 | |
|     return SubClassName::CastToPointer((const ArgType*)V, Ty);
 | |
|   }
 | |
| 
 | |
|   //===--------------------------------------------------------------------===//
 | |
|   // Default "noop" implementations
 | |
|   //===--------------------------------------------------------------------===//
 | |
| 
 | |
|   static Constant *Add(const ArgType *V1, const ArgType *V2) { return 0; }
 | |
|   static Constant *Sub(const ArgType *V1, const ArgType *V2) { return 0; }
 | |
|   static Constant *Mul(const ArgType *V1, const ArgType *V2) { return 0; }
 | |
|   static Constant *Div(const ArgType *V1, const ArgType *V2) { return 0; }
 | |
|   static Constant *Rem(const ArgType *V1, const ArgType *V2) { return 0; }
 | |
|   static Constant *And(const ArgType *V1, const ArgType *V2) { return 0; }
 | |
|   static Constant *Or (const ArgType *V1, const ArgType *V2) { return 0; }
 | |
|   static Constant *Xor(const ArgType *V1, const ArgType *V2) { return 0; }
 | |
|   static Constant *Shl(const ArgType *V1, const ArgType *V2) { return 0; }
 | |
|   static Constant *Shr(const ArgType *V1, const ArgType *V2) { return 0; }
 | |
|   static Constant *LessThan(const ArgType *V1, const ArgType *V2) {
 | |
|     return 0;
 | |
|   }
 | |
|   static Constant *EqualTo(const ArgType *V1, const ArgType *V2) {
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // Casting operators.  ick
 | |
|   static Constant *CastToBool  (const Constant *V) { return 0; }
 | |
|   static Constant *CastToSByte (const Constant *V) { return 0; }
 | |
|   static Constant *CastToUByte (const Constant *V) { return 0; }
 | |
|   static Constant *CastToShort (const Constant *V) { return 0; }
 | |
|   static Constant *CastToUShort(const Constant *V) { return 0; }
 | |
|   static Constant *CastToInt   (const Constant *V) { return 0; }
 | |
|   static Constant *CastToUInt  (const Constant *V) { return 0; }
 | |
|   static Constant *CastToLong  (const Constant *V) { return 0; }
 | |
|   static Constant *CastToULong (const Constant *V) { return 0; }
 | |
|   static Constant *CastToFloat (const Constant *V) { return 0; }
 | |
|   static Constant *CastToDouble(const Constant *V) { return 0; }
 | |
|   static Constant *CastToPointer(const Constant *,
 | |
|                                  const PointerType *) {return 0;}
 | |
| };
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                             EmptyRules Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // EmptyRules provides a concrete base class of ConstRules that does nothing
 | |
| //
 | |
| struct EmptyRules : public TemplateRules<Constant, EmptyRules> {
 | |
|   static Constant *EqualTo(const Constant *V1, const Constant *V2) {
 | |
|     if (V1 == V2) return ConstantBool::True;
 | |
|     return 0;
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                              BoolRules Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // BoolRules provides a concrete base class of ConstRules for the 'bool' type.
 | |
| //
 | |
| struct BoolRules : public TemplateRules<ConstantBool, BoolRules> {
 | |
| 
 | |
|   static Constant *LessThan(const ConstantBool *V1, const ConstantBool *V2){
 | |
|     return ConstantBool::get(V1->getValue() < V2->getValue());
 | |
|   }
 | |
| 
 | |
|   static Constant *EqualTo(const Constant *V1, const Constant *V2) {
 | |
|     return ConstantBool::get(V1 == V2);
 | |
|   }
 | |
| 
 | |
|   static Constant *And(const ConstantBool *V1, const ConstantBool *V2) {
 | |
|     return ConstantBool::get(V1->getValue() & V2->getValue());
 | |
|   }
 | |
| 
 | |
|   static Constant *Or(const ConstantBool *V1, const ConstantBool *V2) {
 | |
|     return ConstantBool::get(V1->getValue() | V2->getValue());
 | |
|   }
 | |
| 
 | |
|   static Constant *Xor(const ConstantBool *V1, const ConstantBool *V2) {
 | |
|     return ConstantBool::get(V1->getValue() ^ V2->getValue());
 | |
|   }
 | |
| 
 | |
|   // Casting operators.  ick
 | |
| #define DEF_CAST(TYPE, CLASS, CTYPE) \
 | |
|   static Constant *CastTo##TYPE  (const ConstantBool *V) {    \
 | |
|     return CLASS::get(Type::TYPE##Ty, (CTYPE)(bool)V->getValue()); \
 | |
|   }
 | |
| 
 | |
|   DEF_CAST(Bool  , ConstantBool, bool)
 | |
|   DEF_CAST(SByte , ConstantSInt, signed char)
 | |
|   DEF_CAST(UByte , ConstantUInt, unsigned char)
 | |
|   DEF_CAST(Short , ConstantSInt, signed short)
 | |
|   DEF_CAST(UShort, ConstantUInt, unsigned short)
 | |
|   DEF_CAST(Int   , ConstantSInt, signed int)
 | |
|   DEF_CAST(UInt  , ConstantUInt, unsigned int)
 | |
|   DEF_CAST(Long  , ConstantSInt, int64_t)
 | |
|   DEF_CAST(ULong , ConstantUInt, uint64_t)
 | |
|   DEF_CAST(Float , ConstantFP  , float)
 | |
|   DEF_CAST(Double, ConstantFP  , double)
 | |
| #undef DEF_CAST
 | |
| };
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                            NullPointerRules Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // NullPointerRules provides a concrete base class of ConstRules for null
 | |
| // pointers.
 | |
| //
 | |
| struct NullPointerRules : public TemplateRules<ConstantPointerNull,
 | |
|                                                NullPointerRules> {
 | |
|   static Constant *EqualTo(const Constant *V1, const Constant *V2) {
 | |
|     return ConstantBool::True;  // Null pointers are always equal
 | |
|   }
 | |
|   static Constant *CastToBool(const Constant *V) {
 | |
|     return ConstantBool::False;
 | |
|   }
 | |
|   static Constant *CastToSByte (const Constant *V) {
 | |
|     return ConstantSInt::get(Type::SByteTy, 0);
 | |
|   }
 | |
|   static Constant *CastToUByte (const Constant *V) {
 | |
|     return ConstantUInt::get(Type::UByteTy, 0);
 | |
|   }
 | |
|   static Constant *CastToShort (const Constant *V) {
 | |
|     return ConstantSInt::get(Type::ShortTy, 0);
 | |
|   }
 | |
|   static Constant *CastToUShort(const Constant *V) {
 | |
|     return ConstantUInt::get(Type::UShortTy, 0);
 | |
|   }
 | |
|   static Constant *CastToInt   (const Constant *V) {
 | |
|     return ConstantSInt::get(Type::IntTy, 0);
 | |
|   }
 | |
|   static Constant *CastToUInt  (const Constant *V) {
 | |
|     return ConstantUInt::get(Type::UIntTy, 0);
 | |
|   }
 | |
|   static Constant *CastToLong  (const Constant *V) {
 | |
|     return ConstantSInt::get(Type::LongTy, 0);
 | |
|   }
 | |
|   static Constant *CastToULong (const Constant *V) {
 | |
|     return ConstantUInt::get(Type::ULongTy, 0);
 | |
|   }
 | |
|   static Constant *CastToFloat (const Constant *V) {
 | |
|     return ConstantFP::get(Type::FloatTy, 0);
 | |
|   }
 | |
|   static Constant *CastToDouble(const Constant *V) {
 | |
|     return ConstantFP::get(Type::DoubleTy, 0);
 | |
|   }
 | |
| 
 | |
|   static Constant *CastToPointer(const ConstantPointerNull *V,
 | |
|                                  const PointerType *PTy) {
 | |
|     return ConstantPointerNull::get(PTy);
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                             DirectRules Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // DirectRules provides a concrete base classes of ConstRules for a variety of
 | |
| // different types.  This allows the C++ compiler to automatically generate our
 | |
| // constant handling operations in a typesafe and accurate manner.
 | |
| //
 | |
| template<class ConstantClass, class BuiltinType, Type **Ty, class SuperClass>
 | |
| struct DirectRules : public TemplateRules<ConstantClass, SuperClass> {
 | |
|   static Constant *Add(const ConstantClass *V1, const ConstantClass *V2) {
 | |
|     BuiltinType R = (BuiltinType)V1->getValue() + (BuiltinType)V2->getValue();
 | |
|     return ConstantClass::get(*Ty, R);
 | |
|   }
 | |
| 
 | |
|   static Constant *Sub(const ConstantClass *V1, const ConstantClass *V2) {
 | |
|     BuiltinType R = (BuiltinType)V1->getValue() - (BuiltinType)V2->getValue();
 | |
|     return ConstantClass::get(*Ty, R);
 | |
|   }
 | |
| 
 | |
|   static Constant *Mul(const ConstantClass *V1, const ConstantClass *V2) {
 | |
|     BuiltinType R = (BuiltinType)V1->getValue() * (BuiltinType)V2->getValue();
 | |
|     return ConstantClass::get(*Ty, R);
 | |
|   }
 | |
| 
 | |
|   static Constant *Div(const ConstantClass *V1, const ConstantClass *V2) {
 | |
|     if (V2->isNullValue()) return 0;
 | |
|     BuiltinType R = (BuiltinType)V1->getValue() / (BuiltinType)V2->getValue();
 | |
|     return ConstantClass::get(*Ty, R);
 | |
|   }
 | |
| 
 | |
|   static Constant *LessThan(const ConstantClass *V1, const ConstantClass *V2) {
 | |
|     bool R = (BuiltinType)V1->getValue() < (BuiltinType)V2->getValue();
 | |
|     return ConstantBool::get(R);
 | |
|   } 
 | |
| 
 | |
|   static Constant *EqualTo(const ConstantClass *V1, const ConstantClass *V2) {
 | |
|     bool R = (BuiltinType)V1->getValue() == (BuiltinType)V2->getValue();
 | |
|     return ConstantBool::get(R);
 | |
|   }
 | |
| 
 | |
|   static Constant *CastToPointer(const ConstantClass *V,
 | |
|                                  const PointerType *PTy) {
 | |
|     if (V->isNullValue())    // Is it a FP or Integral null value?
 | |
|       return ConstantPointerNull::get(PTy);
 | |
|     return 0;  // Can't const prop other types of pointers
 | |
|   }
 | |
| 
 | |
|   // Casting operators.  ick
 | |
| #define DEF_CAST(TYPE, CLASS, CTYPE) \
 | |
|   static Constant *CastTo##TYPE  (const ConstantClass *V) {    \
 | |
|     return CLASS::get(Type::TYPE##Ty, (CTYPE)(BuiltinType)V->getValue()); \
 | |
|   }
 | |
| 
 | |
|   DEF_CAST(Bool  , ConstantBool, bool)
 | |
|   DEF_CAST(SByte , ConstantSInt, signed char)
 | |
|   DEF_CAST(UByte , ConstantUInt, unsigned char)
 | |
|   DEF_CAST(Short , ConstantSInt, signed short)
 | |
|   DEF_CAST(UShort, ConstantUInt, unsigned short)
 | |
|   DEF_CAST(Int   , ConstantSInt, signed int)
 | |
|   DEF_CAST(UInt  , ConstantUInt, unsigned int)
 | |
|   DEF_CAST(Long  , ConstantSInt, int64_t)
 | |
|   DEF_CAST(ULong , ConstantUInt, uint64_t)
 | |
|   DEF_CAST(Float , ConstantFP  , float)
 | |
|   DEF_CAST(Double, ConstantFP  , double)
 | |
| #undef DEF_CAST
 | |
| };
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           DirectIntRules Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // DirectIntRules provides implementations of functions that are valid on
 | |
| // integer types, but not all types in general.
 | |
| //
 | |
| template <class ConstantClass, class BuiltinType, Type **Ty>
 | |
| struct DirectIntRules
 | |
|   : public DirectRules<ConstantClass, BuiltinType, Ty,
 | |
|                        DirectIntRules<ConstantClass, BuiltinType, Ty> > {
 | |
| 
 | |
|   static Constant *Div(const ConstantClass *V1, const ConstantClass *V2) {
 | |
|     if (V2->isNullValue()) return 0;
 | |
|     if (V2->isAllOnesValue() &&              // MIN_INT / -1
 | |
|         (BuiltinType)V1->getValue() == -(BuiltinType)V1->getValue())
 | |
|       return 0;
 | |
|     BuiltinType R = (BuiltinType)V1->getValue() / (BuiltinType)V2->getValue();
 | |
|     return ConstantClass::get(*Ty, R);
 | |
|   }
 | |
| 
 | |
|   static Constant *Rem(const ConstantClass *V1,
 | |
|                        const ConstantClass *V2) {
 | |
|     if (V2->isNullValue()) return 0;         // X / 0
 | |
|     if (V2->isAllOnesValue() &&              // MIN_INT / -1
 | |
|         (BuiltinType)V1->getValue() == -(BuiltinType)V1->getValue())
 | |
|       return 0;
 | |
|     BuiltinType R = (BuiltinType)V1->getValue() % (BuiltinType)V2->getValue();
 | |
|     return ConstantClass::get(*Ty, R);
 | |
|   }
 | |
| 
 | |
|   static Constant *And(const ConstantClass *V1, const ConstantClass *V2) {
 | |
|     BuiltinType R = (BuiltinType)V1->getValue() & (BuiltinType)V2->getValue();
 | |
|     return ConstantClass::get(*Ty, R);
 | |
|   }
 | |
|   static Constant *Or(const ConstantClass *V1, const ConstantClass *V2) {
 | |
|     BuiltinType R = (BuiltinType)V1->getValue() | (BuiltinType)V2->getValue();
 | |
|     return ConstantClass::get(*Ty, R);
 | |
|   }
 | |
|   static Constant *Xor(const ConstantClass *V1, const ConstantClass *V2) {
 | |
|     BuiltinType R = (BuiltinType)V1->getValue() ^ (BuiltinType)V2->getValue();
 | |
|     return ConstantClass::get(*Ty, R);
 | |
|   }
 | |
| 
 | |
|   static Constant *Shl(const ConstantClass *V1, const ConstantClass *V2) {
 | |
|     BuiltinType R = (BuiltinType)V1->getValue() << (BuiltinType)V2->getValue();
 | |
|     return ConstantClass::get(*Ty, R);
 | |
|   }
 | |
| 
 | |
|   static Constant *Shr(const ConstantClass *V1, const ConstantClass *V2) {
 | |
|     BuiltinType R = (BuiltinType)V1->getValue() >> (BuiltinType)V2->getValue();
 | |
|     return ConstantClass::get(*Ty, R);
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                           DirectFPRules Class
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| /// DirectFPRules provides implementations of functions that are valid on
 | |
| /// floating point types, but not all types in general.
 | |
| ///
 | |
| template <class ConstantClass, class BuiltinType, Type **Ty>
 | |
| struct DirectFPRules
 | |
|   : public DirectRules<ConstantClass, BuiltinType, Ty,
 | |
|                        DirectFPRules<ConstantClass, BuiltinType, Ty> > {
 | |
|   static Constant *Rem(const ConstantClass *V1, const ConstantClass *V2) {
 | |
|     if (V2->isNullValue()) return 0;
 | |
|     BuiltinType Result = std::fmod((BuiltinType)V1->getValue(),
 | |
|                                    (BuiltinType)V2->getValue());
 | |
|     return ConstantClass::get(*Ty, Result);
 | |
|   }
 | |
| };
 | |
| 
 | |
| 
 | |
| /// ConstRules::get - This method returns the constant rules implementation that
 | |
| /// implements the semantics of the two specified constants.
 | |
| ConstRules &ConstRules::get(const Constant *V1, const Constant *V2) {
 | |
|   static EmptyRules       EmptyR;
 | |
|   static BoolRules        BoolR;
 | |
|   static NullPointerRules NullPointerR;
 | |
|   static DirectIntRules<ConstantSInt,   signed char , &Type::SByteTy>  SByteR;
 | |
|   static DirectIntRules<ConstantUInt, unsigned char , &Type::UByteTy>  UByteR;
 | |
|   static DirectIntRules<ConstantSInt,   signed short, &Type::ShortTy>  ShortR;
 | |
|   static DirectIntRules<ConstantUInt, unsigned short, &Type::UShortTy> UShortR;
 | |
|   static DirectIntRules<ConstantSInt,   signed int  , &Type::IntTy>    IntR;
 | |
|   static DirectIntRules<ConstantUInt, unsigned int  , &Type::UIntTy>   UIntR;
 | |
|   static DirectIntRules<ConstantSInt,  int64_t      , &Type::LongTy>   LongR;
 | |
|   static DirectIntRules<ConstantUInt, uint64_t      , &Type::ULongTy>  ULongR;
 | |
|   static DirectFPRules <ConstantFP  , float         , &Type::FloatTy>  FloatR;
 | |
|   static DirectFPRules <ConstantFP  , double        , &Type::DoubleTy> DoubleR;
 | |
| 
 | |
|   if (isa<ConstantExpr>(V1) || isa<ConstantExpr>(V2) ||
 | |
|       isa<GlobalValue>(V1) || isa<GlobalValue>(V2) ||
 | |
|       isa<UndefValue>(V1) || isa<UndefValue>(V2))
 | |
|     return EmptyR;
 | |
| 
 | |
|   switch (V1->getType()->getTypeID()) {
 | |
|   default: assert(0 && "Unknown value type for constant folding!");
 | |
|   case Type::BoolTyID:    return BoolR;
 | |
|   case Type::PointerTyID: return NullPointerR;
 | |
|   case Type::SByteTyID:   return SByteR;
 | |
|   case Type::UByteTyID:   return UByteR;
 | |
|   case Type::ShortTyID:   return ShortR;
 | |
|   case Type::UShortTyID:  return UShortR;
 | |
|   case Type::IntTyID:     return IntR;
 | |
|   case Type::UIntTyID:    return UIntR;
 | |
|   case Type::LongTyID:    return LongR;
 | |
|   case Type::ULongTyID:   return ULongR;
 | |
|   case Type::FloatTyID:   return FloatR;
 | |
|   case Type::DoubleTyID:  return DoubleR;
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                ConstantFold*Instruction Implementations
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // These methods contain the special case hackery required to symbolically
 | |
| // evaluate some constant expression cases, and use the ConstantRules class to
 | |
| // evaluate normal constants.
 | |
| //
 | |
| static unsigned getSize(const Type *Ty) {
 | |
|   unsigned S = Ty->getPrimitiveSize();
 | |
|   return S ? S : 8;  // Treat pointers at 8 bytes
 | |
| }
 | |
| 
 | |
| Constant *llvm::ConstantFoldCastInstruction(const Constant *V,
 | |
|                                             const Type *DestTy) {
 | |
|   if (V->getType() == DestTy) return (Constant*)V;
 | |
| 
 | |
|   // Cast of a global address to boolean is always true.
 | |
|   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
 | |
|     if (DestTy == Type::BoolTy)
 | |
|       // FIXME: When we support 'external weak' references, we have to prevent
 | |
|       // this transformation from happening.  This code will need to be updated
 | |
|       // to ignore external weak symbols when we support it.
 | |
|       return ConstantBool::True;
 | |
|   } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
 | |
|     if (CE->getOpcode() == Instruction::Cast) {
 | |
|       Constant *Op = const_cast<Constant*>(CE->getOperand(0));
 | |
|       // Try to not produce a cast of a cast, which is almost always redundant.
 | |
|       if (!Op->getType()->isFloatingPoint() &&
 | |
|           !CE->getType()->isFloatingPoint() &&
 | |
|           !DestTy->isFloatingPoint()) {
 | |
|         unsigned S1 = getSize(Op->getType()), S2 = getSize(CE->getType());
 | |
|         unsigned S3 = getSize(DestTy);
 | |
|         if (Op->getType() == DestTy && S3 >= S2)
 | |
|           return Op;
 | |
|         if (S1 >= S2 && S2 >= S3)
 | |
|           return ConstantExpr::getCast(Op, DestTy);
 | |
|         if (S1 <= S2 && S2 >= S3 && S1 <= S3)
 | |
|           return ConstantExpr::getCast(Op, DestTy);
 | |
|       }
 | |
|     } else if (CE->getOpcode() == Instruction::GetElementPtr) {
 | |
|       // If all of the indexes in the GEP are null values, there is no pointer
 | |
|       // adjustment going on.  We might as well cast the source pointer.
 | |
|       bool isAllNull = true;
 | |
|       for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
 | |
|         if (!CE->getOperand(i)->isNullValue()) {
 | |
|           isAllNull = false;
 | |
|           break;
 | |
|         }
 | |
|       if (isAllNull)
 | |
|         return ConstantExpr::getCast(CE->getOperand(0), DestTy);
 | |
|     }
 | |
|   } else if (isa<UndefValue>(V)) {
 | |
|     return UndefValue::get(DestTy);
 | |
|   }
 | |
| 
 | |
|   // Check to see if we are casting an pointer to an aggregate to a pointer to
 | |
|   // the first element.  If so, return the appropriate GEP instruction.
 | |
|   if (const PointerType *PTy = dyn_cast<PointerType>(V->getType()))
 | |
|     if (const PointerType *DPTy = dyn_cast<PointerType>(DestTy)) {
 | |
|       std::vector<Value*> IdxList;
 | |
|       IdxList.push_back(Constant::getNullValue(Type::IntTy));
 | |
|       const Type *ElTy = PTy->getElementType();
 | |
|       while (ElTy != DPTy->getElementType()) {
 | |
|         if (const StructType *STy = dyn_cast<StructType>(ElTy)) {
 | |
|           if (STy->getNumElements() == 0) break;
 | |
|           ElTy = STy->getElementType(0);
 | |
|           IdxList.push_back(Constant::getNullValue(Type::UIntTy));
 | |
|         } else if (const SequentialType *STy = dyn_cast<SequentialType>(ElTy)) {
 | |
|           if (isa<PointerType>(ElTy)) break;  // Can't index into pointers!
 | |
|           ElTy = STy->getElementType();
 | |
|           IdxList.push_back(IdxList[0]);
 | |
|         } else {
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if (ElTy == DPTy->getElementType())
 | |
|         return ConstantExpr::getGetElementPtr(const_cast<Constant*>(V),IdxList);
 | |
|     }
 | |
| 
 | |
|   ConstRules &Rules = ConstRules::get(V, V);
 | |
| 
 | |
|   switch (DestTy->getTypeID()) {
 | |
|   case Type::BoolTyID:    return Rules.castToBool(V);
 | |
|   case Type::UByteTyID:   return Rules.castToUByte(V);
 | |
|   case Type::SByteTyID:   return Rules.castToSByte(V);
 | |
|   case Type::UShortTyID:  return Rules.castToUShort(V);
 | |
|   case Type::ShortTyID:   return Rules.castToShort(V);
 | |
|   case Type::UIntTyID:    return Rules.castToUInt(V);
 | |
|   case Type::IntTyID:     return Rules.castToInt(V);
 | |
|   case Type::ULongTyID:   return Rules.castToULong(V);
 | |
|   case Type::LongTyID:    return Rules.castToLong(V);
 | |
|   case Type::FloatTyID:   return Rules.castToFloat(V);
 | |
|   case Type::DoubleTyID:  return Rules.castToDouble(V);
 | |
|   case Type::PointerTyID:
 | |
|     return Rules.castToPointer(V, cast<PointerType>(DestTy));
 | |
|   default: return 0;
 | |
|   }
 | |
| }
 | |
| 
 | |
| Constant *llvm::ConstantFoldSelectInstruction(const Constant *Cond,
 | |
|                                               const Constant *V1,
 | |
|                                               const Constant *V2) {
 | |
|   if (Cond == ConstantBool::True)
 | |
|     return const_cast<Constant*>(V1);
 | |
|   else if (Cond == ConstantBool::False)
 | |
|     return const_cast<Constant*>(V2);
 | |
| 
 | |
|   if (isa<UndefValue>(V1)) return const_cast<Constant*>(V2);
 | |
|   if (isa<UndefValue>(V2)) return const_cast<Constant*>(V1);
 | |
|   if (isa<UndefValue>(Cond)) return const_cast<Constant*>(V1);
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// isZeroSizedType - This type is zero sized if its an array or structure of
 | |
| /// zero sized types.  The only leaf zero sized type is an empty structure.
 | |
| static bool isMaybeZeroSizedType(const Type *Ty) {
 | |
|   if (isa<OpaqueType>(Ty)) return true;  // Can't say.
 | |
|   if (const StructType *STy = dyn_cast<StructType>(Ty)) {
 | |
| 
 | |
|     // If all of elements have zero size, this does too.
 | |
|     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
 | |
|       if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
 | |
|     return true;
 | |
| 
 | |
|   } else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
 | |
|     return isMaybeZeroSizedType(ATy->getElementType());
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// IdxCompare - Compare the two constants as though they were getelementptr
 | |
| /// indices.  This allows coersion of the types to be the same thing.
 | |
| ///
 | |
| /// If the two constants are the "same" (after coersion), return 0.  If the
 | |
| /// first is less than the second, return -1, if the second is less than the
 | |
| /// first, return 1.  If the constants are not integral, return -2.
 | |
| ///
 | |
| static int IdxCompare(Constant *C1, Constant *C2, const Type *ElTy) {
 | |
|   if (C1 == C2) return 0;
 | |
| 
 | |
|   // Ok, we found a different index.  Are either of the operands
 | |
|   // ConstantExprs?  If so, we can't do anything with them.
 | |
|   if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
 | |
|     return -2; // don't know!
 | |
|   
 | |
|   // Ok, we have two differing integer indices.  Sign extend them to be the same
 | |
|   // type.  Long is always big enough, so we use it.
 | |
|   C1 = ConstantExpr::getSignExtend(C1, Type::LongTy);
 | |
|   C2 = ConstantExpr::getSignExtend(C2, Type::LongTy);
 | |
|   if (C1 == C2) return 0;  // Are they just differing types?
 | |
| 
 | |
|   // If the type being indexed over is really just a zero sized type, there is
 | |
|   // no pointer difference being made here.
 | |
|   if (isMaybeZeroSizedType(ElTy))
 | |
|     return -2; // dunno.
 | |
| 
 | |
|   // If they are really different, now that they are the same type, then we
 | |
|   // found a difference!
 | |
|   if (cast<ConstantSInt>(C1)->getValue() < cast<ConstantSInt>(C2)->getValue())
 | |
|     return -1;
 | |
|   else
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /// evaluateRelation - This function determines if there is anything we can
 | |
| /// decide about the two constants provided.  This doesn't need to handle simple
 | |
| /// things like integer comparisons, but should instead handle ConstantExprs
 | |
| /// and GlobalValuess.  If we can determine that the two constants have a
 | |
| /// particular relation to each other, we should return the corresponding SetCC
 | |
| /// code, otherwise return Instruction::BinaryOpsEnd.
 | |
| ///
 | |
| /// To simplify this code we canonicalize the relation so that the first
 | |
| /// operand is always the most "complex" of the two.  We consider simple
 | |
| /// constants (like ConstantInt) to be the simplest, followed by
 | |
| /// GlobalValues, followed by ConstantExpr's (the most complex).
 | |
| ///
 | |
| static Instruction::BinaryOps evaluateRelation(const Constant *V1,
 | |
|                                                const Constant *V2) {
 | |
|   assert(V1->getType() == V2->getType() &&
 | |
|          "Cannot compare different types of values!");
 | |
|   if (V1 == V2) return Instruction::SetEQ;
 | |
| 
 | |
|   if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1)) {
 | |
|     // If the first operand is simple, swap operands.
 | |
|     assert((isa<GlobalValue>(V2) || isa<ConstantExpr>(V2)) &&
 | |
|            "Simple cases should have been handled by caller!");
 | |
|     Instruction::BinaryOps SwappedRelation = evaluateRelation(V2, V1);
 | |
|     if (SwappedRelation != Instruction::BinaryOpsEnd)
 | |
|       return SetCondInst::getSwappedCondition(SwappedRelation);
 | |
| 
 | |
|   } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(V1)){
 | |
|     if (isa<ConstantExpr>(V2)) {  // Swap as necessary.
 | |
|     Instruction::BinaryOps SwappedRelation = evaluateRelation(V2, V1);
 | |
|     if (SwappedRelation != Instruction::BinaryOpsEnd)
 | |
|       return SetCondInst::getSwappedCondition(SwappedRelation);
 | |
|     else
 | |
|       return Instruction::BinaryOpsEnd;
 | |
|     }
 | |
| 
 | |
|     // Now we know that the RHS is a GlobalValue or simple constant,
 | |
|     // which (since the types must match) means that it's a ConstantPointerNull.
 | |
|     if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
 | |
|       assert(CPR1 != CPR2 &&
 | |
|              "GVs for the same value exist at different addresses??");
 | |
|       // FIXME: If both globals are external weak, they might both be null!
 | |
|       return Instruction::SetNE;
 | |
|     } else {
 | |
|       assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
 | |
|       // Global can never be null.  FIXME: if we implement external weak
 | |
|       // linkage, this is not necessarily true!
 | |
|       return Instruction::SetNE;
 | |
|     }
 | |
| 
 | |
|   } else {
 | |
|     // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
 | |
|     // constantexpr, a CPR, or a simple constant.
 | |
|     const ConstantExpr *CE1 = cast<ConstantExpr>(V1);
 | |
|     Constant *CE1Op0 = CE1->getOperand(0);
 | |
| 
 | |
|     switch (CE1->getOpcode()) {
 | |
|     case Instruction::Cast:
 | |
|       // If the cast is not actually changing bits, and the second operand is a
 | |
|       // null pointer, do the comparison with the pre-casted value.
 | |
|       if (V2->isNullValue() &&
 | |
|           CE1->getType()->isLosslesslyConvertibleTo(CE1Op0->getType()))
 | |
|         return evaluateRelation(CE1Op0,
 | |
|                                 Constant::getNullValue(CE1Op0->getType()));
 | |
|       break;
 | |
| 
 | |
|     case Instruction::GetElementPtr:
 | |
|       // Ok, since this is a getelementptr, we know that the constant has a
 | |
|       // pointer type.  Check the various cases.
 | |
|       if (isa<ConstantPointerNull>(V2)) {
 | |
|         // If we are comparing a GEP to a null pointer, check to see if the base
 | |
|         // of the GEP equals the null pointer.
 | |
|         if (isa<GlobalValue>(CE1Op0)) {
 | |
|           // FIXME: this is not true when we have external weak references!
 | |
|           // No offset can go from a global to a null pointer.
 | |
|           return Instruction::SetGT;
 | |
|         } else if (isa<ConstantPointerNull>(CE1Op0)) {
 | |
|           // If we are indexing from a null pointer, check to see if we have any
 | |
|           // non-zero indices.
 | |
|           for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
 | |
|             if (!CE1->getOperand(i)->isNullValue())
 | |
|               // Offsetting from null, must not be equal.
 | |
|               return Instruction::SetGT;
 | |
|           // Only zero indexes from null, must still be zero.
 | |
|           return Instruction::SetEQ;
 | |
|         }
 | |
|         // Otherwise, we can't really say if the first operand is null or not.
 | |
|       } else if (const GlobalValue *CPR2 = dyn_cast<GlobalValue>(V2)) {
 | |
|         if (isa<ConstantPointerNull>(CE1Op0)) {
 | |
|           // FIXME: This is not true with external weak references.
 | |
|           return Instruction::SetLT;
 | |
|         } else if (const GlobalValue *CPR1 = dyn_cast<GlobalValue>(CE1Op0)) {
 | |
|           if (CPR1 == CPR2) {
 | |
|             // If this is a getelementptr of the same global, then it must be
 | |
|             // different.  Because the types must match, the getelementptr could
 | |
|             // only have at most one index, and because we fold getelementptr's
 | |
|             // with a single zero index, it must be nonzero.
 | |
|             assert(CE1->getNumOperands() == 2 &&
 | |
|                    !CE1->getOperand(1)->isNullValue() &&
 | |
|                    "Suprising getelementptr!");
 | |
|             return Instruction::SetGT;
 | |
|           } else {
 | |
|             // If they are different globals, we don't know what the value is,
 | |
|             // but they can't be equal.
 | |
|             return Instruction::SetNE;
 | |
|           }
 | |
|         }
 | |
|       } else {
 | |
|         const ConstantExpr *CE2 = cast<ConstantExpr>(V2);
 | |
|         const Constant *CE2Op0 = CE2->getOperand(0);
 | |
| 
 | |
|         // There are MANY other foldings that we could perform here.  They will
 | |
|         // probably be added on demand, as they seem needed.
 | |
|         switch (CE2->getOpcode()) {
 | |
|         default: break;
 | |
|         case Instruction::GetElementPtr:
 | |
|           // By far the most common case to handle is when the base pointers are
 | |
|           // obviously to the same or different globals.
 | |
|           if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
 | |
|             if (CE1Op0 != CE2Op0) // Don't know relative ordering, but not equal
 | |
|               return Instruction::SetNE;
 | |
|             // Ok, we know that both getelementptr instructions are based on the
 | |
|             // same global.  From this, we can precisely determine the relative
 | |
|             // ordering of the resultant pointers.
 | |
|             unsigned i = 1;
 | |
|             
 | |
|             // Compare all of the operands the GEP's have in common.
 | |
|             gep_type_iterator GTI = gep_type_begin(CE1);
 | |
|             for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
 | |
|                  ++i, ++GTI)
 | |
|               switch (IdxCompare(CE1->getOperand(i), CE2->getOperand(i),
 | |
|                                  GTI.getIndexedType())) {
 | |
|               case -1: return Instruction::SetLT;
 | |
|               case 1:  return Instruction::SetGT;
 | |
|               case -2: return Instruction::BinaryOpsEnd;
 | |
|               }
 | |
| 
 | |
|             // Ok, we ran out of things they have in common.  If any leftovers
 | |
|             // are non-zero then we have a difference, otherwise we are equal.
 | |
|             for (; i < CE1->getNumOperands(); ++i)
 | |
|               if (!CE1->getOperand(i)->isNullValue())
 | |
|                 if (isa<ConstantIntegral>(CE1->getOperand(i)))
 | |
|                   return Instruction::SetGT;
 | |
|                 else
 | |
|                   return Instruction::BinaryOpsEnd; // Might be equal.
 | |
|                     
 | |
|             for (; i < CE2->getNumOperands(); ++i)
 | |
|               if (!CE2->getOperand(i)->isNullValue())
 | |
|                 if (isa<ConstantIntegral>(CE2->getOperand(i)))
 | |
|                   return Instruction::SetLT;
 | |
|                 else
 | |
|                   return Instruction::BinaryOpsEnd; // Might be equal.
 | |
|             return Instruction::SetEQ;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       
 | |
|     default:
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Instruction::BinaryOpsEnd;
 | |
| }
 | |
| 
 | |
| Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode,
 | |
|                                               const Constant *V1,
 | |
|                                               const Constant *V2) {
 | |
|   Constant *C = 0;
 | |
|   switch (Opcode) {
 | |
|   default:                   break;
 | |
|   case Instruction::Add:     C = ConstRules::get(V1, V2).add(V1, V2); break;
 | |
|   case Instruction::Sub:     C = ConstRules::get(V1, V2).sub(V1, V2); break;
 | |
|   case Instruction::Mul:     C = ConstRules::get(V1, V2).mul(V1, V2); break;
 | |
|   case Instruction::Div:     C = ConstRules::get(V1, V2).div(V1, V2); break;
 | |
|   case Instruction::Rem:     C = ConstRules::get(V1, V2).rem(V1, V2); break;
 | |
|   case Instruction::And:     C = ConstRules::get(V1, V2).op_and(V1, V2); break;
 | |
|   case Instruction::Or:      C = ConstRules::get(V1, V2).op_or (V1, V2); break;
 | |
|   case Instruction::Xor:     C = ConstRules::get(V1, V2).op_xor(V1, V2); break;
 | |
|   case Instruction::Shl:     C = ConstRules::get(V1, V2).shl(V1, V2); break;
 | |
|   case Instruction::Shr:     C = ConstRules::get(V1, V2).shr(V1, V2); break;
 | |
|   case Instruction::SetEQ:   C = ConstRules::get(V1, V2).equalto(V1, V2); break;
 | |
|   case Instruction::SetLT:   C = ConstRules::get(V1, V2).lessthan(V1, V2);break;
 | |
|   case Instruction::SetGT:   C = ConstRules::get(V1, V2).lessthan(V2, V1);break;
 | |
|   case Instruction::SetNE:   // V1 != V2  ===  !(V1 == V2)
 | |
|     C = ConstRules::get(V1, V2).equalto(V1, V2);
 | |
|     if (C) return ConstantExpr::get(Instruction::Xor, C, ConstantBool::True);
 | |
|     break;
 | |
|   case Instruction::SetLE:   // V1 <= V2  ===  !(V2 < V1)
 | |
|     C = ConstRules::get(V1, V2).lessthan(V2, V1);
 | |
|     if (C) return ConstantExpr::get(Instruction::Xor, C, ConstantBool::True);
 | |
|     break;
 | |
|   case Instruction::SetGE:   // V1 >= V2  ===  !(V1 < V2)
 | |
|     C = ConstRules::get(V1, V2).lessthan(V1, V2);
 | |
|     if (C) return ConstantExpr::get(Instruction::Xor, C, ConstantBool::True);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // If we successfully folded the expression, return it now.
 | |
|   if (C) return C;
 | |
| 
 | |
|   if (SetCondInst::isRelational(Opcode)) {
 | |
|     if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
 | |
|       return UndefValue::get(Type::BoolTy);
 | |
|     switch (evaluateRelation(V1, V2)) {
 | |
|     default: assert(0 && "Unknown relational!");
 | |
|     case Instruction::BinaryOpsEnd:
 | |
|       break;  // Couldn't determine anything about these constants.
 | |
|     case Instruction::SetEQ:   // We know the constants are equal!
 | |
|       // If we know the constants are equal, we can decide the result of this
 | |
|       // computation precisely.
 | |
|       return ConstantBool::get(Opcode == Instruction::SetEQ ||
 | |
|                                Opcode == Instruction::SetLE ||
 | |
|                                Opcode == Instruction::SetGE);
 | |
|     case Instruction::SetLT:
 | |
|       // If we know that V1 < V2, we can decide the result of this computation
 | |
|       // precisely.
 | |
|       return ConstantBool::get(Opcode == Instruction::SetLT ||
 | |
|                                Opcode == Instruction::SetNE ||
 | |
|                                Opcode == Instruction::SetLE);
 | |
|     case Instruction::SetGT:
 | |
|       // If we know that V1 > V2, we can decide the result of this computation
 | |
|       // precisely.
 | |
|       return ConstantBool::get(Opcode == Instruction::SetGT ||
 | |
|                                Opcode == Instruction::SetNE ||
 | |
|                                Opcode == Instruction::SetGE);
 | |
|     case Instruction::SetLE:
 | |
|       // If we know that V1 <= V2, we can only partially decide this relation.
 | |
|       if (Opcode == Instruction::SetGT) return ConstantBool::False;
 | |
|       if (Opcode == Instruction::SetLT) return ConstantBool::True;
 | |
|       break;
 | |
| 
 | |
|     case Instruction::SetGE:
 | |
|       // If we know that V1 >= V2, we can only partially decide this relation.
 | |
|       if (Opcode == Instruction::SetLT) return ConstantBool::False;
 | |
|       if (Opcode == Instruction::SetGT) return ConstantBool::True;
 | |
|       break;
 | |
|       
 | |
|     case Instruction::SetNE:
 | |
|       // If we know that V1 != V2, we can only partially decide this relation.
 | |
|       if (Opcode == Instruction::SetEQ) return ConstantBool::False;
 | |
|       if (Opcode == Instruction::SetNE) return ConstantBool::True;
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (isa<UndefValue>(V1) || isa<UndefValue>(V2)) {
 | |
|     switch (Opcode) {
 | |
|     case Instruction::Add:
 | |
|     case Instruction::Sub:
 | |
|     case Instruction::Xor:
 | |
|       return UndefValue::get(V1->getType());
 | |
| 
 | |
|     case Instruction::Mul:
 | |
|     case Instruction::And:
 | |
|       return Constant::getNullValue(V1->getType());
 | |
|     case Instruction::Div:
 | |
|     case Instruction::Rem:
 | |
|       if (!isa<UndefValue>(V2))     // undef/X -> 0
 | |
|         return Constant::getNullValue(V1->getType());
 | |
|       return const_cast<Constant*>(V2);                // X/undef -> undef
 | |
|     case Instruction::Or:           // X|undef -> -1
 | |
|       return ConstantInt::getAllOnesValue(V1->getType());
 | |
|     case Instruction::Shr:
 | |
|       if (!isa<UndefValue>(V2)) {
 | |
|         if (V1->getType()->isSigned())
 | |
|           return const_cast<Constant*>(V1);  // undef >>s X -> undef
 | |
|         // undef >>u X -> 0
 | |
|       } else if (isa<UndefValue>(V1)) {
 | |
|         return const_cast<Constant*>(V1);   //  undef >> undef -> undef
 | |
|       } else {
 | |
|         if (V1->getType()->isSigned())
 | |
|           return const_cast<Constant*>(V1);  // X >>s undef -> X
 | |
|         // X >>u undef -> 0
 | |
|       }
 | |
|       return Constant::getNullValue(V1->getType());
 | |
| 
 | |
|     case Instruction::Shl:
 | |
|       // undef << X -> 0   X << undef -> 0
 | |
|       return Constant::getNullValue(V1->getType());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (const ConstantExpr *CE1 = dyn_cast<ConstantExpr>(V1)) {
 | |
|     if (const ConstantExpr *CE2 = dyn_cast<ConstantExpr>(V2)) {
 | |
|       // There are many possible foldings we could do here.  We should probably
 | |
|       // at least fold add of a pointer with an integer into the appropriate
 | |
|       // getelementptr.  This will improve alias analysis a bit.
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
|     } else {
 | |
|       // Just implement a couple of simple identities.
 | |
|       switch (Opcode) {
 | |
|       case Instruction::Add:
 | |
|         if (V2->isNullValue()) return const_cast<Constant*>(V1);  // X + 0 == X
 | |
|         break;
 | |
|       case Instruction::Sub:
 | |
|         if (V2->isNullValue()) return const_cast<Constant*>(V1);  // X - 0 == X
 | |
|         break;
 | |
|       case Instruction::Mul:
 | |
|         if (V2->isNullValue()) return const_cast<Constant*>(V2);  // X * 0 == 0
 | |
|         if (const ConstantInt *CI = dyn_cast<ConstantInt>(V2))
 | |
|           if (CI->getRawValue() == 1)
 | |
|             return const_cast<Constant*>(V1);                     // X * 1 == X
 | |
|         break;
 | |
|       case Instruction::Div:
 | |
|         if (const ConstantInt *CI = dyn_cast<ConstantInt>(V2))
 | |
|           if (CI->getRawValue() == 1)
 | |
|             return const_cast<Constant*>(V1);                     // X / 1 == X
 | |
|         break;
 | |
|       case Instruction::Rem:
 | |
|         if (const ConstantInt *CI = dyn_cast<ConstantInt>(V2))
 | |
|           if (CI->getRawValue() == 1)
 | |
|             return Constant::getNullValue(CI->getType()); // X % 1 == 0
 | |
|         break;
 | |
|       case Instruction::And:
 | |
|         if (cast<ConstantIntegral>(V2)->isAllOnesValue())
 | |
|           return const_cast<Constant*>(V1);                       // X & -1 == X
 | |
|         if (V2->isNullValue()) return const_cast<Constant*>(V2);  // X & 0 == 0
 | |
|         if (CE1->getOpcode() == Instruction::Cast &&
 | |
|             isa<GlobalValue>(CE1->getOperand(0))) {
 | |
|           GlobalValue *CPR = cast<GlobalValue>(CE1->getOperand(0));
 | |
| 
 | |
|           // Functions are at least 4-byte aligned.  If and'ing the address of a
 | |
|           // function with a constant < 4, fold it to zero.
 | |
|           if (const ConstantInt *CI = dyn_cast<ConstantInt>(V2))
 | |
|             if (CI->getRawValue() < 4 && isa<Function>(CPR))
 | |
|               return Constant::getNullValue(CI->getType());
 | |
|         }
 | |
|         break;
 | |
|       case Instruction::Or:
 | |
|         if (V2->isNullValue()) return const_cast<Constant*>(V1);  // X | 0 == X
 | |
|         if (cast<ConstantIntegral>(V2)->isAllOnesValue())
 | |
|           return const_cast<Constant*>(V2);  // X | -1 == -1
 | |
|         break;
 | |
|       case Instruction::Xor:
 | |
|         if (V2->isNullValue()) return const_cast<Constant*>(V1);  // X ^ 0 == X
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   } else if (const ConstantExpr *CE2 = dyn_cast<ConstantExpr>(V2)) {
 | |
|     // If V2 is a constant expr and V1 isn't, flop them around and fold the
 | |
|     // other way if possible.
 | |
|     switch (Opcode) {
 | |
|     case Instruction::Add:
 | |
|     case Instruction::Mul:
 | |
|     case Instruction::And:
 | |
|     case Instruction::Or:
 | |
|     case Instruction::Xor:
 | |
|     case Instruction::SetEQ:
 | |
|     case Instruction::SetNE:
 | |
|       // No change of opcode required.
 | |
|       return ConstantFoldBinaryInstruction(Opcode, V2, V1);
 | |
| 
 | |
|     case Instruction::SetLT:
 | |
|     case Instruction::SetGT:
 | |
|     case Instruction::SetLE:
 | |
|     case Instruction::SetGE:
 | |
|       // Change the opcode as necessary to swap the operands.
 | |
|       Opcode = SetCondInst::getSwappedCondition((Instruction::BinaryOps)Opcode);
 | |
|       return ConstantFoldBinaryInstruction(Opcode, V2, V1);
 | |
| 
 | |
|     case Instruction::Shl:
 | |
|     case Instruction::Shr:
 | |
|     case Instruction::Sub:
 | |
|     case Instruction::Div:
 | |
|     case Instruction::Rem:
 | |
|     default:  // These instructions cannot be flopped around.
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| Constant *llvm::ConstantFoldGetElementPtr(const Constant *C,
 | |
|                                           const std::vector<Value*> &IdxList) {
 | |
|   if (IdxList.size() == 0 ||
 | |
|       (IdxList.size() == 1 && cast<Constant>(IdxList[0])->isNullValue()))
 | |
|     return const_cast<Constant*>(C);
 | |
| 
 | |
|   if (isa<UndefValue>(C)) {
 | |
|     const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), IdxList,
 | |
|                                                        true);
 | |
|     assert(Ty != 0 && "Invalid indices for GEP!");
 | |
|     return UndefValue::get(PointerType::get(Ty));
 | |
|   }
 | |
| 
 | |
|   Constant *Idx0 = cast<Constant>(IdxList[0]);
 | |
|   if (C->isNullValue()) {
 | |
|     bool isNull = true;
 | |
|     for (unsigned i = 0, e = IdxList.size(); i != e; ++i)
 | |
|       if (!cast<Constant>(IdxList[i])->isNullValue()) {
 | |
|         isNull = false;
 | |
|         break;
 | |
|       }
 | |
|     if (isNull) {
 | |
|       const Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), IdxList,
 | |
|                                                          true);
 | |
|       assert(Ty != 0 && "Invalid indices for GEP!");
 | |
|       return ConstantPointerNull::get(PointerType::get(Ty));
 | |
|     }
 | |
| 
 | |
|     if (IdxList.size() == 1) {
 | |
|       const Type *ElTy = cast<PointerType>(C->getType())->getElementType();
 | |
|       if (unsigned ElSize = ElTy->getPrimitiveSize()) {
 | |
|         // gep null, C is equal to C*sizeof(nullty).  If nullty is a known llvm
 | |
|         // type, we can statically fold this.
 | |
|         Constant *R = ConstantUInt::get(Type::UIntTy, ElSize);
 | |
|         R = ConstantExpr::getCast(R, Idx0->getType());
 | |
|         R = ConstantExpr::getMul(R, Idx0);
 | |
|         return ConstantExpr::getCast(R, C->getType());
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(const_cast<Constant*>(C))) {
 | |
|     // Combine Indices - If the source pointer to this getelementptr instruction
 | |
|     // is a getelementptr instruction, combine the indices of the two
 | |
|     // getelementptr instructions into a single instruction.
 | |
|     //
 | |
|     if (CE->getOpcode() == Instruction::GetElementPtr) {
 | |
|       const Type *LastTy = 0;
 | |
|       for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
 | |
|            I != E; ++I)
 | |
|         LastTy = *I;
 | |
| 
 | |
|       if ((LastTy && isa<ArrayType>(LastTy)) || Idx0->isNullValue()) {
 | |
|         std::vector<Value*> NewIndices;
 | |
|         NewIndices.reserve(IdxList.size() + CE->getNumOperands());
 | |
|         for (unsigned i = 1, e = CE->getNumOperands()-1; i != e; ++i)
 | |
|           NewIndices.push_back(CE->getOperand(i));
 | |
| 
 | |
|         // Add the last index of the source with the first index of the new GEP.
 | |
|         // Make sure to handle the case when they are actually different types.
 | |
|         Constant *Combined = CE->getOperand(CE->getNumOperands()-1);
 | |
|         // Otherwise it must be an array.
 | |
|         if (!Idx0->isNullValue()) {
 | |
|           const Type *IdxTy = Combined->getType();
 | |
|           if (IdxTy != Idx0->getType()) IdxTy = Type::LongTy;
 | |
|           Combined = 
 | |
|             ConstantExpr::get(Instruction::Add,
 | |
|                               ConstantExpr::getCast(Idx0, IdxTy),
 | |
|                               ConstantExpr::getCast(Combined, IdxTy));
 | |
|         }
 | |
|         
 | |
|         NewIndices.push_back(Combined);
 | |
|         NewIndices.insert(NewIndices.end(), IdxList.begin()+1, IdxList.end());
 | |
|         return ConstantExpr::getGetElementPtr(CE->getOperand(0), NewIndices);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Implement folding of:
 | |
|     //    int* getelementptr ([2 x int]* cast ([3 x int]* %X to [2 x int]*),
 | |
|     //                        long 0, long 0)
 | |
|     // To: int* getelementptr ([3 x int]* %X, long 0, long 0)
 | |
|     //
 | |
|     if (CE->getOpcode() == Instruction::Cast && IdxList.size() > 1 &&
 | |
|         Idx0->isNullValue())
 | |
|       if (const PointerType *SPT = 
 | |
|           dyn_cast<PointerType>(CE->getOperand(0)->getType()))
 | |
|         if (const ArrayType *SAT = dyn_cast<ArrayType>(SPT->getElementType()))
 | |
|           if (const ArrayType *CAT =
 | |
|               dyn_cast<ArrayType>(cast<PointerType>(C->getType())->getElementType()))
 | |
|             if (CAT->getElementType() == SAT->getElementType())
 | |
|               return ConstantExpr::getGetElementPtr(
 | |
|                       (Constant*)CE->getOperand(0), IdxList);
 | |
|   }
 | |
|   return 0;
 | |
| }
 | |
| 
 |