mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	a key is present in a std::map or DenseMap to use find instead. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@74676 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1062 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1062 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- llvm/Analysis/Dominators.h - Dominator Info Calculation --*- C++ -*-===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file defines the following classes:
 | 
						|
//  1. DominatorTree: Represent dominators as an explicit tree structure.
 | 
						|
//  2. DominanceFrontier: Calculate and hold the dominance frontier for a
 | 
						|
//     function.
 | 
						|
//
 | 
						|
//  These data structures are listed in increasing order of complexity.  It
 | 
						|
//  takes longer to calculate the dominator frontier, for example, than the
 | 
						|
//  DominatorTree mapping.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#ifndef LLVM_ANALYSIS_DOMINATORS_H
 | 
						|
#define LLVM_ANALYSIS_DOMINATORS_H
 | 
						|
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/BasicBlock.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/GraphTraits.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/SmallVector.h"
 | 
						|
#include "llvm/Assembly/Writer.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Support/Compiler.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <map>
 | 
						|
#include <set>
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// DominatorBase - Base class that other, more interesting dominator analyses
 | 
						|
/// inherit from.
 | 
						|
///
 | 
						|
template <class NodeT>
 | 
						|
class DominatorBase {
 | 
						|
protected:
 | 
						|
  std::vector<NodeT*> Roots;
 | 
						|
  const bool IsPostDominators;
 | 
						|
  inline explicit DominatorBase(bool isPostDom) :
 | 
						|
    Roots(), IsPostDominators(isPostDom) {}
 | 
						|
public:
 | 
						|
 | 
						|
  /// getRoots -  Return the root blocks of the current CFG.  This may include
 | 
						|
  /// multiple blocks if we are computing post dominators.  For forward
 | 
						|
  /// dominators, this will always be a single block (the entry node).
 | 
						|
  ///
 | 
						|
  inline const std::vector<NodeT*> &getRoots() const { return Roots; }
 | 
						|
 | 
						|
  /// isPostDominator - Returns true if analysis based of postdoms
 | 
						|
  ///
 | 
						|
  bool isPostDominator() const { return IsPostDominators; }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// DomTreeNode - Dominator Tree Node
 | 
						|
template<class NodeT> class DominatorTreeBase;
 | 
						|
struct PostDominatorTree;
 | 
						|
class MachineBasicBlock;
 | 
						|
 | 
						|
template <class NodeT>
 | 
						|
class DomTreeNodeBase {
 | 
						|
  NodeT *TheBB;
 | 
						|
  DomTreeNodeBase<NodeT> *IDom;
 | 
						|
  std::vector<DomTreeNodeBase<NodeT> *> Children;
 | 
						|
  int DFSNumIn, DFSNumOut;
 | 
						|
 | 
						|
  template<class N> friend class DominatorTreeBase;
 | 
						|
  friend struct PostDominatorTree;
 | 
						|
public:
 | 
						|
  typedef typename std::vector<DomTreeNodeBase<NodeT> *>::iterator iterator;
 | 
						|
  typedef typename std::vector<DomTreeNodeBase<NodeT> *>::const_iterator
 | 
						|
                   const_iterator;
 | 
						|
  
 | 
						|
  iterator begin()             { return Children.begin(); }
 | 
						|
  iterator end()               { return Children.end(); }
 | 
						|
  const_iterator begin() const { return Children.begin(); }
 | 
						|
  const_iterator end()   const { return Children.end(); }
 | 
						|
  
 | 
						|
  NodeT *getBlock() const { return TheBB; }
 | 
						|
  DomTreeNodeBase<NodeT> *getIDom() const { return IDom; }
 | 
						|
  const std::vector<DomTreeNodeBase<NodeT>*> &getChildren() const {
 | 
						|
    return Children;
 | 
						|
  }
 | 
						|
 | 
						|
  DomTreeNodeBase(NodeT *BB, DomTreeNodeBase<NodeT> *iDom)
 | 
						|
    : TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) { }
 | 
						|
  
 | 
						|
  DomTreeNodeBase<NodeT> *addChild(DomTreeNodeBase<NodeT> *C) {
 | 
						|
    Children.push_back(C);
 | 
						|
    return C;
 | 
						|
  }
 | 
						|
 | 
						|
  size_t getNumChildren() const {
 | 
						|
    return Children.size();
 | 
						|
  }
 | 
						|
 | 
						|
  void clearAllChildren() {
 | 
						|
    Children.clear();
 | 
						|
  }
 | 
						|
  
 | 
						|
  bool compare(DomTreeNodeBase<NodeT> *Other) {
 | 
						|
    if (getNumChildren() != Other->getNumChildren())
 | 
						|
      return true;
 | 
						|
 | 
						|
    SmallPtrSet<NodeT *, 4> OtherChildren;
 | 
						|
    for(iterator I = Other->begin(), E = Other->end(); I != E; ++I) {
 | 
						|
      NodeT *Nd = (*I)->getBlock();
 | 
						|
      OtherChildren.insert(Nd);
 | 
						|
    }
 | 
						|
 | 
						|
    for(iterator I = begin(), E = end(); I != E; ++I) {
 | 
						|
      NodeT *N = (*I)->getBlock();
 | 
						|
      if (OtherChildren.count(N) == 0)
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  void setIDom(DomTreeNodeBase<NodeT> *NewIDom) {
 | 
						|
    assert(IDom && "No immediate dominator?");
 | 
						|
    if (IDom != NewIDom) {
 | 
						|
      typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
 | 
						|
                  std::find(IDom->Children.begin(), IDom->Children.end(), this);
 | 
						|
      assert(I != IDom->Children.end() &&
 | 
						|
             "Not in immediate dominator children set!");
 | 
						|
      // I am no longer your child...
 | 
						|
      IDom->Children.erase(I);
 | 
						|
 | 
						|
      // Switch to new dominator
 | 
						|
      IDom = NewIDom;
 | 
						|
      IDom->Children.push_back(this);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do
 | 
						|
  /// not call them.
 | 
						|
  unsigned getDFSNumIn() const { return DFSNumIn; }
 | 
						|
  unsigned getDFSNumOut() const { return DFSNumOut; }
 | 
						|
private:
 | 
						|
  // Return true if this node is dominated by other. Use this only if DFS info
 | 
						|
  // is valid.
 | 
						|
  bool DominatedBy(const DomTreeNodeBase<NodeT> *other) const {
 | 
						|
    return this->DFSNumIn >= other->DFSNumIn &&
 | 
						|
      this->DFSNumOut <= other->DFSNumOut;
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<BasicBlock>);
 | 
						|
EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<MachineBasicBlock>);
 | 
						|
 | 
						|
template<class NodeT>
 | 
						|
static std::ostream &operator<<(std::ostream &o,
 | 
						|
                                const DomTreeNodeBase<NodeT> *Node) {
 | 
						|
  if (Node->getBlock())
 | 
						|
    WriteAsOperand(o, Node->getBlock(), false);
 | 
						|
  else
 | 
						|
    o << " <<exit node>>";
 | 
						|
  
 | 
						|
  o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}";
 | 
						|
  
 | 
						|
  return o << "\n";
 | 
						|
}
 | 
						|
 | 
						|
template<class NodeT>
 | 
						|
static void PrintDomTree(const DomTreeNodeBase<NodeT> *N, std::ostream &o,
 | 
						|
                         unsigned Lev) {
 | 
						|
  o << std::string(2*Lev, ' ') << "[" << Lev << "] " << N;
 | 
						|
  for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
 | 
						|
       E = N->end(); I != E; ++I)
 | 
						|
    PrintDomTree<NodeT>(*I, o, Lev+1);
 | 
						|
}
 | 
						|
 | 
						|
typedef DomTreeNodeBase<BasicBlock> DomTreeNode;
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// DominatorTree - Calculate the immediate dominator tree for a function.
 | 
						|
///
 | 
						|
 | 
						|
template<class FuncT, class N>
 | 
						|
void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
 | 
						|
               FuncT& F);
 | 
						|
 | 
						|
template<class NodeT>
 | 
						|
class DominatorTreeBase : public DominatorBase<NodeT> {
 | 
						|
protected:
 | 
						|
  typedef DenseMap<NodeT*, DomTreeNodeBase<NodeT>*> DomTreeNodeMapType;
 | 
						|
  DomTreeNodeMapType DomTreeNodes;
 | 
						|
  DomTreeNodeBase<NodeT> *RootNode;
 | 
						|
 | 
						|
  bool DFSInfoValid;
 | 
						|
  unsigned int SlowQueries;
 | 
						|
  // Information record used during immediate dominators computation.
 | 
						|
  struct InfoRec {
 | 
						|
    unsigned DFSNum;
 | 
						|
    unsigned Semi;
 | 
						|
    unsigned Size;
 | 
						|
    NodeT *Label, *Child;
 | 
						|
    unsigned Parent, Ancestor;
 | 
						|
 | 
						|
    std::vector<NodeT*> Bucket;
 | 
						|
 | 
						|
    InfoRec() : DFSNum(0), Semi(0), Size(0), Label(0), Child(0), Parent(0),
 | 
						|
                Ancestor(0) {}
 | 
						|
  };
 | 
						|
 | 
						|
  DenseMap<NodeT*, NodeT*> IDoms;
 | 
						|
 | 
						|
  // Vertex - Map the DFS number to the BasicBlock*
 | 
						|
  std::vector<NodeT*> Vertex;
 | 
						|
 | 
						|
  // Info - Collection of information used during the computation of idoms.
 | 
						|
  DenseMap<NodeT*, InfoRec> Info;
 | 
						|
 | 
						|
  void reset() {
 | 
						|
    for (typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.begin(), 
 | 
						|
           E = DomTreeNodes.end(); I != E; ++I)
 | 
						|
      delete I->second;
 | 
						|
    DomTreeNodes.clear();
 | 
						|
    IDoms.clear();
 | 
						|
    this->Roots.clear();
 | 
						|
    Vertex.clear();
 | 
						|
    RootNode = 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // NewBB is split and now it has one successor. Update dominator tree to
 | 
						|
  // reflect this change.
 | 
						|
  template<class N, class GraphT>
 | 
						|
  void Split(DominatorTreeBase<typename GraphT::NodeType>& DT,
 | 
						|
             typename GraphT::NodeType* NewBB) {
 | 
						|
    assert(std::distance(GraphT::child_begin(NewBB), GraphT::child_end(NewBB)) == 1
 | 
						|
           && "NewBB should have a single successor!");
 | 
						|
    typename GraphT::NodeType* NewBBSucc = *GraphT::child_begin(NewBB);
 | 
						|
 | 
						|
    std::vector<typename GraphT::NodeType*> PredBlocks;
 | 
						|
    for (typename GraphTraits<Inverse<N> >::ChildIteratorType PI =
 | 
						|
         GraphTraits<Inverse<N> >::child_begin(NewBB),
 | 
						|
         PE = GraphTraits<Inverse<N> >::child_end(NewBB); PI != PE; ++PI)
 | 
						|
      PredBlocks.push_back(*PI);  
 | 
						|
 | 
						|
    assert(!PredBlocks.empty() && "No predblocks??");
 | 
						|
 | 
						|
    bool NewBBDominatesNewBBSucc = true;
 | 
						|
    for (typename GraphTraits<Inverse<N> >::ChildIteratorType PI =
 | 
						|
         GraphTraits<Inverse<N> >::child_begin(NewBBSucc),
 | 
						|
         E = GraphTraits<Inverse<N> >::child_end(NewBBSucc); PI != E; ++PI)
 | 
						|
      if (*PI != NewBB && !DT.dominates(NewBBSucc, *PI) &&
 | 
						|
          DT.isReachableFromEntry(*PI)) {
 | 
						|
        NewBBDominatesNewBBSucc = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
    // Find NewBB's immediate dominator and create new dominator tree node for
 | 
						|
    // NewBB.
 | 
						|
    NodeT *NewBBIDom = 0;
 | 
						|
    unsigned i = 0;
 | 
						|
    for (i = 0; i < PredBlocks.size(); ++i)
 | 
						|
      if (DT.isReachableFromEntry(PredBlocks[i])) {
 | 
						|
        NewBBIDom = PredBlocks[i];
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
    // It's possible that none of the predecessors of NewBB are reachable;
 | 
						|
    // in that case, NewBB itself is unreachable, so nothing needs to be
 | 
						|
    // changed.
 | 
						|
    if (!NewBBIDom)
 | 
						|
      return;
 | 
						|
 | 
						|
    for (i = i + 1; i < PredBlocks.size(); ++i) {
 | 
						|
      if (DT.isReachableFromEntry(PredBlocks[i]))
 | 
						|
        NewBBIDom = DT.findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
 | 
						|
    }
 | 
						|
 | 
						|
    // Create the new dominator tree node... and set the idom of NewBB.
 | 
						|
    DomTreeNodeBase<NodeT> *NewBBNode = DT.addNewBlock(NewBB, NewBBIDom);
 | 
						|
 | 
						|
    // If NewBB strictly dominates other blocks, then it is now the immediate
 | 
						|
    // dominator of NewBBSucc.  Update the dominator tree as appropriate.
 | 
						|
    if (NewBBDominatesNewBBSucc) {
 | 
						|
      DomTreeNodeBase<NodeT> *NewBBSuccNode = DT.getNode(NewBBSucc);
 | 
						|
      DT.changeImmediateDominator(NewBBSuccNode, NewBBNode);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
public:
 | 
						|
  explicit DominatorTreeBase(bool isPostDom)
 | 
						|
    : DominatorBase<NodeT>(isPostDom), DFSInfoValid(false), SlowQueries(0) {}
 | 
						|
  virtual ~DominatorTreeBase() { reset(); }
 | 
						|
 | 
						|
  // FIXME: Should remove this
 | 
						|
  virtual bool runOnFunction(Function &F) { return false; }
 | 
						|
 | 
						|
  /// compare - Return false if the other dominator tree base matches this
 | 
						|
  /// dominator tree base. Otherwise return true.
 | 
						|
  bool compare(DominatorTreeBase &Other) const {
 | 
						|
 | 
						|
    const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
 | 
						|
    if (DomTreeNodes.size() != OtherDomTreeNodes.size())
 | 
						|
      return true;
 | 
						|
 | 
						|
    SmallPtrSet<const NodeT *,4> MyBBs;
 | 
						|
    for (typename DomTreeNodeMapType::const_iterator 
 | 
						|
           I = this->DomTreeNodes.begin(),
 | 
						|
           E = this->DomTreeNodes.end(); I != E; ++I) {
 | 
						|
      NodeT *BB = I->first;
 | 
						|
      typename DomTreeNodeMapType::const_iterator OI = OtherDomTreeNodes.find(BB);
 | 
						|
      if (OI == OtherDomTreeNodes.end())
 | 
						|
        return true;
 | 
						|
 | 
						|
      DomTreeNodeBase<NodeT>* MyNd = I->second;
 | 
						|
      DomTreeNodeBase<NodeT>* OtherNd = OI->second;
 | 
						|
      
 | 
						|
      if (MyNd->compare(OtherNd))
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  virtual void releaseMemory() { reset(); }
 | 
						|
 | 
						|
  /// getNode - return the (Post)DominatorTree node for the specified basic
 | 
						|
  /// block.  This is the same as using operator[] on this class.
 | 
						|
  ///
 | 
						|
  inline DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const {
 | 
						|
    typename DomTreeNodeMapType::const_iterator I = DomTreeNodes.find(BB);
 | 
						|
    return I != DomTreeNodes.end() ? I->second : 0;
 | 
						|
  }
 | 
						|
 | 
						|
  /// getRootNode - This returns the entry node for the CFG of the function.  If
 | 
						|
  /// this tree represents the post-dominance relations for a function, however,
 | 
						|
  /// this root may be a node with the block == NULL.  This is the case when
 | 
						|
  /// there are multiple exit nodes from a particular function.  Consumers of
 | 
						|
  /// post-dominance information must be capable of dealing with this
 | 
						|
  /// possibility.
 | 
						|
  ///
 | 
						|
  DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
 | 
						|
  const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
 | 
						|
 | 
						|
  /// properlyDominates - Returns true iff this dominates N and this != N.
 | 
						|
  /// Note that this is not a constant time operation!
 | 
						|
  ///
 | 
						|
  bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
 | 
						|
                         DomTreeNodeBase<NodeT> *B) const {
 | 
						|
    if (A == 0 || B == 0) return false;
 | 
						|
    return dominatedBySlowTreeWalk(A, B);
 | 
						|
  }
 | 
						|
 | 
						|
  inline bool properlyDominates(NodeT *A, NodeT *B) {
 | 
						|
    return properlyDominates(getNode(A), getNode(B));
 | 
						|
  }
 | 
						|
 | 
						|
  bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A, 
 | 
						|
                               const DomTreeNodeBase<NodeT> *B) const {
 | 
						|
    const DomTreeNodeBase<NodeT> *IDom;
 | 
						|
    if (A == 0 || B == 0) return false;
 | 
						|
    while ((IDom = B->getIDom()) != 0 && IDom != A && IDom != B)
 | 
						|
      B = IDom;   // Walk up the tree
 | 
						|
    return IDom != 0;
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  /// isReachableFromEntry - Return true if A is dominated by the entry
 | 
						|
  /// block of the function containing it.
 | 
						|
  bool isReachableFromEntry(NodeT* A) {
 | 
						|
    assert (!this->isPostDominator() 
 | 
						|
            && "This is not implemented for post dominators");
 | 
						|
    return dominates(&A->getParent()->front(), A);
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// dominates - Returns true iff A dominates B.  Note that this is not a
 | 
						|
  /// constant time operation!
 | 
						|
  ///
 | 
						|
  inline bool dominates(const DomTreeNodeBase<NodeT> *A,
 | 
						|
                        DomTreeNodeBase<NodeT> *B) {
 | 
						|
    if (B == A) 
 | 
						|
      return true;  // A node trivially dominates itself.
 | 
						|
 | 
						|
    if (A == 0 || B == 0)
 | 
						|
      return false;
 | 
						|
 | 
						|
    if (DFSInfoValid)
 | 
						|
      return B->DominatedBy(A);
 | 
						|
 | 
						|
    // If we end up with too many slow queries, just update the
 | 
						|
    // DFS numbers on the theory that we are going to keep querying.
 | 
						|
    SlowQueries++;
 | 
						|
    if (SlowQueries > 32) {
 | 
						|
      updateDFSNumbers();
 | 
						|
      return B->DominatedBy(A);
 | 
						|
    }
 | 
						|
 | 
						|
    return dominatedBySlowTreeWalk(A, B);
 | 
						|
  }
 | 
						|
 | 
						|
  inline bool dominates(NodeT *A, NodeT *B) {
 | 
						|
    if (A == B) 
 | 
						|
      return true;
 | 
						|
    
 | 
						|
    return dominates(getNode(A), getNode(B));
 | 
						|
  }
 | 
						|
  
 | 
						|
  NodeT *getRoot() const {
 | 
						|
    assert(this->Roots.size() == 1 && "Should always have entry node!");
 | 
						|
    return this->Roots[0];
 | 
						|
  }
 | 
						|
 | 
						|
  /// findNearestCommonDominator - Find nearest common dominator basic block
 | 
						|
  /// for basic block A and B. If there is no such block then return NULL.
 | 
						|
  NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) {
 | 
						|
 | 
						|
    assert (!this->isPostDominator() 
 | 
						|
            && "This is not implemented for post dominators");
 | 
						|
    assert (A->getParent() == B->getParent() 
 | 
						|
            && "Two blocks are not in same function");
 | 
						|
 | 
						|
    // If either A or B is a entry block then it is nearest common dominator.
 | 
						|
    NodeT &Entry  = A->getParent()->front();
 | 
						|
    if (A == &Entry || B == &Entry)
 | 
						|
      return &Entry;
 | 
						|
 | 
						|
    // If B dominates A then B is nearest common dominator.
 | 
						|
    if (dominates(B, A))
 | 
						|
      return B;
 | 
						|
 | 
						|
    // If A dominates B then A is nearest common dominator.
 | 
						|
    if (dominates(A, B))
 | 
						|
      return A;
 | 
						|
 | 
						|
    DomTreeNodeBase<NodeT> *NodeA = getNode(A);
 | 
						|
    DomTreeNodeBase<NodeT> *NodeB = getNode(B);
 | 
						|
 | 
						|
    // Collect NodeA dominators set.
 | 
						|
    SmallPtrSet<DomTreeNodeBase<NodeT>*, 16> NodeADoms;
 | 
						|
    NodeADoms.insert(NodeA);
 | 
						|
    DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
 | 
						|
    while (IDomA) {
 | 
						|
      NodeADoms.insert(IDomA);
 | 
						|
      IDomA = IDomA->getIDom();
 | 
						|
    }
 | 
						|
 | 
						|
    // Walk NodeB immediate dominators chain and find common dominator node.
 | 
						|
    DomTreeNodeBase<NodeT> *IDomB = NodeB->getIDom();
 | 
						|
    while(IDomB) {
 | 
						|
      if (NodeADoms.count(IDomB) != 0)
 | 
						|
        return IDomB->getBlock();
 | 
						|
 | 
						|
      IDomB = IDomB->getIDom();
 | 
						|
    }
 | 
						|
 | 
						|
    return NULL;
 | 
						|
  }
 | 
						|
 | 
						|
  //===--------------------------------------------------------------------===//
 | 
						|
  // API to update (Post)DominatorTree information based on modifications to
 | 
						|
  // the CFG...
 | 
						|
 | 
						|
  /// addNewBlock - Add a new node to the dominator tree information.  This
 | 
						|
  /// creates a new node as a child of DomBB dominator node,linking it into 
 | 
						|
  /// the children list of the immediate dominator.
 | 
						|
  DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
 | 
						|
    assert(getNode(BB) == 0 && "Block already in dominator tree!");
 | 
						|
    DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
 | 
						|
    assert(IDomNode && "Not immediate dominator specified for block!");
 | 
						|
    DFSInfoValid = false;
 | 
						|
    return DomTreeNodes[BB] = 
 | 
						|
      IDomNode->addChild(new DomTreeNodeBase<NodeT>(BB, IDomNode));
 | 
						|
  }
 | 
						|
 | 
						|
  /// changeImmediateDominator - This method is used to update the dominator
 | 
						|
  /// tree information when a node's immediate dominator changes.
 | 
						|
  ///
 | 
						|
  void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
 | 
						|
                                DomTreeNodeBase<NodeT> *NewIDom) {
 | 
						|
    assert(N && NewIDom && "Cannot change null node pointers!");
 | 
						|
    DFSInfoValid = false;
 | 
						|
    N->setIDom(NewIDom);
 | 
						|
  }
 | 
						|
 | 
						|
  void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
 | 
						|
    changeImmediateDominator(getNode(BB), getNode(NewBB));
 | 
						|
  }
 | 
						|
 | 
						|
  /// eraseNode - Removes a node from  the dominator tree. Block must not
 | 
						|
  /// domiante any other blocks. Removes node from its immediate dominator's
 | 
						|
  /// children list. Deletes dominator node associated with basic block BB.
 | 
						|
  void eraseNode(NodeT *BB) {
 | 
						|
    DomTreeNodeBase<NodeT> *Node = getNode(BB);
 | 
						|
    assert (Node && "Removing node that isn't in dominator tree.");
 | 
						|
    assert (Node->getChildren().empty() && "Node is not a leaf node.");
 | 
						|
 | 
						|
      // Remove node from immediate dominator's children list.
 | 
						|
    DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
 | 
						|
    if (IDom) {
 | 
						|
      typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I =
 | 
						|
        std::find(IDom->Children.begin(), IDom->Children.end(), Node);
 | 
						|
      assert(I != IDom->Children.end() &&
 | 
						|
             "Not in immediate dominator children set!");
 | 
						|
      // I am no longer your child...
 | 
						|
      IDom->Children.erase(I);
 | 
						|
    }
 | 
						|
 | 
						|
    DomTreeNodes.erase(BB);
 | 
						|
    delete Node;
 | 
						|
  }
 | 
						|
 | 
						|
  /// removeNode - Removes a node from the dominator tree.  Block must not
 | 
						|
  /// dominate any other blocks.  Invalidates any node pointing to removed
 | 
						|
  /// block.
 | 
						|
  void removeNode(NodeT *BB) {
 | 
						|
    assert(getNode(BB) && "Removing node that isn't in dominator tree.");
 | 
						|
    DomTreeNodes.erase(BB);
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// splitBlock - BB is split and now it has one successor. Update dominator
 | 
						|
  /// tree to reflect this change.
 | 
						|
  void splitBlock(NodeT* NewBB) {
 | 
						|
    if (this->IsPostDominators)
 | 
						|
      this->Split<Inverse<NodeT*>, GraphTraits<Inverse<NodeT*> > >(*this, NewBB);
 | 
						|
    else
 | 
						|
      this->Split<NodeT*, GraphTraits<NodeT*> >(*this, NewBB);
 | 
						|
  }
 | 
						|
 | 
						|
  /// print - Convert to human readable form
 | 
						|
  ///
 | 
						|
  virtual void print(std::ostream &o, const Module* ) const {
 | 
						|
    o << "=============================--------------------------------\n";
 | 
						|
    if (this->isPostDominator())
 | 
						|
      o << "Inorder PostDominator Tree: ";
 | 
						|
    else
 | 
						|
      o << "Inorder Dominator Tree: ";
 | 
						|
    if (this->DFSInfoValid)
 | 
						|
      o << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
 | 
						|
    o << "\n";
 | 
						|
 | 
						|
    PrintDomTree<NodeT>(getRootNode(), o, 1);
 | 
						|
  }
 | 
						|
  
 | 
						|
  void print(std::ostream *OS, const Module* M = 0) const {
 | 
						|
    if (OS) print(*OS, M);
 | 
						|
  }
 | 
						|
  
 | 
						|
  virtual void dump() {
 | 
						|
    print(llvm::cerr);
 | 
						|
  }
 | 
						|
  
 | 
						|
protected:
 | 
						|
  template<class GraphT>
 | 
						|
  friend void Compress(DominatorTreeBase<typename GraphT::NodeType>& DT,
 | 
						|
                       typename GraphT::NodeType* VIn);
 | 
						|
 | 
						|
  template<class GraphT>
 | 
						|
  friend typename GraphT::NodeType* Eval(
 | 
						|
                               DominatorTreeBase<typename GraphT::NodeType>& DT,
 | 
						|
                                         typename GraphT::NodeType* V);
 | 
						|
 | 
						|
  template<class GraphT>
 | 
						|
  friend void Link(DominatorTreeBase<typename GraphT::NodeType>& DT,
 | 
						|
                   unsigned DFSNumV, typename GraphT::NodeType* W,
 | 
						|
         typename DominatorTreeBase<typename GraphT::NodeType>::InfoRec &WInfo);
 | 
						|
  
 | 
						|
  template<class GraphT>
 | 
						|
  friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT,
 | 
						|
                          typename GraphT::NodeType* V,
 | 
						|
                          unsigned N);
 | 
						|
  
 | 
						|
  template<class FuncT, class N>
 | 
						|
  friend void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT,
 | 
						|
                        FuncT& F);
 | 
						|
  
 | 
						|
  /// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
 | 
						|
  /// dominator tree in dfs order.
 | 
						|
  void updateDFSNumbers() {
 | 
						|
    unsigned DFSNum = 0;
 | 
						|
 | 
						|
    SmallVector<std::pair<DomTreeNodeBase<NodeT>*,
 | 
						|
                typename DomTreeNodeBase<NodeT>::iterator>, 32> WorkStack;
 | 
						|
 | 
						|
    for (unsigned i = 0, e = (unsigned)this->Roots.size(); i != e; ++i) {
 | 
						|
      DomTreeNodeBase<NodeT> *ThisRoot = getNode(this->Roots[i]);
 | 
						|
      WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin()));
 | 
						|
      ThisRoot->DFSNumIn = DFSNum++;
 | 
						|
 | 
						|
      while (!WorkStack.empty()) {
 | 
						|
        DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
 | 
						|
        typename DomTreeNodeBase<NodeT>::iterator ChildIt =
 | 
						|
                                                        WorkStack.back().second;
 | 
						|
 | 
						|
        // If we visited all of the children of this node, "recurse" back up the
 | 
						|
        // stack setting the DFOutNum.
 | 
						|
        if (ChildIt == Node->end()) {
 | 
						|
          Node->DFSNumOut = DFSNum++;
 | 
						|
          WorkStack.pop_back();
 | 
						|
        } else {
 | 
						|
          // Otherwise, recursively visit this child.
 | 
						|
          DomTreeNodeBase<NodeT> *Child = *ChildIt;
 | 
						|
          ++WorkStack.back().second;
 | 
						|
          
 | 
						|
          WorkStack.push_back(std::make_pair(Child, Child->begin()));
 | 
						|
          Child->DFSNumIn = DFSNum++;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    SlowQueries = 0;
 | 
						|
    DFSInfoValid = true;
 | 
						|
  }
 | 
						|
  
 | 
						|
  DomTreeNodeBase<NodeT> *getNodeForBlock(NodeT *BB) {
 | 
						|
    typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.find(BB);
 | 
						|
    if (I != this->DomTreeNodes.end() && I->second)
 | 
						|
      return I->second;
 | 
						|
 | 
						|
    // Haven't calculated this node yet?  Get or calculate the node for the
 | 
						|
    // immediate dominator.
 | 
						|
    NodeT *IDom = getIDom(BB);
 | 
						|
 | 
						|
    assert(IDom || this->DomTreeNodes[NULL]);
 | 
						|
    DomTreeNodeBase<NodeT> *IDomNode = getNodeForBlock(IDom);
 | 
						|
 | 
						|
    // Add a new tree node for this BasicBlock, and link it as a child of
 | 
						|
    // IDomNode
 | 
						|
    DomTreeNodeBase<NodeT> *C = new DomTreeNodeBase<NodeT>(BB, IDomNode);
 | 
						|
    return this->DomTreeNodes[BB] = IDomNode->addChild(C);
 | 
						|
  }
 | 
						|
  
 | 
						|
  inline NodeT *getIDom(NodeT *BB) const {
 | 
						|
    typename DenseMap<NodeT*, NodeT*>::const_iterator I = IDoms.find(BB);
 | 
						|
    return I != IDoms.end() ? I->second : 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
  inline void addRoot(NodeT* BB) {
 | 
						|
    this->Roots.push_back(BB);
 | 
						|
  }
 | 
						|
  
 | 
						|
public:
 | 
						|
  /// recalculate - compute a dominator tree for the given function
 | 
						|
  template<class FT>
 | 
						|
  void recalculate(FT& F) {
 | 
						|
    if (!this->IsPostDominators) {
 | 
						|
      reset();
 | 
						|
      
 | 
						|
      // Initialize roots
 | 
						|
      this->Roots.push_back(&F.front());
 | 
						|
      this->IDoms[&F.front()] = 0;
 | 
						|
      this->DomTreeNodes[&F.front()] = 0;
 | 
						|
      this->Vertex.push_back(0);
 | 
						|
      
 | 
						|
      Calculate<FT, NodeT*>(*this, F);
 | 
						|
      
 | 
						|
      updateDFSNumbers();
 | 
						|
    } else {
 | 
						|
      reset();     // Reset from the last time we were run...
 | 
						|
 | 
						|
      // Initialize the roots list
 | 
						|
      for (typename FT::iterator I = F.begin(), E = F.end(); I != E; ++I) {
 | 
						|
        if (std::distance(GraphTraits<FT*>::child_begin(I),
 | 
						|
                          GraphTraits<FT*>::child_end(I)) == 0)
 | 
						|
          addRoot(I);
 | 
						|
 | 
						|
        // Prepopulate maps so that we don't get iterator invalidation issues later.
 | 
						|
        this->IDoms[I] = 0;
 | 
						|
        this->DomTreeNodes[I] = 0;
 | 
						|
      }
 | 
						|
 | 
						|
      this->Vertex.push_back(0);
 | 
						|
      
 | 
						|
      Calculate<FT, Inverse<NodeT*> >(*this, F);
 | 
						|
    }
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
EXTERN_TEMPLATE_INSTANTIATION(class DominatorTreeBase<BasicBlock>);
 | 
						|
 | 
						|
//===-------------------------------------
 | 
						|
/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
 | 
						|
/// compute a normal dominator tree.
 | 
						|
///
 | 
						|
class DominatorTree : public FunctionPass {
 | 
						|
public:
 | 
						|
  static char ID; // Pass ID, replacement for typeid
 | 
						|
  DominatorTreeBase<BasicBlock>* DT;
 | 
						|
  
 | 
						|
  DominatorTree() : FunctionPass(&ID) {
 | 
						|
    DT = new DominatorTreeBase<BasicBlock>(false);
 | 
						|
  }
 | 
						|
  
 | 
						|
  ~DominatorTree() {
 | 
						|
    DT->releaseMemory();
 | 
						|
    delete DT;
 | 
						|
  }
 | 
						|
  
 | 
						|
  DominatorTreeBase<BasicBlock>& getBase() { return *DT; }
 | 
						|
  
 | 
						|
  /// getRoots -  Return the root blocks of the current CFG.  This may include
 | 
						|
  /// multiple blocks if we are computing post dominators.  For forward
 | 
						|
  /// dominators, this will always be a single block (the entry node).
 | 
						|
  ///
 | 
						|
  inline const std::vector<BasicBlock*> &getRoots() const {
 | 
						|
    return DT->getRoots();
 | 
						|
  }
 | 
						|
  
 | 
						|
  inline BasicBlock *getRoot() const {
 | 
						|
    return DT->getRoot();
 | 
						|
  }
 | 
						|
  
 | 
						|
  inline DomTreeNode *getRootNode() const {
 | 
						|
    return DT->getRootNode();
 | 
						|
  }
 | 
						|
 | 
						|
  /// compare - Return false if the other dominator tree matches this
 | 
						|
  /// dominator tree. Otherwise return true.
 | 
						|
  inline bool compare(DominatorTree &Other) const {
 | 
						|
    DomTreeNode *R = getRootNode();
 | 
						|
    DomTreeNode *OtherR = Other.getRootNode();
 | 
						|
    
 | 
						|
    if (!R || !OtherR || R->getBlock() != OtherR->getBlock())
 | 
						|
      return true;
 | 
						|
    
 | 
						|
    if (DT->compare(Other.getBase()))
 | 
						|
      return true;
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  virtual bool runOnFunction(Function &F);
 | 
						|
  
 | 
						|
  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
    AU.setPreservesAll();
 | 
						|
  }
 | 
						|
  
 | 
						|
  inline bool dominates(DomTreeNode* A, DomTreeNode* B) const {
 | 
						|
    return DT->dominates(A, B);
 | 
						|
  }
 | 
						|
  
 | 
						|
  inline bool dominates(BasicBlock* A, BasicBlock* B) const {
 | 
						|
    return DT->dominates(A, B);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // dominates - Return true if A dominates B. This performs the
 | 
						|
  // special checks necessary if A and B are in the same basic block.
 | 
						|
  bool dominates(Instruction *A, Instruction *B) const {
 | 
						|
    BasicBlock *BBA = A->getParent(), *BBB = B->getParent();
 | 
						|
    if (BBA != BBB) return DT->dominates(BBA, BBB);
 | 
						|
 | 
						|
    // It is not possible to determine dominance between two PHI nodes 
 | 
						|
    // based on their ordering.
 | 
						|
    if (isa<PHINode>(A) && isa<PHINode>(B)) 
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Loop through the basic block until we find A or B.
 | 
						|
    BasicBlock::iterator I = BBA->begin();
 | 
						|
    for (; &*I != A && &*I != B; ++I) /*empty*/;
 | 
						|
 | 
						|
    //if(!DT.IsPostDominators) {
 | 
						|
      // A dominates B if it is found first in the basic block.
 | 
						|
      return &*I == A;
 | 
						|
    //} else {
 | 
						|
    //  // A post-dominates B if B is found first in the basic block.
 | 
						|
    //  return &*I == B;
 | 
						|
    //}
 | 
						|
  }
 | 
						|
  
 | 
						|
  inline bool properlyDominates(const DomTreeNode* A, DomTreeNode* B) const {
 | 
						|
    return DT->properlyDominates(A, B);
 | 
						|
  }
 | 
						|
  
 | 
						|
  inline bool properlyDominates(BasicBlock* A, BasicBlock* B) const {
 | 
						|
    return DT->properlyDominates(A, B);
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// findNearestCommonDominator - Find nearest common dominator basic block
 | 
						|
  /// for basic block A and B. If there is no such block then return NULL.
 | 
						|
  inline BasicBlock *findNearestCommonDominator(BasicBlock *A, BasicBlock *B) {
 | 
						|
    return DT->findNearestCommonDominator(A, B);
 | 
						|
  }
 | 
						|
  
 | 
						|
  inline DomTreeNode *operator[](BasicBlock *BB) const {
 | 
						|
    return DT->getNode(BB);
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// getNode - return the (Post)DominatorTree node for the specified basic
 | 
						|
  /// block.  This is the same as using operator[] on this class.
 | 
						|
  ///
 | 
						|
  inline DomTreeNode *getNode(BasicBlock *BB) const {
 | 
						|
    return DT->getNode(BB);
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// addNewBlock - Add a new node to the dominator tree information.  This
 | 
						|
  /// creates a new node as a child of DomBB dominator node,linking it into 
 | 
						|
  /// the children list of the immediate dominator.
 | 
						|
  inline DomTreeNode *addNewBlock(BasicBlock *BB, BasicBlock *DomBB) {
 | 
						|
    return DT->addNewBlock(BB, DomBB);
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// changeImmediateDominator - This method is used to update the dominator
 | 
						|
  /// tree information when a node's immediate dominator changes.
 | 
						|
  ///
 | 
						|
  inline void changeImmediateDominator(BasicBlock *N, BasicBlock* NewIDom) {
 | 
						|
    DT->changeImmediateDominator(N, NewIDom);
 | 
						|
  }
 | 
						|
  
 | 
						|
  inline void changeImmediateDominator(DomTreeNode *N, DomTreeNode* NewIDom) {
 | 
						|
    DT->changeImmediateDominator(N, NewIDom);
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// eraseNode - Removes a node from  the dominator tree. Block must not
 | 
						|
  /// domiante any other blocks. Removes node from its immediate dominator's
 | 
						|
  /// children list. Deletes dominator node associated with basic block BB.
 | 
						|
  inline void eraseNode(BasicBlock *BB) {
 | 
						|
    DT->eraseNode(BB);
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// splitBlock - BB is split and now it has one successor. Update dominator
 | 
						|
  /// tree to reflect this change.
 | 
						|
  inline void splitBlock(BasicBlock* NewBB) {
 | 
						|
    DT->splitBlock(NewBB);
 | 
						|
  }
 | 
						|
  
 | 
						|
  bool isReachableFromEntry(BasicBlock* A) {
 | 
						|
    return DT->isReachableFromEntry(A);
 | 
						|
  }
 | 
						|
  
 | 
						|
  
 | 
						|
  virtual void releaseMemory() { 
 | 
						|
    DT->releaseMemory();
 | 
						|
  }
 | 
						|
  
 | 
						|
  virtual void print(std::ostream &OS, const Module* M= 0) const {
 | 
						|
    DT->print(OS, M);
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
//===-------------------------------------
 | 
						|
/// DominatorTree GraphTraits specialization so the DominatorTree can be
 | 
						|
/// iterable by generic graph iterators.
 | 
						|
///
 | 
						|
template <> struct GraphTraits<DomTreeNode *> {
 | 
						|
  typedef DomTreeNode NodeType;
 | 
						|
  typedef NodeType::iterator  ChildIteratorType;
 | 
						|
  
 | 
						|
  static NodeType *getEntryNode(NodeType *N) {
 | 
						|
    return N;
 | 
						|
  }
 | 
						|
  static inline ChildIteratorType child_begin(NodeType* N) {
 | 
						|
    return N->begin();
 | 
						|
  }
 | 
						|
  static inline ChildIteratorType child_end(NodeType* N) {
 | 
						|
    return N->end();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
template <> struct GraphTraits<DominatorTree*>
 | 
						|
  : public GraphTraits<DomTreeNode *> {
 | 
						|
  static NodeType *getEntryNode(DominatorTree *DT) {
 | 
						|
    return DT->getRootNode();
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// DominanceFrontierBase - Common base class for computing forward and inverse
 | 
						|
/// dominance frontiers for a function.
 | 
						|
///
 | 
						|
class DominanceFrontierBase : public FunctionPass {
 | 
						|
public:
 | 
						|
  typedef std::set<BasicBlock*>             DomSetType;    // Dom set for a bb
 | 
						|
  typedef std::map<BasicBlock*, DomSetType> DomSetMapType; // Dom set map
 | 
						|
protected:
 | 
						|
  DomSetMapType Frontiers;
 | 
						|
  std::vector<BasicBlock*> Roots;
 | 
						|
  const bool IsPostDominators;
 | 
						|
  
 | 
						|
public:
 | 
						|
  DominanceFrontierBase(void *ID, bool isPostDom) 
 | 
						|
    : FunctionPass(ID), IsPostDominators(isPostDom) {}
 | 
						|
 | 
						|
  /// getRoots -  Return the root blocks of the current CFG.  This may include
 | 
						|
  /// multiple blocks if we are computing post dominators.  For forward
 | 
						|
  /// dominators, this will always be a single block (the entry node).
 | 
						|
  ///
 | 
						|
  inline const std::vector<BasicBlock*> &getRoots() const { return Roots; }
 | 
						|
  
 | 
						|
  /// isPostDominator - Returns true if analysis based of postdoms
 | 
						|
  ///
 | 
						|
  bool isPostDominator() const { return IsPostDominators; }
 | 
						|
 | 
						|
  virtual void releaseMemory() { Frontiers.clear(); }
 | 
						|
 | 
						|
  // Accessor interface:
 | 
						|
  typedef DomSetMapType::iterator iterator;
 | 
						|
  typedef DomSetMapType::const_iterator const_iterator;
 | 
						|
  iterator       begin()       { return Frontiers.begin(); }
 | 
						|
  const_iterator begin() const { return Frontiers.begin(); }
 | 
						|
  iterator       end()         { return Frontiers.end(); }
 | 
						|
  const_iterator end()   const { return Frontiers.end(); }
 | 
						|
  iterator       find(BasicBlock *B)       { return Frontiers.find(B); }
 | 
						|
  const_iterator find(BasicBlock *B) const { return Frontiers.find(B); }
 | 
						|
 | 
						|
  void addBasicBlock(BasicBlock *BB, const DomSetType &frontier) {
 | 
						|
    assert(find(BB) == end() && "Block already in DominanceFrontier!");
 | 
						|
    Frontiers.insert(std::make_pair(BB, frontier));
 | 
						|
  }
 | 
						|
 | 
						|
  /// removeBlock - Remove basic block BB's frontier.
 | 
						|
  void removeBlock(BasicBlock *BB) {
 | 
						|
    assert(find(BB) != end() && "Block is not in DominanceFrontier!");
 | 
						|
    for (iterator I = begin(), E = end(); I != E; ++I)
 | 
						|
      I->second.erase(BB);
 | 
						|
    Frontiers.erase(BB);
 | 
						|
  }
 | 
						|
 | 
						|
  void addToFrontier(iterator I, BasicBlock *Node) {
 | 
						|
    assert(I != end() && "BB is not in DominanceFrontier!");
 | 
						|
    I->second.insert(Node);
 | 
						|
  }
 | 
						|
 | 
						|
  void removeFromFrontier(iterator I, BasicBlock *Node) {
 | 
						|
    assert(I != end() && "BB is not in DominanceFrontier!");
 | 
						|
    assert(I->second.count(Node) && "Node is not in DominanceFrontier of BB");
 | 
						|
    I->second.erase(Node);
 | 
						|
  }
 | 
						|
 | 
						|
  /// compareDomSet - Return false if two domsets match. Otherwise
 | 
						|
  /// return true;
 | 
						|
  bool compareDomSet(DomSetType &DS1, const DomSetType &DS2) const {
 | 
						|
    std::set<BasicBlock *> tmpSet;
 | 
						|
    for (DomSetType::const_iterator I = DS2.begin(),
 | 
						|
           E = DS2.end(); I != E; ++I) 
 | 
						|
      tmpSet.insert(*I);
 | 
						|
 | 
						|
    for (DomSetType::const_iterator I = DS1.begin(),
 | 
						|
           E = DS1.end(); I != E; ) {
 | 
						|
      BasicBlock *Node = *I++;
 | 
						|
 | 
						|
      if (tmpSet.erase(Node) == 0)
 | 
						|
        // Node is in DS1 but not in DS2.
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if(!tmpSet.empty())
 | 
						|
      // There are nodes that are in DS2 but not in DS1.
 | 
						|
      return true;
 | 
						|
 | 
						|
    // DS1 and DS2 matches.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  /// compare - Return true if the other dominance frontier base matches
 | 
						|
  /// this dominance frontier base. Otherwise return false.
 | 
						|
  bool compare(DominanceFrontierBase &Other) const {
 | 
						|
    DomSetMapType tmpFrontiers;
 | 
						|
    for (DomSetMapType::const_iterator I = Other.begin(),
 | 
						|
           E = Other.end(); I != E; ++I) 
 | 
						|
      tmpFrontiers.insert(std::make_pair(I->first, I->second));
 | 
						|
 | 
						|
    for (DomSetMapType::iterator I = tmpFrontiers.begin(),
 | 
						|
           E = tmpFrontiers.end(); I != E; ) {
 | 
						|
      BasicBlock *Node = I->first;
 | 
						|
      const_iterator DFI = find(Node);
 | 
						|
      if (DFI == end()) 
 | 
						|
        return true;
 | 
						|
 | 
						|
      if (compareDomSet(I->second, DFI->second))
 | 
						|
        return true;
 | 
						|
 | 
						|
      ++I;
 | 
						|
      tmpFrontiers.erase(Node);
 | 
						|
    }
 | 
						|
 | 
						|
    if (!tmpFrontiers.empty())
 | 
						|
      return true;
 | 
						|
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  /// print - Convert to human readable form
 | 
						|
  ///
 | 
						|
  virtual void print(std::ostream &OS, const Module* = 0) const;
 | 
						|
  void print(std::ostream *OS, const Module* M = 0) const {
 | 
						|
    if (OS) print(*OS, M);
 | 
						|
  }
 | 
						|
  virtual void dump();
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
//===-------------------------------------
 | 
						|
/// DominanceFrontier Class - Concrete subclass of DominanceFrontierBase that is
 | 
						|
/// used to compute a forward dominator frontiers.
 | 
						|
///
 | 
						|
class DominanceFrontier : public DominanceFrontierBase {
 | 
						|
public:
 | 
						|
  static char ID; // Pass ID, replacement for typeid
 | 
						|
  DominanceFrontier() : 
 | 
						|
    DominanceFrontierBase(&ID, false) {}
 | 
						|
 | 
						|
  BasicBlock *getRoot() const {
 | 
						|
    assert(Roots.size() == 1 && "Should always have entry node!");
 | 
						|
    return Roots[0];
 | 
						|
  }
 | 
						|
 | 
						|
  virtual bool runOnFunction(Function &) {
 | 
						|
    Frontiers.clear();
 | 
						|
    DominatorTree &DT = getAnalysis<DominatorTree>();
 | 
						|
    Roots = DT.getRoots();
 | 
						|
    assert(Roots.size() == 1 && "Only one entry block for forward domfronts!");
 | 
						|
    calculate(DT, DT[Roots[0]]);
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
    AU.setPreservesAll();
 | 
						|
    AU.addRequired<DominatorTree>();
 | 
						|
  }
 | 
						|
 | 
						|
  /// splitBlock - BB is split and now it has one successor. Update dominance
 | 
						|
  /// frontier to reflect this change.
 | 
						|
  void splitBlock(BasicBlock *BB);
 | 
						|
 | 
						|
  /// BasicBlock BB's new dominator is NewBB. Update BB's dominance frontier
 | 
						|
  /// to reflect this change.
 | 
						|
  void changeImmediateDominator(BasicBlock *BB, BasicBlock *NewBB,
 | 
						|
                                DominatorTree *DT) {
 | 
						|
    // NewBB is now  dominating BB. Which means BB's dominance
 | 
						|
    // frontier is now part of NewBB's dominance frontier. However, BB
 | 
						|
    // itself is not member of NewBB's dominance frontier.
 | 
						|
    DominanceFrontier::iterator NewDFI = find(NewBB);
 | 
						|
    DominanceFrontier::iterator DFI = find(BB);
 | 
						|
    // If BB was an entry block then its frontier is empty.
 | 
						|
    if (DFI == end())
 | 
						|
      return;
 | 
						|
    DominanceFrontier::DomSetType BBSet = DFI->second;
 | 
						|
    for (DominanceFrontier::DomSetType::iterator BBSetI = BBSet.begin(),
 | 
						|
           BBSetE = BBSet.end(); BBSetI != BBSetE; ++BBSetI) {
 | 
						|
      BasicBlock *DFMember = *BBSetI;
 | 
						|
      // Insert only if NewBB dominates DFMember.
 | 
						|
      if (!DT->dominates(NewBB, DFMember))
 | 
						|
        NewDFI->second.insert(DFMember);
 | 
						|
    }
 | 
						|
    NewDFI->second.erase(BB);
 | 
						|
  }
 | 
						|
 | 
						|
  const DomSetType &calculate(const DominatorTree &DT,
 | 
						|
                              const DomTreeNode *Node);
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
} // End llvm namespace
 | 
						|
 | 
						|
#endif
 |