llvm-6502/include/Support/PostOrderIterator.h
2002-10-28 02:11:53 +00:00

146 lines
4.9 KiB
C++

//===-- Support/PostOrderIterator.h - Generic PostOrder iterator -*- C++ -*--=//
//
// This file builds on the Support/GraphTraits.h file to build a generic graph
// post order iterator. This should work over any graph type that has a
// GraphTraits specialization.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_SUPPORT_POSTORDER_ITERATOR_H
#define LLVM_SUPPORT_POSTORDER_ITERATOR_H
#include "Support/GraphTraits.h"
#include "Support/iterator"
#include <stack>
#include <set>
template<class GraphT, class GT = GraphTraits<GraphT> >
class po_iterator : public forward_iterator<typename GT::NodeType, ptrdiff_t> {
typedef forward_iterator<typename GT::NodeType, ptrdiff_t> super;
typedef typename super::pointer pointer;
typedef typename GT::NodeType NodeType;
typedef typename GT::ChildIteratorType ChildItTy;
std::set<NodeType *> Visited; // All of the blocks visited so far...
// VisitStack - Used to maintain the ordering. Top = current block
// First element is basic block pointer, second is the 'next child' to visit
std::stack<std::pair<NodeType *, ChildItTy> > VisitStack;
void traverseChild() {
while (VisitStack.top().second != GT::child_end(VisitStack.top().first)) {
NodeType *BB = *VisitStack.top().second++;
if (!Visited.count(BB)) { // If the block is not visited...
Visited.insert(BB);
VisitStack.push(make_pair(BB, GT::child_begin(BB)));
}
}
}
inline po_iterator(NodeType *BB) {
Visited.insert(BB);
VisitStack.push(make_pair(BB, GT::child_begin(BB)));
traverseChild();
}
inline po_iterator() { /* End is when stack is empty */ }
public:
typedef po_iterator<GraphT, GT> _Self;
// Provide static "constructors"...
static inline _Self begin(GraphT G) { return _Self(GT::getEntryNode(G)); }
static inline _Self end (GraphT G) { return _Self(); }
inline bool operator==(const _Self& x) const {
return VisitStack == x.VisitStack;
}
inline bool operator!=(const _Self& x) const { return !operator==(x); }
inline pointer operator*() const {
return VisitStack.top().first;
}
// This is a nonstandard operator-> that dereferences the pointer an extra
// time... so that you can actually call methods ON the BasicBlock, because
// the contained type is a pointer. This allows BBIt->getTerminator() f.e.
//
inline NodeType *operator->() const { return operator*(); }
inline _Self& operator++() { // Preincrement
VisitStack.pop();
if (!VisitStack.empty())
traverseChild();
return *this;
}
inline _Self operator++(int) { // Postincrement
_Self tmp = *this; ++*this; return tmp;
}
};
// Provide global constructors that automatically figure out correct types...
//
template <class T>
po_iterator<T> po_begin(T G) { return po_iterator<T>::begin(G); }
template <class T>
po_iterator<T> po_end (T G) { return po_iterator<T>::end(G); }
// Provide global definitions of inverse post order iterators...
template <class T>
struct ipo_iterator : public po_iterator<Inverse<T> > {
ipo_iterator(const po_iterator<Inverse<T> > &V) :po_iterator<Inverse<T> >(V){}
};
template <class T>
ipo_iterator<T> ipo_begin(T G, bool Reverse = false) {
return ipo_iterator<T>::begin(G, Reverse);
}
template <class T>
ipo_iterator<T> ipo_end(T G){
return ipo_iterator<T>::end(G);
}
//===--------------------------------------------------------------------===//
// Reverse Post Order CFG iterator code
//===--------------------------------------------------------------------===//
//
// This is used to visit basic blocks in a method in reverse post order. This
// class is awkward to use because I don't know a good incremental algorithm to
// computer RPO from a graph. Because of this, the construction of the
// ReversePostOrderTraversal object is expensive (it must walk the entire graph
// with a postorder iterator to build the data structures). The moral of this
// story is: Don't create more ReversePostOrderTraversal classes than neccesary.
//
// This class should be used like this:
// {
// ReversePostOrderTraversal<Method*> RPOT(MethodPtr); // Expensive to create
// for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
// ...
// }
// for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
// ...
// }
// }
//
template<class GraphT, class GT = GraphTraits<GraphT> >
class ReversePostOrderTraversal {
typedef typename GT::NodeType NodeType;
std::vector<NodeType*> Blocks; // Block list in normal PO order
inline void Initialize(NodeType *BB) {
copy(po_begin(BB), po_end(BB), back_inserter(Blocks));
}
public:
typedef typename std::vector<NodeType*>::reverse_iterator rpo_iterator;
inline ReversePostOrderTraversal(GraphT G) {
Initialize(GT::getEntryNode(G));
}
// Because we want a reverse post order, use reverse iterators from the vector
inline rpo_iterator begin() { return Blocks.rbegin(); }
inline rpo_iterator end() { return Blocks.rend(); }
};
#endif