mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	naming convention and update users. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237461 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1809 lines
		
	
	
		
			63 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1809 lines
		
	
	
		
			63 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements the LLVM module linker.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Linker/Linker.h"
 | |
| #include "llvm-c/Linker.h"
 | |
| #include "llvm/ADT/Hashing.h"
 | |
| #include "llvm/ADT/Optional.h"
 | |
| #include "llvm/ADT/SetVector.h"
 | |
| #include "llvm/ADT/SmallString.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/Triple.h"
 | |
| #include "llvm/IR/Constants.h"
 | |
| #include "llvm/IR/DebugInfo.h"
 | |
| #include "llvm/IR/DiagnosticInfo.h"
 | |
| #include "llvm/IR/DiagnosticPrinter.h"
 | |
| #include "llvm/IR/LLVMContext.h"
 | |
| #include "llvm/IR/Module.h"
 | |
| #include "llvm/IR/TypeFinder.h"
 | |
| #include "llvm/Support/CommandLine.h"
 | |
| #include "llvm/Support/Debug.h"
 | |
| #include "llvm/Support/raw_ostream.h"
 | |
| #include "llvm/Transforms/Utils/Cloning.h"
 | |
| #include <cctype>
 | |
| #include <tuple>
 | |
| using namespace llvm;
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // TypeMap implementation.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| class TypeMapTy : public ValueMapTypeRemapper {
 | |
|   /// This is a mapping from a source type to a destination type to use.
 | |
|   DenseMap<Type*, Type*> MappedTypes;
 | |
| 
 | |
|   /// When checking to see if two subgraphs are isomorphic, we speculatively
 | |
|   /// add types to MappedTypes, but keep track of them here in case we need to
 | |
|   /// roll back.
 | |
|   SmallVector<Type*, 16> SpeculativeTypes;
 | |
| 
 | |
|   SmallVector<StructType*, 16> SpeculativeDstOpaqueTypes;
 | |
| 
 | |
|   /// This is a list of non-opaque structs in the source module that are mapped
 | |
|   /// to an opaque struct in the destination module.
 | |
|   SmallVector<StructType*, 16> SrcDefinitionsToResolve;
 | |
| 
 | |
|   /// This is the set of opaque types in the destination modules who are
 | |
|   /// getting a body from the source module.
 | |
|   SmallPtrSet<StructType*, 16> DstResolvedOpaqueTypes;
 | |
| 
 | |
| public:
 | |
|   TypeMapTy(Linker::IdentifiedStructTypeSet &DstStructTypesSet)
 | |
|       : DstStructTypesSet(DstStructTypesSet) {}
 | |
| 
 | |
|   Linker::IdentifiedStructTypeSet &DstStructTypesSet;
 | |
|   /// Indicate that the specified type in the destination module is conceptually
 | |
|   /// equivalent to the specified type in the source module.
 | |
|   void addTypeMapping(Type *DstTy, Type *SrcTy);
 | |
| 
 | |
|   /// Produce a body for an opaque type in the dest module from a type
 | |
|   /// definition in the source module.
 | |
|   void linkDefinedTypeBodies();
 | |
| 
 | |
|   /// Return the mapped type to use for the specified input type from the
 | |
|   /// source module.
 | |
|   Type *get(Type *SrcTy);
 | |
|   Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited);
 | |
| 
 | |
|   void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes);
 | |
| 
 | |
|   FunctionType *get(FunctionType *T) {
 | |
|     return cast<FunctionType>(get((Type *)T));
 | |
|   }
 | |
| 
 | |
|   /// Dump out the type map for debugging purposes.
 | |
|   void dump() const {
 | |
|     for (auto &Pair : MappedTypes) {
 | |
|       dbgs() << "TypeMap: ";
 | |
|       Pair.first->print(dbgs());
 | |
|       dbgs() << " => ";
 | |
|       Pair.second->print(dbgs());
 | |
|       dbgs() << '\n';
 | |
|     }
 | |
|   }
 | |
| 
 | |
| private:
 | |
|   Type *remapType(Type *SrcTy) override { return get(SrcTy); }
 | |
| 
 | |
|   bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
 | |
| };
 | |
| }
 | |
| 
 | |
| void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
 | |
|   assert(SpeculativeTypes.empty());
 | |
|   assert(SpeculativeDstOpaqueTypes.empty());
 | |
| 
 | |
|   // Check to see if these types are recursively isomorphic and establish a
 | |
|   // mapping between them if so.
 | |
|   if (!areTypesIsomorphic(DstTy, SrcTy)) {
 | |
|     // Oops, they aren't isomorphic.  Just discard this request by rolling out
 | |
|     // any speculative mappings we've established.
 | |
|     for (Type *Ty : SpeculativeTypes)
 | |
|       MappedTypes.erase(Ty);
 | |
| 
 | |
|     SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() -
 | |
|                                    SpeculativeDstOpaqueTypes.size());
 | |
|     for (StructType *Ty : SpeculativeDstOpaqueTypes)
 | |
|       DstResolvedOpaqueTypes.erase(Ty);
 | |
|   } else {
 | |
|     for (Type *Ty : SpeculativeTypes)
 | |
|       if (auto *STy = dyn_cast<StructType>(Ty))
 | |
|         if (STy->hasName())
 | |
|           STy->setName("");
 | |
|   }
 | |
|   SpeculativeTypes.clear();
 | |
|   SpeculativeDstOpaqueTypes.clear();
 | |
| }
 | |
| 
 | |
| /// Recursively walk this pair of types, returning true if they are isomorphic,
 | |
| /// false if they are not.
 | |
| bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
 | |
|   // Two types with differing kinds are clearly not isomorphic.
 | |
|   if (DstTy->getTypeID() != SrcTy->getTypeID())
 | |
|     return false;
 | |
| 
 | |
|   // If we have an entry in the MappedTypes table, then we have our answer.
 | |
|   Type *&Entry = MappedTypes[SrcTy];
 | |
|   if (Entry)
 | |
|     return Entry == DstTy;
 | |
| 
 | |
|   // Two identical types are clearly isomorphic.  Remember this
 | |
|   // non-speculatively.
 | |
|   if (DstTy == SrcTy) {
 | |
|     Entry = DstTy;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Okay, we have two types with identical kinds that we haven't seen before.
 | |
| 
 | |
|   // If this is an opaque struct type, special case it.
 | |
|   if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
 | |
|     // Mapping an opaque type to any struct, just keep the dest struct.
 | |
|     if (SSTy->isOpaque()) {
 | |
|       Entry = DstTy;
 | |
|       SpeculativeTypes.push_back(SrcTy);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Mapping a non-opaque source type to an opaque dest.  If this is the first
 | |
|     // type that we're mapping onto this destination type then we succeed.  Keep
 | |
|     // the dest, but fill it in later. If this is the second (different) type
 | |
|     // that we're trying to map onto the same opaque type then we fail.
 | |
|     if (cast<StructType>(DstTy)->isOpaque()) {
 | |
|       // We can only map one source type onto the opaque destination type.
 | |
|       if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second)
 | |
|         return false;
 | |
|       SrcDefinitionsToResolve.push_back(SSTy);
 | |
|       SpeculativeTypes.push_back(SrcTy);
 | |
|       SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy));
 | |
|       Entry = DstTy;
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // If the number of subtypes disagree between the two types, then we fail.
 | |
|   if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
 | |
|     return false;
 | |
| 
 | |
|   // Fail if any of the extra properties (e.g. array size) of the type disagree.
 | |
|   if (isa<IntegerType>(DstTy))
 | |
|     return false;  // bitwidth disagrees.
 | |
|   if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
 | |
|     if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
 | |
|       return false;
 | |
| 
 | |
|   } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
 | |
|     if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
 | |
|       return false;
 | |
|   } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
 | |
|     StructType *SSTy = cast<StructType>(SrcTy);
 | |
|     if (DSTy->isLiteral() != SSTy->isLiteral() ||
 | |
|         DSTy->isPacked() != SSTy->isPacked())
 | |
|       return false;
 | |
|   } else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) {
 | |
|     if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
 | |
|       return false;
 | |
|   } else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
 | |
|     if (DVTy->getNumElements() != cast<VectorType>(SrcTy)->getNumElements())
 | |
|       return false;
 | |
|   }
 | |
| 
 | |
|   // Otherwise, we speculate that these two types will line up and recursively
 | |
|   // check the subelements.
 | |
|   Entry = DstTy;
 | |
|   SpeculativeTypes.push_back(SrcTy);
 | |
| 
 | |
|   for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I)
 | |
|     if (!areTypesIsomorphic(DstTy->getContainedType(I),
 | |
|                             SrcTy->getContainedType(I)))
 | |
|       return false;
 | |
| 
 | |
|   // If everything seems to have lined up, then everything is great.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| void TypeMapTy::linkDefinedTypeBodies() {
 | |
|   SmallVector<Type*, 16> Elements;
 | |
|   for (StructType *SrcSTy : SrcDefinitionsToResolve) {
 | |
|     StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
 | |
|     assert(DstSTy->isOpaque());
 | |
| 
 | |
|     // Map the body of the source type over to a new body for the dest type.
 | |
|     Elements.resize(SrcSTy->getNumElements());
 | |
|     for (unsigned I = 0, E = Elements.size(); I != E; ++I)
 | |
|       Elements[I] = get(SrcSTy->getElementType(I));
 | |
| 
 | |
|     DstSTy->setBody(Elements, SrcSTy->isPacked());
 | |
|     DstStructTypesSet.switchToNonOpaque(DstSTy);
 | |
|   }
 | |
|   SrcDefinitionsToResolve.clear();
 | |
|   DstResolvedOpaqueTypes.clear();
 | |
| }
 | |
| 
 | |
| void TypeMapTy::finishType(StructType *DTy, StructType *STy,
 | |
|                            ArrayRef<Type *> ETypes) {
 | |
|   DTy->setBody(ETypes, STy->isPacked());
 | |
| 
 | |
|   // Steal STy's name.
 | |
|   if (STy->hasName()) {
 | |
|     SmallString<16> TmpName = STy->getName();
 | |
|     STy->setName("");
 | |
|     DTy->setName(TmpName);
 | |
|   }
 | |
| 
 | |
|   DstStructTypesSet.addNonOpaque(DTy);
 | |
| }
 | |
| 
 | |
| Type *TypeMapTy::get(Type *Ty) {
 | |
|   SmallPtrSet<StructType *, 8> Visited;
 | |
|   return get(Ty, Visited);
 | |
| }
 | |
| 
 | |
| Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) {
 | |
|   // If we already have an entry for this type, return it.
 | |
|   Type **Entry = &MappedTypes[Ty];
 | |
|   if (*Entry)
 | |
|     return *Entry;
 | |
| 
 | |
|   // These are types that LLVM itself will unique.
 | |
|   bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral();
 | |
| 
 | |
| #ifndef NDEBUG
 | |
|   if (!IsUniqued) {
 | |
|     for (auto &Pair : MappedTypes) {
 | |
|       assert(!(Pair.first != Ty && Pair.second == Ty) &&
 | |
|              "mapping to a source type");
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| 
 | |
|   if (!IsUniqued && !Visited.insert(cast<StructType>(Ty)).second) {
 | |
|     StructType *DTy = StructType::create(Ty->getContext());
 | |
|     return *Entry = DTy;
 | |
|   }
 | |
| 
 | |
|   // If this is not a recursive type, then just map all of the elements and
 | |
|   // then rebuild the type from inside out.
 | |
|   SmallVector<Type *, 4> ElementTypes;
 | |
| 
 | |
|   // If there are no element types to map, then the type is itself.  This is
 | |
|   // true for the anonymous {} struct, things like 'float', integers, etc.
 | |
|   if (Ty->getNumContainedTypes() == 0 && IsUniqued)
 | |
|     return *Entry = Ty;
 | |
| 
 | |
|   // Remap all of the elements, keeping track of whether any of them change.
 | |
|   bool AnyChange = false;
 | |
|   ElementTypes.resize(Ty->getNumContainedTypes());
 | |
|   for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) {
 | |
|     ElementTypes[I] = get(Ty->getContainedType(I), Visited);
 | |
|     AnyChange |= ElementTypes[I] != Ty->getContainedType(I);
 | |
|   }
 | |
| 
 | |
|   // If we found our type while recursively processing stuff, just use it.
 | |
|   Entry = &MappedTypes[Ty];
 | |
|   if (*Entry) {
 | |
|     if (auto *DTy = dyn_cast<StructType>(*Entry)) {
 | |
|       if (DTy->isOpaque()) {
 | |
|         auto *STy = cast<StructType>(Ty);
 | |
|         finishType(DTy, STy, ElementTypes);
 | |
|       }
 | |
|     }
 | |
|     return *Entry;
 | |
|   }
 | |
| 
 | |
|   // If all of the element types mapped directly over and the type is not
 | |
|   // a nomed struct, then the type is usable as-is.
 | |
|   if (!AnyChange && IsUniqued)
 | |
|     return *Entry = Ty;
 | |
| 
 | |
|   // Otherwise, rebuild a modified type.
 | |
|   switch (Ty->getTypeID()) {
 | |
|   default:
 | |
|     llvm_unreachable("unknown derived type to remap");
 | |
|   case Type::ArrayTyID:
 | |
|     return *Entry = ArrayType::get(ElementTypes[0],
 | |
|                                    cast<ArrayType>(Ty)->getNumElements());
 | |
|   case Type::VectorTyID:
 | |
|     return *Entry = VectorType::get(ElementTypes[0],
 | |
|                                     cast<VectorType>(Ty)->getNumElements());
 | |
|   case Type::PointerTyID:
 | |
|     return *Entry = PointerType::get(ElementTypes[0],
 | |
|                                      cast<PointerType>(Ty)->getAddressSpace());
 | |
|   case Type::FunctionTyID:
 | |
|     return *Entry = FunctionType::get(ElementTypes[0],
 | |
|                                       makeArrayRef(ElementTypes).slice(1),
 | |
|                                       cast<FunctionType>(Ty)->isVarArg());
 | |
|   case Type::StructTyID: {
 | |
|     auto *STy = cast<StructType>(Ty);
 | |
|     bool IsPacked = STy->isPacked();
 | |
|     if (IsUniqued)
 | |
|       return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked);
 | |
| 
 | |
|     // If the type is opaque, we can just use it directly.
 | |
|     if (STy->isOpaque()) {
 | |
|       DstStructTypesSet.addOpaque(STy);
 | |
|       return *Entry = Ty;
 | |
|     }
 | |
| 
 | |
|     if (StructType *OldT =
 | |
|             DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) {
 | |
|       STy->setName("");
 | |
|       return *Entry = OldT;
 | |
|     }
 | |
| 
 | |
|     if (!AnyChange) {
 | |
|       DstStructTypesSet.addNonOpaque(STy);
 | |
|       return *Entry = Ty;
 | |
|     }
 | |
| 
 | |
|     StructType *DTy = StructType::create(Ty->getContext());
 | |
|     finishType(DTy, STy, ElementTypes);
 | |
|     return *Entry = DTy;
 | |
|   }
 | |
|   }
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // ModuleLinker implementation.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| namespace {
 | |
| class ModuleLinker;
 | |
| 
 | |
| /// Creates prototypes for functions that are lazily linked on the fly. This
 | |
| /// speeds up linking for modules with many/ lazily linked functions of which
 | |
| /// few get used.
 | |
| class ValueMaterializerTy : public ValueMaterializer {
 | |
|   TypeMapTy &TypeMap;
 | |
|   Module *DstM;
 | |
|   std::vector<GlobalValue *> &LazilyLinkGlobalValues;
 | |
| 
 | |
| public:
 | |
|   ValueMaterializerTy(TypeMapTy &TypeMap, Module *DstM,
 | |
|                       std::vector<GlobalValue *> &LazilyLinkGlobalValues)
 | |
|       : ValueMaterializer(), TypeMap(TypeMap), DstM(DstM),
 | |
|         LazilyLinkGlobalValues(LazilyLinkGlobalValues) {}
 | |
| 
 | |
|   Value *materializeValueFor(Value *V) override;
 | |
| };
 | |
| 
 | |
| class LinkDiagnosticInfo : public DiagnosticInfo {
 | |
|   const Twine &Msg;
 | |
| 
 | |
| public:
 | |
|   LinkDiagnosticInfo(DiagnosticSeverity Severity, const Twine &Msg);
 | |
|   void print(DiagnosticPrinter &DP) const override;
 | |
| };
 | |
| LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity,
 | |
|                                        const Twine &Msg)
 | |
|     : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {}
 | |
| void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
 | |
| 
 | |
| /// This is an implementation class for the LinkModules function, which is the
 | |
| /// entrypoint for this file.
 | |
| class ModuleLinker {
 | |
|   Module *DstM, *SrcM;
 | |
| 
 | |
|   TypeMapTy TypeMap;
 | |
|   ValueMaterializerTy ValMaterializer;
 | |
| 
 | |
|   /// Mapping of values from what they used to be in Src, to what they are now
 | |
|   /// in DstM.  ValueToValueMapTy is a ValueMap, which involves some overhead
 | |
|   /// due to the use of Value handles which the Linker doesn't actually need,
 | |
|   /// but this allows us to reuse the ValueMapper code.
 | |
|   ValueToValueMapTy ValueMap;
 | |
| 
 | |
|   struct AppendingVarInfo {
 | |
|     GlobalVariable *NewGV;   // New aggregate global in dest module.
 | |
|     const Constant *DstInit; // Old initializer from dest module.
 | |
|     const Constant *SrcInit; // Old initializer from src module.
 | |
|   };
 | |
| 
 | |
|   std::vector<AppendingVarInfo> AppendingVars;
 | |
| 
 | |
|   // Set of items not to link in from source.
 | |
|   SmallPtrSet<const Value *, 16> DoNotLinkFromSource;
 | |
| 
 | |
|   // Vector of GlobalValues to lazily link in.
 | |
|   std::vector<GlobalValue *> LazilyLinkGlobalValues;
 | |
| 
 | |
|   /// Functions that have replaced other functions.
 | |
|   SmallPtrSet<const Function *, 16> OverridingFunctions;
 | |
| 
 | |
|   DiagnosticHandlerFunction DiagnosticHandler;
 | |
| 
 | |
|   /// For symbol clashes, prefer those from Src.
 | |
|   bool OverrideFromSrc;
 | |
| 
 | |
| public:
 | |
|   ModuleLinker(Module *dstM, Linker::IdentifiedStructTypeSet &Set, Module *srcM,
 | |
|                DiagnosticHandlerFunction DiagnosticHandler,
 | |
|                bool OverrideFromSrc)
 | |
|       : DstM(dstM), SrcM(srcM), TypeMap(Set),
 | |
|         ValMaterializer(TypeMap, DstM, LazilyLinkGlobalValues),
 | |
|         DiagnosticHandler(DiagnosticHandler), OverrideFromSrc(OverrideFromSrc) {
 | |
|   }
 | |
| 
 | |
|   bool run();
 | |
| 
 | |
| private:
 | |
|   bool shouldLinkFromSource(bool &LinkFromSrc, const GlobalValue &Dest,
 | |
|                             const GlobalValue &Src);
 | |
| 
 | |
|   /// Helper method for setting a message and returning an error code.
 | |
|   bool emitError(const Twine &Message) {
 | |
|     DiagnosticHandler(LinkDiagnosticInfo(DS_Error, Message));
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   void emitWarning(const Twine &Message) {
 | |
|     DiagnosticHandler(LinkDiagnosticInfo(DS_Warning, Message));
 | |
|   }
 | |
| 
 | |
|   bool getComdatLeader(Module *M, StringRef ComdatName,
 | |
|                        const GlobalVariable *&GVar);
 | |
|   bool computeResultingSelectionKind(StringRef ComdatName,
 | |
|                                      Comdat::SelectionKind Src,
 | |
|                                      Comdat::SelectionKind Dst,
 | |
|                                      Comdat::SelectionKind &Result,
 | |
|                                      bool &LinkFromSrc);
 | |
|   std::map<const Comdat *, std::pair<Comdat::SelectionKind, bool>>
 | |
|       ComdatsChosen;
 | |
|   bool getComdatResult(const Comdat *SrcC, Comdat::SelectionKind &SK,
 | |
|                        bool &LinkFromSrc);
 | |
| 
 | |
|   /// Given a global in the source module, return the global in the
 | |
|   /// destination module that is being linked to, if any.
 | |
|   GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) {
 | |
|     // If the source has no name it can't link.  If it has local linkage,
 | |
|     // there is no name match-up going on.
 | |
|     if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
 | |
|       return nullptr;
 | |
| 
 | |
|     // Otherwise see if we have a match in the destination module's symtab.
 | |
|     GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName());
 | |
|     if (!DGV)
 | |
|       return nullptr;
 | |
| 
 | |
|     // If we found a global with the same name in the dest module, but it has
 | |
|     // internal linkage, we are really not doing any linkage here.
 | |
|     if (DGV->hasLocalLinkage())
 | |
|       return nullptr;
 | |
| 
 | |
|     // Otherwise, we do in fact link to the destination global.
 | |
|     return DGV;
 | |
|   }
 | |
| 
 | |
|   void computeTypeMapping();
 | |
| 
 | |
|   void upgradeMismatchedGlobalArray(StringRef Name);
 | |
|   void upgradeMismatchedGlobals();
 | |
| 
 | |
|   bool linkAppendingVarProto(GlobalVariable *DstGV,
 | |
|                              const GlobalVariable *SrcGV);
 | |
| 
 | |
|   bool linkGlobalValueProto(GlobalValue *GV);
 | |
|   bool linkModuleFlagsMetadata();
 | |
| 
 | |
|   void linkAppendingVarInit(const AppendingVarInfo &AVI);
 | |
| 
 | |
|   void linkGlobalInit(GlobalVariable &Dst, GlobalVariable &Src);
 | |
|   bool linkFunctionBody(Function &Dst, Function &Src);
 | |
|   void linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src);
 | |
|   bool linkGlobalValueBody(GlobalValue &Src);
 | |
| 
 | |
|   void linkNamedMDNodes();
 | |
|   void stripReplacedSubprograms();
 | |
| };
 | |
| }
 | |
| 
 | |
| /// The LLVM SymbolTable class autorenames globals that conflict in the symbol
 | |
| /// table. This is good for all clients except for us. Go through the trouble
 | |
| /// to force this back.
 | |
| static void forceRenaming(GlobalValue *GV, StringRef Name) {
 | |
|   // If the global doesn't force its name or if it already has the right name,
 | |
|   // there is nothing for us to do.
 | |
|   if (GV->hasLocalLinkage() || GV->getName() == Name)
 | |
|     return;
 | |
| 
 | |
|   Module *M = GV->getParent();
 | |
| 
 | |
|   // If there is a conflict, rename the conflict.
 | |
|   if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
 | |
|     GV->takeName(ConflictGV);
 | |
|     ConflictGV->setName(Name);    // This will cause ConflictGV to get renamed
 | |
|     assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
 | |
|   } else {
 | |
|     GV->setName(Name);              // Force the name back
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// copy additional attributes (those not needed to construct a GlobalValue)
 | |
| /// from the SrcGV to the DestGV.
 | |
| static void copyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
 | |
|   DestGV->copyAttributesFrom(SrcGV);
 | |
|   forceRenaming(DestGV, SrcGV->getName());
 | |
| }
 | |
| 
 | |
| static bool isLessConstraining(GlobalValue::VisibilityTypes a,
 | |
|                                GlobalValue::VisibilityTypes b) {
 | |
|   if (a == GlobalValue::HiddenVisibility)
 | |
|     return false;
 | |
|   if (b == GlobalValue::HiddenVisibility)
 | |
|     return true;
 | |
|   if (a == GlobalValue::ProtectedVisibility)
 | |
|     return false;
 | |
|   if (b == GlobalValue::ProtectedVisibility)
 | |
|     return true;
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Loop through the global variables in the src module and merge them into the
 | |
| /// dest module.
 | |
| static GlobalVariable *copyGlobalVariableProto(TypeMapTy &TypeMap, Module &DstM,
 | |
|                                                const GlobalVariable *SGVar) {
 | |
|   // No linking to be performed or linking from the source: simply create an
 | |
|   // identical version of the symbol over in the dest module... the
 | |
|   // initializer will be filled in later by LinkGlobalInits.
 | |
|   GlobalVariable *NewDGV = new GlobalVariable(
 | |
|       DstM, TypeMap.get(SGVar->getType()->getElementType()),
 | |
|       SGVar->isConstant(), SGVar->getLinkage(), /*init*/ nullptr,
 | |
|       SGVar->getName(), /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(),
 | |
|       SGVar->getType()->getAddressSpace());
 | |
| 
 | |
|   return NewDGV;
 | |
| }
 | |
| 
 | |
| /// Link the function in the source module into the destination module if
 | |
| /// needed, setting up mapping information.
 | |
| static Function *copyFunctionProto(TypeMapTy &TypeMap, Module &DstM,
 | |
|                                    const Function *SF) {
 | |
|   // If there is no linkage to be performed or we are linking from the source,
 | |
|   // bring SF over.
 | |
|   return Function::Create(TypeMap.get(SF->getFunctionType()), SF->getLinkage(),
 | |
|                           SF->getName(), &DstM);
 | |
| }
 | |
| 
 | |
| /// Set up prototypes for any aliases that come over from the source module.
 | |
| static GlobalAlias *copyGlobalAliasProto(TypeMapTy &TypeMap, Module &DstM,
 | |
|                                          const GlobalAlias *SGA) {
 | |
|   // If there is no linkage to be performed or we're linking from the source,
 | |
|   // bring over SGA.
 | |
|   auto *PTy = cast<PointerType>(TypeMap.get(SGA->getType()));
 | |
|   return GlobalAlias::create(PTy, SGA->getLinkage(), SGA->getName(), &DstM);
 | |
| }
 | |
| 
 | |
| static GlobalValue *copyGlobalValueProto(TypeMapTy &TypeMap, Module &DstM,
 | |
|                                          const GlobalValue *SGV) {
 | |
|   GlobalValue *NewGV;
 | |
|   if (auto *SGVar = dyn_cast<GlobalVariable>(SGV))
 | |
|     NewGV = copyGlobalVariableProto(TypeMap, DstM, SGVar);
 | |
|   else if (auto *SF = dyn_cast<Function>(SGV))
 | |
|     NewGV = copyFunctionProto(TypeMap, DstM, SF);
 | |
|   else
 | |
|     NewGV = copyGlobalAliasProto(TypeMap, DstM, cast<GlobalAlias>(SGV));
 | |
|   copyGVAttributes(NewGV, SGV);
 | |
|   return NewGV;
 | |
| }
 | |
| 
 | |
| Value *ValueMaterializerTy::materializeValueFor(Value *V) {
 | |
|   auto *SGV = dyn_cast<GlobalValue>(V);
 | |
|   if (!SGV)
 | |
|     return nullptr;
 | |
| 
 | |
|   GlobalValue *DGV = copyGlobalValueProto(TypeMap, *DstM, SGV);
 | |
| 
 | |
|   if (Comdat *SC = SGV->getComdat()) {
 | |
|     if (auto *DGO = dyn_cast<GlobalObject>(DGV)) {
 | |
|       Comdat *DC = DstM->getOrInsertComdat(SC->getName());
 | |
|       DGO->setComdat(DC);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   LazilyLinkGlobalValues.push_back(SGV);
 | |
|   return DGV;
 | |
| }
 | |
| 
 | |
| bool ModuleLinker::getComdatLeader(Module *M, StringRef ComdatName,
 | |
|                                    const GlobalVariable *&GVar) {
 | |
|   const GlobalValue *GVal = M->getNamedValue(ComdatName);
 | |
|   if (const auto *GA = dyn_cast_or_null<GlobalAlias>(GVal)) {
 | |
|     GVal = GA->getBaseObject();
 | |
|     if (!GVal)
 | |
|       // We cannot resolve the size of the aliasee yet.
 | |
|       return emitError("Linking COMDATs named '" + ComdatName +
 | |
|                        "': COMDAT key involves incomputable alias size.");
 | |
|   }
 | |
| 
 | |
|   GVar = dyn_cast_or_null<GlobalVariable>(GVal);
 | |
|   if (!GVar)
 | |
|     return emitError(
 | |
|         "Linking COMDATs named '" + ComdatName +
 | |
|         "': GlobalVariable required for data dependent selection!");
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ModuleLinker::computeResultingSelectionKind(StringRef ComdatName,
 | |
|                                                  Comdat::SelectionKind Src,
 | |
|                                                  Comdat::SelectionKind Dst,
 | |
|                                                  Comdat::SelectionKind &Result,
 | |
|                                                  bool &LinkFromSrc) {
 | |
|   // The ability to mix Comdat::SelectionKind::Any with
 | |
|   // Comdat::SelectionKind::Largest is a behavior that comes from COFF.
 | |
|   bool DstAnyOrLargest = Dst == Comdat::SelectionKind::Any ||
 | |
|                          Dst == Comdat::SelectionKind::Largest;
 | |
|   bool SrcAnyOrLargest = Src == Comdat::SelectionKind::Any ||
 | |
|                          Src == Comdat::SelectionKind::Largest;
 | |
|   if (DstAnyOrLargest && SrcAnyOrLargest) {
 | |
|     if (Dst == Comdat::SelectionKind::Largest ||
 | |
|         Src == Comdat::SelectionKind::Largest)
 | |
|       Result = Comdat::SelectionKind::Largest;
 | |
|     else
 | |
|       Result = Comdat::SelectionKind::Any;
 | |
|   } else if (Src == Dst) {
 | |
|     Result = Dst;
 | |
|   } else {
 | |
|     return emitError("Linking COMDATs named '" + ComdatName +
 | |
|                      "': invalid selection kinds!");
 | |
|   }
 | |
| 
 | |
|   switch (Result) {
 | |
|   case Comdat::SelectionKind::Any:
 | |
|     // Go with Dst.
 | |
|     LinkFromSrc = false;
 | |
|     break;
 | |
|   case Comdat::SelectionKind::NoDuplicates:
 | |
|     return emitError("Linking COMDATs named '" + ComdatName +
 | |
|                      "': noduplicates has been violated!");
 | |
|   case Comdat::SelectionKind::ExactMatch:
 | |
|   case Comdat::SelectionKind::Largest:
 | |
|   case Comdat::SelectionKind::SameSize: {
 | |
|     const GlobalVariable *DstGV;
 | |
|     const GlobalVariable *SrcGV;
 | |
|     if (getComdatLeader(DstM, ComdatName, DstGV) ||
 | |
|         getComdatLeader(SrcM, ComdatName, SrcGV))
 | |
|       return true;
 | |
| 
 | |
|     const DataLayout &DstDL = DstM->getDataLayout();
 | |
|     const DataLayout &SrcDL = SrcM->getDataLayout();
 | |
|     uint64_t DstSize =
 | |
|         DstDL.getTypeAllocSize(DstGV->getType()->getPointerElementType());
 | |
|     uint64_t SrcSize =
 | |
|         SrcDL.getTypeAllocSize(SrcGV->getType()->getPointerElementType());
 | |
|     if (Result == Comdat::SelectionKind::ExactMatch) {
 | |
|       if (SrcGV->getInitializer() != DstGV->getInitializer())
 | |
|         return emitError("Linking COMDATs named '" + ComdatName +
 | |
|                          "': ExactMatch violated!");
 | |
|       LinkFromSrc = false;
 | |
|     } else if (Result == Comdat::SelectionKind::Largest) {
 | |
|       LinkFromSrc = SrcSize > DstSize;
 | |
|     } else if (Result == Comdat::SelectionKind::SameSize) {
 | |
|       if (SrcSize != DstSize)
 | |
|         return emitError("Linking COMDATs named '" + ComdatName +
 | |
|                          "': SameSize violated!");
 | |
|       LinkFromSrc = false;
 | |
|     } else {
 | |
|       llvm_unreachable("unknown selection kind");
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ModuleLinker::getComdatResult(const Comdat *SrcC,
 | |
|                                    Comdat::SelectionKind &Result,
 | |
|                                    bool &LinkFromSrc) {
 | |
|   Comdat::SelectionKind SSK = SrcC->getSelectionKind();
 | |
|   StringRef ComdatName = SrcC->getName();
 | |
|   Module::ComdatSymTabType &ComdatSymTab = DstM->getComdatSymbolTable();
 | |
|   Module::ComdatSymTabType::iterator DstCI = ComdatSymTab.find(ComdatName);
 | |
| 
 | |
|   if (DstCI == ComdatSymTab.end()) {
 | |
|     // Use the comdat if it is only available in one of the modules.
 | |
|     LinkFromSrc = true;
 | |
|     Result = SSK;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   const Comdat *DstC = &DstCI->second;
 | |
|   Comdat::SelectionKind DSK = DstC->getSelectionKind();
 | |
|   return computeResultingSelectionKind(ComdatName, SSK, DSK, Result,
 | |
|                                        LinkFromSrc);
 | |
| }
 | |
| 
 | |
| bool ModuleLinker::shouldLinkFromSource(bool &LinkFromSrc,
 | |
|                                         const GlobalValue &Dest,
 | |
|                                         const GlobalValue &Src) {
 | |
|   // Should we unconditionally use the Src?
 | |
|   if (OverrideFromSrc) {
 | |
|     LinkFromSrc = true;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // We always have to add Src if it has appending linkage.
 | |
|   if (Src.hasAppendingLinkage()) {
 | |
|     LinkFromSrc = true;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   bool SrcIsDeclaration = Src.isDeclarationForLinker();
 | |
|   bool DestIsDeclaration = Dest.isDeclarationForLinker();
 | |
| 
 | |
|   if (SrcIsDeclaration) {
 | |
|     // If Src is external or if both Src & Dest are external..  Just link the
 | |
|     // external globals, we aren't adding anything.
 | |
|     if (Src.hasDLLImportStorageClass()) {
 | |
|       // If one of GVs is marked as DLLImport, result should be dllimport'ed.
 | |
|       LinkFromSrc = DestIsDeclaration;
 | |
|       return false;
 | |
|     }
 | |
|     // If the Dest is weak, use the source linkage.
 | |
|     LinkFromSrc = Dest.hasExternalWeakLinkage();
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (DestIsDeclaration) {
 | |
|     // If Dest is external but Src is not:
 | |
|     LinkFromSrc = true;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (Src.hasCommonLinkage()) {
 | |
|     if (Dest.hasLinkOnceLinkage() || Dest.hasWeakLinkage()) {
 | |
|       LinkFromSrc = true;
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     if (!Dest.hasCommonLinkage()) {
 | |
|       LinkFromSrc = false;
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     const DataLayout &DL = Dest.getParent()->getDataLayout();
 | |
|     uint64_t DestSize = DL.getTypeAllocSize(Dest.getType()->getElementType());
 | |
|     uint64_t SrcSize = DL.getTypeAllocSize(Src.getType()->getElementType());
 | |
|     LinkFromSrc = SrcSize > DestSize;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (Src.isWeakForLinker()) {
 | |
|     assert(!Dest.hasExternalWeakLinkage());
 | |
|     assert(!Dest.hasAvailableExternallyLinkage());
 | |
| 
 | |
|     if (Dest.hasLinkOnceLinkage() && Src.hasWeakLinkage()) {
 | |
|       LinkFromSrc = true;
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     LinkFromSrc = false;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   if (Dest.isWeakForLinker()) {
 | |
|     assert(Src.hasExternalLinkage());
 | |
|     LinkFromSrc = true;
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   assert(!Src.hasExternalWeakLinkage());
 | |
|   assert(!Dest.hasExternalWeakLinkage());
 | |
|   assert(Dest.hasExternalLinkage() && Src.hasExternalLinkage() &&
 | |
|          "Unexpected linkage type!");
 | |
|   return emitError("Linking globals named '" + Src.getName() +
 | |
|                    "': symbol multiply defined!");
 | |
| }
 | |
| 
 | |
| /// Loop over all of the linked values to compute type mappings.  For example,
 | |
| /// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct
 | |
| /// types 'Foo' but one got renamed when the module was loaded into the same
 | |
| /// LLVMContext.
 | |
| void ModuleLinker::computeTypeMapping() {
 | |
|   for (GlobalValue &SGV : SrcM->globals()) {
 | |
|     GlobalValue *DGV = getLinkedToGlobal(&SGV);
 | |
|     if (!DGV)
 | |
|       continue;
 | |
| 
 | |
|     if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) {
 | |
|       TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Unify the element type of appending arrays.
 | |
|     ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType());
 | |
|     ArrayType *SAT = cast<ArrayType>(SGV.getType()->getElementType());
 | |
|     TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
 | |
|   }
 | |
| 
 | |
|   for (GlobalValue &SGV : *SrcM) {
 | |
|     if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
 | |
|       TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
 | |
|   }
 | |
| 
 | |
|   for (GlobalValue &SGV : SrcM->aliases()) {
 | |
|     if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
 | |
|       TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
 | |
|   }
 | |
| 
 | |
|   // Incorporate types by name, scanning all the types in the source module.
 | |
|   // At this point, the destination module may have a type "%foo = { i32 }" for
 | |
|   // example.  When the source module got loaded into the same LLVMContext, if
 | |
|   // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
 | |
|   std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes();
 | |
|   for (StructType *ST : Types) {
 | |
|     if (!ST->hasName())
 | |
|       continue;
 | |
| 
 | |
|     // Check to see if there is a dot in the name followed by a digit.
 | |
|     size_t DotPos = ST->getName().rfind('.');
 | |
|     if (DotPos == 0 || DotPos == StringRef::npos ||
 | |
|         ST->getName().back() == '.' ||
 | |
|         !isdigit(static_cast<unsigned char>(ST->getName()[DotPos + 1])))
 | |
|       continue;
 | |
| 
 | |
|     // Check to see if the destination module has a struct with the prefix name.
 | |
|     StructType *DST = DstM->getTypeByName(ST->getName().substr(0, DotPos));
 | |
|     if (!DST)
 | |
|       continue;
 | |
| 
 | |
|     // Don't use it if this actually came from the source module. They're in
 | |
|     // the same LLVMContext after all. Also don't use it unless the type is
 | |
|     // actually used in the destination module. This can happen in situations
 | |
|     // like this:
 | |
|     //
 | |
|     //      Module A                         Module B
 | |
|     //      --------                         --------
 | |
|     //   %Z = type { %A }                %B = type { %C.1 }
 | |
|     //   %A = type { %B.1, [7 x i8] }    %C.1 = type { i8* }
 | |
|     //   %B.1 = type { %C }              %A.2 = type { %B.3, [5 x i8] }
 | |
|     //   %C = type { i8* }               %B.3 = type { %C.1 }
 | |
|     //
 | |
|     // When we link Module B with Module A, the '%B' in Module B is
 | |
|     // used. However, that would then use '%C.1'. But when we process '%C.1',
 | |
|     // we prefer to take the '%C' version. So we are then left with both
 | |
|     // '%C.1' and '%C' being used for the same types. This leads to some
 | |
|     // variables using one type and some using the other.
 | |
|     if (TypeMap.DstStructTypesSet.hasType(DST))
 | |
|       TypeMap.addTypeMapping(DST, ST);
 | |
|   }
 | |
| 
 | |
|   // Now that we have discovered all of the type equivalences, get a body for
 | |
|   // any 'opaque' types in the dest module that are now resolved.
 | |
|   TypeMap.linkDefinedTypeBodies();
 | |
| }
 | |
| 
 | |
| static void upgradeGlobalArray(GlobalVariable *GV) {
 | |
|   ArrayType *ATy = cast<ArrayType>(GV->getType()->getElementType());
 | |
|   StructType *OldTy = cast<StructType>(ATy->getElementType());
 | |
|   assert(OldTy->getNumElements() == 2 && "Expected to upgrade from 2 elements");
 | |
| 
 | |
|   // Get the upgraded 3 element type.
 | |
|   PointerType *VoidPtrTy = Type::getInt8Ty(GV->getContext())->getPointerTo();
 | |
|   Type *Tys[3] = {OldTy->getElementType(0), OldTy->getElementType(1),
 | |
|                   VoidPtrTy};
 | |
|   StructType *NewTy = StructType::get(GV->getContext(), Tys, false);
 | |
| 
 | |
|   // Build new constants with a null third field filled in.
 | |
|   Constant *OldInitC = GV->getInitializer();
 | |
|   ConstantArray *OldInit = dyn_cast<ConstantArray>(OldInitC);
 | |
|   if (!OldInit && !isa<ConstantAggregateZero>(OldInitC))
 | |
|     // Invalid initializer; give up.
 | |
|     return;
 | |
|   std::vector<Constant *> Initializers;
 | |
|   if (OldInit && OldInit->getNumOperands()) {
 | |
|     Value *Null = Constant::getNullValue(VoidPtrTy);
 | |
|     for (Use &U : OldInit->operands()) {
 | |
|       ConstantStruct *Init = cast<ConstantStruct>(U.get());
 | |
|       Initializers.push_back(ConstantStruct::get(
 | |
|           NewTy, Init->getOperand(0), Init->getOperand(1), Null, nullptr));
 | |
|     }
 | |
|   }
 | |
|   assert(Initializers.size() == ATy->getNumElements() &&
 | |
|          "Failed to copy all array elements");
 | |
| 
 | |
|   // Replace the old GV with a new one.
 | |
|   ATy = ArrayType::get(NewTy, Initializers.size());
 | |
|   Constant *NewInit = ConstantArray::get(ATy, Initializers);
 | |
|   GlobalVariable *NewGV = new GlobalVariable(
 | |
|       *GV->getParent(), ATy, GV->isConstant(), GV->getLinkage(), NewInit, "",
 | |
|       GV, GV->getThreadLocalMode(), GV->getType()->getAddressSpace(),
 | |
|       GV->isExternallyInitialized());
 | |
|   NewGV->copyAttributesFrom(GV);
 | |
|   NewGV->takeName(GV);
 | |
|   assert(GV->use_empty() && "program cannot use initializer list");
 | |
|   GV->eraseFromParent();
 | |
| }
 | |
| 
 | |
| void ModuleLinker::upgradeMismatchedGlobalArray(StringRef Name) {
 | |
|   // Look for the global arrays.
 | |
|   auto *DstGV = dyn_cast_or_null<GlobalVariable>(DstM->getNamedValue(Name));
 | |
|   if (!DstGV)
 | |
|     return;
 | |
|   auto *SrcGV = dyn_cast_or_null<GlobalVariable>(SrcM->getNamedValue(Name));
 | |
|   if (!SrcGV)
 | |
|     return;
 | |
| 
 | |
|   // Check if the types already match.
 | |
|   auto *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
 | |
|   auto *SrcTy =
 | |
|       cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
 | |
|   if (DstTy == SrcTy)
 | |
|     return;
 | |
| 
 | |
|   // Grab the element types.  We can only upgrade an array of a two-field
 | |
|   // struct.  Only bother if the other one has three-fields.
 | |
|   auto *DstEltTy = cast<StructType>(DstTy->getElementType());
 | |
|   auto *SrcEltTy = cast<StructType>(SrcTy->getElementType());
 | |
|   if (DstEltTy->getNumElements() == 2 && SrcEltTy->getNumElements() == 3) {
 | |
|     upgradeGlobalArray(DstGV);
 | |
|     return;
 | |
|   }
 | |
|   if (DstEltTy->getNumElements() == 3 && SrcEltTy->getNumElements() == 2)
 | |
|     upgradeGlobalArray(SrcGV);
 | |
| 
 | |
|   // We can't upgrade any other differences.
 | |
| }
 | |
| 
 | |
| void ModuleLinker::upgradeMismatchedGlobals() {
 | |
|   upgradeMismatchedGlobalArray("llvm.global_ctors");
 | |
|   upgradeMismatchedGlobalArray("llvm.global_dtors");
 | |
| }
 | |
| 
 | |
| /// If there were any appending global variables, link them together now.
 | |
| /// Return true on error.
 | |
| bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV,
 | |
|                                          const GlobalVariable *SrcGV) {
 | |
| 
 | |
|   if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
 | |
|     return emitError("Linking globals named '" + SrcGV->getName() +
 | |
|            "': can only link appending global with another appending global!");
 | |
| 
 | |
|   ArrayType *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
 | |
|   ArrayType *SrcTy =
 | |
|     cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
 | |
|   Type *EltTy = DstTy->getElementType();
 | |
| 
 | |
|   // Check to see that they two arrays agree on type.
 | |
|   if (EltTy != SrcTy->getElementType())
 | |
|     return emitError("Appending variables with different element types!");
 | |
|   if (DstGV->isConstant() != SrcGV->isConstant())
 | |
|     return emitError("Appending variables linked with different const'ness!");
 | |
| 
 | |
|   if (DstGV->getAlignment() != SrcGV->getAlignment())
 | |
|     return emitError(
 | |
|              "Appending variables with different alignment need to be linked!");
 | |
| 
 | |
|   if (DstGV->getVisibility() != SrcGV->getVisibility())
 | |
|     return emitError(
 | |
|             "Appending variables with different visibility need to be linked!");
 | |
| 
 | |
|   if (DstGV->hasUnnamedAddr() != SrcGV->hasUnnamedAddr())
 | |
|     return emitError(
 | |
|         "Appending variables with different unnamed_addr need to be linked!");
 | |
| 
 | |
|   if (StringRef(DstGV->getSection()) != SrcGV->getSection())
 | |
|     return emitError(
 | |
|           "Appending variables with different section name need to be linked!");
 | |
| 
 | |
|   uint64_t NewSize = DstTy->getNumElements() + SrcTy->getNumElements();
 | |
|   ArrayType *NewType = ArrayType::get(EltTy, NewSize);
 | |
| 
 | |
|   // Create the new global variable.
 | |
|   GlobalVariable *NG =
 | |
|     new GlobalVariable(*DstGV->getParent(), NewType, SrcGV->isConstant(),
 | |
|                        DstGV->getLinkage(), /*init*/nullptr, /*name*/"", DstGV,
 | |
|                        DstGV->getThreadLocalMode(),
 | |
|                        DstGV->getType()->getAddressSpace());
 | |
| 
 | |
|   // Propagate alignment, visibility and section info.
 | |
|   copyGVAttributes(NG, DstGV);
 | |
| 
 | |
|   AppendingVarInfo AVI;
 | |
|   AVI.NewGV = NG;
 | |
|   AVI.DstInit = DstGV->getInitializer();
 | |
|   AVI.SrcInit = SrcGV->getInitializer();
 | |
|   AppendingVars.push_back(AVI);
 | |
| 
 | |
|   // Replace any uses of the two global variables with uses of the new
 | |
|   // global.
 | |
|   ValueMap[SrcGV] = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
 | |
| 
 | |
|   DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
 | |
|   DstGV->eraseFromParent();
 | |
| 
 | |
|   // Track the source variable so we don't try to link it.
 | |
|   DoNotLinkFromSource.insert(SrcGV);
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| bool ModuleLinker::linkGlobalValueProto(GlobalValue *SGV) {
 | |
|   GlobalValue *DGV = getLinkedToGlobal(SGV);
 | |
| 
 | |
|   // Handle the ultra special appending linkage case first.
 | |
|   if (DGV && DGV->hasAppendingLinkage())
 | |
|     return linkAppendingVarProto(cast<GlobalVariable>(DGV),
 | |
|                                  cast<GlobalVariable>(SGV));
 | |
| 
 | |
|   bool LinkFromSrc = true;
 | |
|   Comdat *C = nullptr;
 | |
|   GlobalValue::VisibilityTypes Visibility = SGV->getVisibility();
 | |
|   bool HasUnnamedAddr = SGV->hasUnnamedAddr();
 | |
| 
 | |
|   if (const Comdat *SC = SGV->getComdat()) {
 | |
|     Comdat::SelectionKind SK;
 | |
|     std::tie(SK, LinkFromSrc) = ComdatsChosen[SC];
 | |
|     C = DstM->getOrInsertComdat(SC->getName());
 | |
|     C->setSelectionKind(SK);
 | |
|   } else if (DGV) {
 | |
|     if (shouldLinkFromSource(LinkFromSrc, *DGV, *SGV))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   if (!LinkFromSrc) {
 | |
|     // Track the source global so that we don't attempt to copy it over when
 | |
|     // processing global initializers.
 | |
|     DoNotLinkFromSource.insert(SGV);
 | |
| 
 | |
|     if (DGV)
 | |
|       // Make sure to remember this mapping.
 | |
|       ValueMap[SGV] =
 | |
|           ConstantExpr::getBitCast(DGV, TypeMap.get(SGV->getType()));
 | |
|   }
 | |
| 
 | |
|   if (DGV) {
 | |
|     Visibility = isLessConstraining(Visibility, DGV->getVisibility())
 | |
|                      ? DGV->getVisibility()
 | |
|                      : Visibility;
 | |
|     HasUnnamedAddr = HasUnnamedAddr && DGV->hasUnnamedAddr();
 | |
|   }
 | |
| 
 | |
|   if (!LinkFromSrc && !DGV)
 | |
|     return false;
 | |
| 
 | |
|   GlobalValue *NewGV;
 | |
|   if (!LinkFromSrc) {
 | |
|     NewGV = DGV;
 | |
|   } else {
 | |
|     // If the GV is to be lazily linked, don't create it just yet.
 | |
|     // The ValueMaterializerTy will deal with creating it if it's used.
 | |
|     if (!DGV && !OverrideFromSrc &&
 | |
|         (SGV->hasLocalLinkage() || SGV->hasLinkOnceLinkage() ||
 | |
|          SGV->hasAvailableExternallyLinkage())) {
 | |
|       DoNotLinkFromSource.insert(SGV);
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     NewGV = copyGlobalValueProto(TypeMap, *DstM, SGV);
 | |
| 
 | |
|     if (DGV && isa<Function>(DGV))
 | |
|       if (auto *NewF = dyn_cast<Function>(NewGV))
 | |
|         OverridingFunctions.insert(NewF);
 | |
|   }
 | |
| 
 | |
|   NewGV->setUnnamedAddr(HasUnnamedAddr);
 | |
|   NewGV->setVisibility(Visibility);
 | |
| 
 | |
|   if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) {
 | |
|     if (C)
 | |
|       NewGO->setComdat(C);
 | |
| 
 | |
|     if (DGV && DGV->hasCommonLinkage() && SGV->hasCommonLinkage())
 | |
|       NewGO->setAlignment(std::max(DGV->getAlignment(), SGV->getAlignment()));
 | |
|   }
 | |
| 
 | |
|   if (auto *NewGVar = dyn_cast<GlobalVariable>(NewGV)) {
 | |
|     auto *DGVar = dyn_cast_or_null<GlobalVariable>(DGV);
 | |
|     auto *SGVar = dyn_cast<GlobalVariable>(SGV);
 | |
|     if (DGVar && SGVar && DGVar->isDeclaration() && SGVar->isDeclaration() &&
 | |
|         (!DGVar->isConstant() || !SGVar->isConstant()))
 | |
|       NewGVar->setConstant(false);
 | |
|   }
 | |
| 
 | |
|   // Make sure to remember this mapping.
 | |
|   if (NewGV != DGV) {
 | |
|     if (DGV) {
 | |
|       DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewGV, DGV->getType()));
 | |
|       DGV->eraseFromParent();
 | |
|     }
 | |
|     ValueMap[SGV] = NewGV;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| static void getArrayElements(const Constant *C,
 | |
|                              SmallVectorImpl<Constant *> &Dest) {
 | |
|   unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
 | |
| 
 | |
|   for (unsigned i = 0; i != NumElements; ++i)
 | |
|     Dest.push_back(C->getAggregateElement(i));
 | |
| }
 | |
| 
 | |
| void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo &AVI) {
 | |
|   // Merge the initializer.
 | |
|   SmallVector<Constant *, 16> DstElements;
 | |
|   getArrayElements(AVI.DstInit, DstElements);
 | |
| 
 | |
|   SmallVector<Constant *, 16> SrcElements;
 | |
|   getArrayElements(AVI.SrcInit, SrcElements);
 | |
| 
 | |
|   ArrayType *NewType = cast<ArrayType>(AVI.NewGV->getType()->getElementType());
 | |
| 
 | |
|   StringRef Name = AVI.NewGV->getName();
 | |
|   bool IsNewStructor =
 | |
|       (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") &&
 | |
|       cast<StructType>(NewType->getElementType())->getNumElements() == 3;
 | |
| 
 | |
|   for (auto *V : SrcElements) {
 | |
|     if (IsNewStructor) {
 | |
|       Constant *Key = V->getAggregateElement(2);
 | |
|       if (DoNotLinkFromSource.count(Key))
 | |
|         continue;
 | |
|     }
 | |
|     DstElements.push_back(
 | |
|         MapValue(V, ValueMap, RF_None, &TypeMap, &ValMaterializer));
 | |
|   }
 | |
|   if (IsNewStructor) {
 | |
|     NewType = ArrayType::get(NewType->getElementType(), DstElements.size());
 | |
|     AVI.NewGV->mutateType(PointerType::get(NewType, 0));
 | |
|   }
 | |
| 
 | |
|   AVI.NewGV->setInitializer(ConstantArray::get(NewType, DstElements));
 | |
| }
 | |
| 
 | |
| /// Update the initializers in the Dest module now that all globals that may be
 | |
| /// referenced are in Dest.
 | |
| void ModuleLinker::linkGlobalInit(GlobalVariable &Dst, GlobalVariable &Src) {
 | |
|   // Figure out what the initializer looks like in the dest module.
 | |
|   Dst.setInitializer(MapValue(Src.getInitializer(), ValueMap, RF_None, &TypeMap,
 | |
|                               &ValMaterializer));
 | |
| }
 | |
| 
 | |
| /// Copy the source function over into the dest function and fix up references
 | |
| /// to values. At this point we know that Dest is an external function, and
 | |
| /// that Src is not.
 | |
| bool ModuleLinker::linkFunctionBody(Function &Dst, Function &Src) {
 | |
|   assert(Dst.isDeclaration() && !Src.isDeclaration());
 | |
| 
 | |
|   // Materialize if needed.
 | |
|   if (std::error_code EC = Src.materialize())
 | |
|     return emitError(EC.message());
 | |
| 
 | |
|   // Link in the prefix data.
 | |
|   if (Src.hasPrefixData())
 | |
|     Dst.setPrefixData(MapValue(Src.getPrefixData(), ValueMap, RF_None, &TypeMap,
 | |
|                                &ValMaterializer));
 | |
| 
 | |
|   // Link in the prologue data.
 | |
|   if (Src.hasPrologueData())
 | |
|     Dst.setPrologueData(MapValue(Src.getPrologueData(), ValueMap, RF_None,
 | |
|                                  &TypeMap, &ValMaterializer));
 | |
| 
 | |
|   // Go through and convert function arguments over, remembering the mapping.
 | |
|   Function::arg_iterator DI = Dst.arg_begin();
 | |
|   for (Argument &Arg : Src.args()) {
 | |
|     DI->setName(Arg.getName());  // Copy the name over.
 | |
| 
 | |
|     // Add a mapping to our mapping.
 | |
|     ValueMap[&Arg] = DI;
 | |
|     ++DI;
 | |
|   }
 | |
| 
 | |
|   // Copy over the metadata attachments.
 | |
|   SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
 | |
|   Src.getAllMetadata(MDs);
 | |
|   for (const auto &I : MDs)
 | |
|     Dst.setMetadata(I.first, MapMetadata(I.second, ValueMap, RF_None, &TypeMap,
 | |
|                                          &ValMaterializer));
 | |
| 
 | |
|   // Splice the body of the source function into the dest function.
 | |
|   Dst.getBasicBlockList().splice(Dst.end(), Src.getBasicBlockList());
 | |
| 
 | |
|   // At this point, all of the instructions and values of the function are now
 | |
|   // copied over.  The only problem is that they are still referencing values in
 | |
|   // the Source function as operands.  Loop through all of the operands of the
 | |
|   // functions and patch them up to point to the local versions.
 | |
|   for (BasicBlock &BB : Dst)
 | |
|     for (Instruction &I : BB)
 | |
|       RemapInstruction(&I, ValueMap, RF_IgnoreMissingEntries, &TypeMap,
 | |
|                        &ValMaterializer);
 | |
| 
 | |
|   // There is no need to map the arguments anymore.
 | |
|   for (Argument &Arg : Src.args())
 | |
|     ValueMap.erase(&Arg);
 | |
| 
 | |
|   Src.dematerialize();
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| void ModuleLinker::linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src) {
 | |
|   Constant *Aliasee = Src.getAliasee();
 | |
|   Constant *Val =
 | |
|       MapValue(Aliasee, ValueMap, RF_None, &TypeMap, &ValMaterializer);
 | |
|   Dst.setAliasee(Val);
 | |
| }
 | |
| 
 | |
| bool ModuleLinker::linkGlobalValueBody(GlobalValue &Src) {
 | |
|   Value *Dst = ValueMap[&Src];
 | |
|   assert(Dst);
 | |
|   if (auto *F = dyn_cast<Function>(&Src))
 | |
|     return linkFunctionBody(cast<Function>(*Dst), *F);
 | |
|   if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) {
 | |
|     linkGlobalInit(cast<GlobalVariable>(*Dst), *GVar);
 | |
|     return false;
 | |
|   }
 | |
|   linkAliasBody(cast<GlobalAlias>(*Dst), cast<GlobalAlias>(Src));
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// Insert all of the named MDNodes in Src into the Dest module.
 | |
| void ModuleLinker::linkNamedMDNodes() {
 | |
|   const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
 | |
|   for (Module::const_named_metadata_iterator I = SrcM->named_metadata_begin(),
 | |
|        E = SrcM->named_metadata_end(); I != E; ++I) {
 | |
|     // Don't link module flags here. Do them separately.
 | |
|     if (&*I == SrcModFlags) continue;
 | |
|     NamedMDNode *DestNMD = DstM->getOrInsertNamedMetadata(I->getName());
 | |
|     // Add Src elements into Dest node.
 | |
|     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
 | |
|       DestNMD->addOperand(MapMetadata(I->getOperand(i), ValueMap, RF_None,
 | |
|                                       &TypeMap, &ValMaterializer));
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Drop DISubprograms that have been superseded.
 | |
| ///
 | |
| /// FIXME: this creates an asymmetric result: we strip functions from losing
 | |
| /// subprograms in DstM, but leave losing subprograms in SrcM.
 | |
| /// TODO: Remove this logic once the backend can correctly determine canonical
 | |
| /// subprograms.
 | |
| void ModuleLinker::stripReplacedSubprograms() {
 | |
|   // Avoid quadratic runtime by returning early when there's nothing to do.
 | |
|   if (OverridingFunctions.empty())
 | |
|     return;
 | |
| 
 | |
|   // Move the functions now, so the set gets cleared even on early returns.
 | |
|   auto Functions = std::move(OverridingFunctions);
 | |
|   OverridingFunctions.clear();
 | |
| 
 | |
|   // Drop functions from subprograms if they've been overridden by the new
 | |
|   // compile unit.
 | |
|   NamedMDNode *CompileUnits = DstM->getNamedMetadata("llvm.dbg.cu");
 | |
|   if (!CompileUnits)
 | |
|     return;
 | |
|   for (unsigned I = 0, E = CompileUnits->getNumOperands(); I != E; ++I) {
 | |
|     auto *CU = cast<DICompileUnit>(CompileUnits->getOperand(I));
 | |
|     assert(CU && "Expected valid compile unit");
 | |
| 
 | |
|     for (DISubprogram *SP : CU->getSubprograms()) {
 | |
|       if (!SP || !SP->getFunction() || !Functions.count(SP->getFunction()))
 | |
|         continue;
 | |
| 
 | |
|       // Prevent DebugInfoFinder from tagging this as the canonical subprogram,
 | |
|       // since the canonical one is in the incoming module.
 | |
|       SP->replaceFunction(nullptr);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// Merge the linker flags in Src into the Dest module.
 | |
| bool ModuleLinker::linkModuleFlagsMetadata() {
 | |
|   // If the source module has no module flags, we are done.
 | |
|   const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
 | |
|   if (!SrcModFlags) return false;
 | |
| 
 | |
|   // If the destination module doesn't have module flags yet, then just copy
 | |
|   // over the source module's flags.
 | |
|   NamedMDNode *DstModFlags = DstM->getOrInsertModuleFlagsMetadata();
 | |
|   if (DstModFlags->getNumOperands() == 0) {
 | |
|     for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
 | |
|       DstModFlags->addOperand(SrcModFlags->getOperand(I));
 | |
| 
 | |
|     return false;
 | |
|   }
 | |
| 
 | |
|   // First build a map of the existing module flags and requirements.
 | |
|   DenseMap<MDString *, std::pair<MDNode *, unsigned>> Flags;
 | |
|   SmallSetVector<MDNode*, 16> Requirements;
 | |
|   for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
 | |
|     MDNode *Op = DstModFlags->getOperand(I);
 | |
|     ConstantInt *Behavior = mdconst::extract<ConstantInt>(Op->getOperand(0));
 | |
|     MDString *ID = cast<MDString>(Op->getOperand(1));
 | |
| 
 | |
|     if (Behavior->getZExtValue() == Module::Require) {
 | |
|       Requirements.insert(cast<MDNode>(Op->getOperand(2)));
 | |
|     } else {
 | |
|       Flags[ID] = std::make_pair(Op, I);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Merge in the flags from the source module, and also collect its set of
 | |
|   // requirements.
 | |
|   bool HasErr = false;
 | |
|   for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
 | |
|     MDNode *SrcOp = SrcModFlags->getOperand(I);
 | |
|     ConstantInt *SrcBehavior =
 | |
|         mdconst::extract<ConstantInt>(SrcOp->getOperand(0));
 | |
|     MDString *ID = cast<MDString>(SrcOp->getOperand(1));
 | |
|     MDNode *DstOp;
 | |
|     unsigned DstIndex;
 | |
|     std::tie(DstOp, DstIndex) = Flags.lookup(ID);
 | |
|     unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
 | |
| 
 | |
|     // If this is a requirement, add it and continue.
 | |
|     if (SrcBehaviorValue == Module::Require) {
 | |
|       // If the destination module does not already have this requirement, add
 | |
|       // it.
 | |
|       if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
 | |
|         DstModFlags->addOperand(SrcOp);
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // If there is no existing flag with this ID, just add it.
 | |
|     if (!DstOp) {
 | |
|       Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands());
 | |
|       DstModFlags->addOperand(SrcOp);
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, perform a merge.
 | |
|     ConstantInt *DstBehavior =
 | |
|         mdconst::extract<ConstantInt>(DstOp->getOperand(0));
 | |
|     unsigned DstBehaviorValue = DstBehavior->getZExtValue();
 | |
| 
 | |
|     // If either flag has override behavior, handle it first.
 | |
|     if (DstBehaviorValue == Module::Override) {
 | |
|       // Diagnose inconsistent flags which both have override behavior.
 | |
|       if (SrcBehaviorValue == Module::Override &&
 | |
|           SrcOp->getOperand(2) != DstOp->getOperand(2)) {
 | |
|         HasErr |= emitError("linking module flags '" + ID->getString() +
 | |
|                             "': IDs have conflicting override values");
 | |
|       }
 | |
|       continue;
 | |
|     } else if (SrcBehaviorValue == Module::Override) {
 | |
|       // Update the destination flag to that of the source.
 | |
|       DstModFlags->setOperand(DstIndex, SrcOp);
 | |
|       Flags[ID].first = SrcOp;
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     // Diagnose inconsistent merge behavior types.
 | |
|     if (SrcBehaviorValue != DstBehaviorValue) {
 | |
|       HasErr |= emitError("linking module flags '" + ID->getString() +
 | |
|                           "': IDs have conflicting behaviors");
 | |
|       continue;
 | |
|     }
 | |
| 
 | |
|     auto replaceDstValue = [&](MDNode *New) {
 | |
|       Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New};
 | |
|       MDNode *Flag = MDNode::get(DstM->getContext(), FlagOps);
 | |
|       DstModFlags->setOperand(DstIndex, Flag);
 | |
|       Flags[ID].first = Flag;
 | |
|     };
 | |
| 
 | |
|     // Perform the merge for standard behavior types.
 | |
|     switch (SrcBehaviorValue) {
 | |
|     case Module::Require:
 | |
|     case Module::Override: llvm_unreachable("not possible");
 | |
|     case Module::Error: {
 | |
|       // Emit an error if the values differ.
 | |
|       if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
 | |
|         HasErr |= emitError("linking module flags '" + ID->getString() +
 | |
|                             "': IDs have conflicting values");
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
|     case Module::Warning: {
 | |
|       // Emit a warning if the values differ.
 | |
|       if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
 | |
|         emitWarning("linking module flags '" + ID->getString() +
 | |
|                     "': IDs have conflicting values");
 | |
|       }
 | |
|       continue;
 | |
|     }
 | |
|     case Module::Append: {
 | |
|       MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
 | |
|       MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
 | |
|       SmallVector<Metadata *, 8> MDs;
 | |
|       MDs.reserve(DstValue->getNumOperands() + SrcValue->getNumOperands());
 | |
|       MDs.append(DstValue->op_begin(), DstValue->op_end());
 | |
|       MDs.append(SrcValue->op_begin(), SrcValue->op_end());
 | |
| 
 | |
|       replaceDstValue(MDNode::get(DstM->getContext(), MDs));
 | |
|       break;
 | |
|     }
 | |
|     case Module::AppendUnique: {
 | |
|       SmallSetVector<Metadata *, 16> Elts;
 | |
|       MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
 | |
|       MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
 | |
|       Elts.insert(DstValue->op_begin(), DstValue->op_end());
 | |
|       Elts.insert(SrcValue->op_begin(), SrcValue->op_end());
 | |
| 
 | |
|       replaceDstValue(MDNode::get(DstM->getContext(),
 | |
|                                   makeArrayRef(Elts.begin(), Elts.end())));
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Check all of the requirements.
 | |
|   for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
 | |
|     MDNode *Requirement = Requirements[I];
 | |
|     MDString *Flag = cast<MDString>(Requirement->getOperand(0));
 | |
|     Metadata *ReqValue = Requirement->getOperand(1);
 | |
| 
 | |
|     MDNode *Op = Flags[Flag].first;
 | |
|     if (!Op || Op->getOperand(2) != ReqValue) {
 | |
|       HasErr |= emitError("linking module flags '" + Flag->getString() +
 | |
|                           "': does not have the required value");
 | |
|       continue;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return HasErr;
 | |
| }
 | |
| 
 | |
| // This function returns true if the triples match.
 | |
| static bool triplesMatch(const Triple &T0, const Triple &T1) {
 | |
|   // If vendor is apple, ignore the version number.
 | |
|   if (T0.getVendor() == Triple::Apple)
 | |
|     return T0.getArch() == T1.getArch() &&
 | |
|            T0.getSubArch() == T1.getSubArch() &&
 | |
|            T0.getVendor() == T1.getVendor() &&
 | |
|            T0.getOS() == T1.getOS();
 | |
| 
 | |
|   return T0 == T1;
 | |
| }
 | |
| 
 | |
| // This function returns the merged triple.
 | |
| static std::string mergeTriples(const Triple &SrcTriple, const Triple &DstTriple) {
 | |
|   // If vendor is apple, pick the triple with the larger version number.
 | |
|   if (SrcTriple.getVendor() == Triple::Apple)
 | |
|     if (DstTriple.isOSVersionLT(SrcTriple))
 | |
|       return SrcTriple.str();
 | |
| 
 | |
|   return DstTriple.str();
 | |
| }
 | |
| 
 | |
| bool ModuleLinker::run() {
 | |
|   assert(DstM && "Null destination module");
 | |
|   assert(SrcM && "Null source module");
 | |
| 
 | |
|   // Inherit the target data from the source module if the destination module
 | |
|   // doesn't have one already.
 | |
|   if (DstM->getDataLayout().isDefault())
 | |
|     DstM->setDataLayout(SrcM->getDataLayout());
 | |
| 
 | |
|   if (SrcM->getDataLayout() != DstM->getDataLayout()) {
 | |
|     emitWarning("Linking two modules of different data layouts: '" +
 | |
|                 SrcM->getModuleIdentifier() + "' is '" +
 | |
|                 SrcM->getDataLayoutStr() + "' whereas '" +
 | |
|                 DstM->getModuleIdentifier() + "' is '" +
 | |
|                 DstM->getDataLayoutStr() + "'\n");
 | |
|   }
 | |
| 
 | |
|   // Copy the target triple from the source to dest if the dest's is empty.
 | |
|   if (DstM->getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
 | |
|     DstM->setTargetTriple(SrcM->getTargetTriple());
 | |
| 
 | |
|   Triple SrcTriple(SrcM->getTargetTriple()), DstTriple(DstM->getTargetTriple());
 | |
| 
 | |
|   if (!SrcM->getTargetTriple().empty() && !triplesMatch(SrcTriple, DstTriple))
 | |
|     emitWarning("Linking two modules of different target triples: " +
 | |
|                 SrcM->getModuleIdentifier() + "' is '" +
 | |
|                 SrcM->getTargetTriple() + "' whereas '" +
 | |
|                 DstM->getModuleIdentifier() + "' is '" +
 | |
|                 DstM->getTargetTriple() + "'\n");
 | |
| 
 | |
|   DstM->setTargetTriple(mergeTriples(SrcTriple, DstTriple));
 | |
| 
 | |
|   // Append the module inline asm string.
 | |
|   if (!SrcM->getModuleInlineAsm().empty()) {
 | |
|     if (DstM->getModuleInlineAsm().empty())
 | |
|       DstM->setModuleInlineAsm(SrcM->getModuleInlineAsm());
 | |
|     else
 | |
|       DstM->setModuleInlineAsm(DstM->getModuleInlineAsm()+"\n"+
 | |
|                                SrcM->getModuleInlineAsm());
 | |
|   }
 | |
| 
 | |
|   // Loop over all of the linked values to compute type mappings.
 | |
|   computeTypeMapping();
 | |
| 
 | |
|   ComdatsChosen.clear();
 | |
|   for (const auto &SMEC : SrcM->getComdatSymbolTable()) {
 | |
|     const Comdat &C = SMEC.getValue();
 | |
|     if (ComdatsChosen.count(&C))
 | |
|       continue;
 | |
|     Comdat::SelectionKind SK;
 | |
|     bool LinkFromSrc;
 | |
|     if (getComdatResult(&C, SK, LinkFromSrc))
 | |
|       return true;
 | |
|     ComdatsChosen[&C] = std::make_pair(SK, LinkFromSrc);
 | |
|   }
 | |
| 
 | |
|   // Upgrade mismatched global arrays.
 | |
|   upgradeMismatchedGlobals();
 | |
| 
 | |
|   // Insert all of the globals in src into the DstM module... without linking
 | |
|   // initializers (which could refer to functions not yet mapped over).
 | |
|   for (Module::global_iterator I = SrcM->global_begin(),
 | |
|        E = SrcM->global_end(); I != E; ++I)
 | |
|     if (linkGlobalValueProto(I))
 | |
|       return true;
 | |
| 
 | |
|   // Link the functions together between the two modules, without doing function
 | |
|   // bodies... this just adds external function prototypes to the DstM
 | |
|   // function...  We do this so that when we begin processing function bodies,
 | |
|   // all of the global values that may be referenced are available in our
 | |
|   // ValueMap.
 | |
|   for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I)
 | |
|     if (linkGlobalValueProto(I))
 | |
|       return true;
 | |
| 
 | |
|   // If there were any aliases, link them now.
 | |
|   for (Module::alias_iterator I = SrcM->alias_begin(),
 | |
|        E = SrcM->alias_end(); I != E; ++I)
 | |
|     if (linkGlobalValueProto(I))
 | |
|       return true;
 | |
| 
 | |
|   for (unsigned i = 0, e = AppendingVars.size(); i != e; ++i)
 | |
|     linkAppendingVarInit(AppendingVars[i]);
 | |
| 
 | |
|   for (const auto &Entry : DstM->getComdatSymbolTable()) {
 | |
|     const Comdat &C = Entry.getValue();
 | |
|     if (C.getSelectionKind() == Comdat::Any)
 | |
|       continue;
 | |
|     const GlobalValue *GV = SrcM->getNamedValue(C.getName());
 | |
|     assert(GV);
 | |
|     MapValue(GV, ValueMap, RF_None, &TypeMap, &ValMaterializer);
 | |
|   }
 | |
| 
 | |
|   // Strip replaced subprograms before mapping any metadata -- so that we're
 | |
|   // not changing metadata from the source module (note that
 | |
|   // linkGlobalValueBody() eventually calls RemapInstruction() and therefore
 | |
|   // MapMetadata()) -- but after linking global value protocols -- so that
 | |
|   // OverridingFunctions has been built.
 | |
|   stripReplacedSubprograms();
 | |
| 
 | |
|   // Link in the function bodies that are defined in the source module into
 | |
|   // DstM.
 | |
|   for (Function &SF : *SrcM) {
 | |
|     // Skip if no body (function is external).
 | |
|     if (SF.isDeclaration())
 | |
|       continue;
 | |
| 
 | |
|     // Skip if not linking from source.
 | |
|     if (DoNotLinkFromSource.count(&SF))
 | |
|       continue;
 | |
| 
 | |
|     if (linkGlobalValueBody(SF))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   // Resolve all uses of aliases with aliasees.
 | |
|   for (GlobalAlias &Src : SrcM->aliases()) {
 | |
|     if (DoNotLinkFromSource.count(&Src))
 | |
|       continue;
 | |
|     linkGlobalValueBody(Src);
 | |
|   }
 | |
| 
 | |
|   // Remap all of the named MDNodes in Src into the DstM module. We do this
 | |
|   // after linking GlobalValues so that MDNodes that reference GlobalValues
 | |
|   // are properly remapped.
 | |
|   linkNamedMDNodes();
 | |
| 
 | |
|   // Merge the module flags into the DstM module.
 | |
|   if (linkModuleFlagsMetadata())
 | |
|     return true;
 | |
| 
 | |
|   // Update the initializers in the DstM module now that all globals that may
 | |
|   // be referenced are in DstM.
 | |
|   for (GlobalVariable &Src : SrcM->globals()) {
 | |
|     // Only process initialized GV's or ones not already in dest.
 | |
|     if (!Src.hasInitializer() || DoNotLinkFromSource.count(&Src))
 | |
|       continue;
 | |
|     linkGlobalValueBody(Src);
 | |
|   }
 | |
| 
 | |
|   // Process vector of lazily linked in functions.
 | |
|   while (!LazilyLinkGlobalValues.empty()) {
 | |
|     GlobalValue *SGV = LazilyLinkGlobalValues.back();
 | |
|     LazilyLinkGlobalValues.pop_back();
 | |
| 
 | |
|     assert(!SGV->isDeclaration() && "users should not pass down decls");
 | |
|     if (linkGlobalValueBody(*SGV))
 | |
|       return true;
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| Linker::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P)
 | |
|     : ETypes(E), IsPacked(P) {}
 | |
| 
 | |
| Linker::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST)
 | |
|     : ETypes(ST->elements()), IsPacked(ST->isPacked()) {}
 | |
| 
 | |
| bool Linker::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const {
 | |
|   if (IsPacked != That.IsPacked)
 | |
|     return false;
 | |
|   if (ETypes != That.ETypes)
 | |
|     return false;
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| bool Linker::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const {
 | |
|   return !this->operator==(That);
 | |
| }
 | |
| 
 | |
| StructType *Linker::StructTypeKeyInfo::getEmptyKey() {
 | |
|   return DenseMapInfo<StructType *>::getEmptyKey();
 | |
| }
 | |
| 
 | |
| StructType *Linker::StructTypeKeyInfo::getTombstoneKey() {
 | |
|   return DenseMapInfo<StructType *>::getTombstoneKey();
 | |
| }
 | |
| 
 | |
| unsigned Linker::StructTypeKeyInfo::getHashValue(const KeyTy &Key) {
 | |
|   return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()),
 | |
|                       Key.IsPacked);
 | |
| }
 | |
| 
 | |
| unsigned Linker::StructTypeKeyInfo::getHashValue(const StructType *ST) {
 | |
|   return getHashValue(KeyTy(ST));
 | |
| }
 | |
| 
 | |
| bool Linker::StructTypeKeyInfo::isEqual(const KeyTy &LHS,
 | |
|                                         const StructType *RHS) {
 | |
|   if (RHS == getEmptyKey() || RHS == getTombstoneKey())
 | |
|     return false;
 | |
|   return LHS == KeyTy(RHS);
 | |
| }
 | |
| 
 | |
| bool Linker::StructTypeKeyInfo::isEqual(const StructType *LHS,
 | |
|                                         const StructType *RHS) {
 | |
|   if (RHS == getEmptyKey())
 | |
|     return LHS == getEmptyKey();
 | |
| 
 | |
|   if (RHS == getTombstoneKey())
 | |
|     return LHS == getTombstoneKey();
 | |
| 
 | |
|   return KeyTy(LHS) == KeyTy(RHS);
 | |
| }
 | |
| 
 | |
| void Linker::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) {
 | |
|   assert(!Ty->isOpaque());
 | |
|   NonOpaqueStructTypes.insert(Ty);
 | |
| }
 | |
| 
 | |
| void Linker::IdentifiedStructTypeSet::switchToNonOpaque(StructType *Ty) {
 | |
|   assert(!Ty->isOpaque());
 | |
|   NonOpaqueStructTypes.insert(Ty);
 | |
|   bool Removed = OpaqueStructTypes.erase(Ty);
 | |
|   (void)Removed;
 | |
|   assert(Removed);
 | |
| }
 | |
| 
 | |
| void Linker::IdentifiedStructTypeSet::addOpaque(StructType *Ty) {
 | |
|   assert(Ty->isOpaque());
 | |
|   OpaqueStructTypes.insert(Ty);
 | |
| }
 | |
| 
 | |
| StructType *
 | |
| Linker::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes,
 | |
|                                                bool IsPacked) {
 | |
|   Linker::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked);
 | |
|   auto I = NonOpaqueStructTypes.find_as(Key);
 | |
|   if (I == NonOpaqueStructTypes.end())
 | |
|     return nullptr;
 | |
|   return *I;
 | |
| }
 | |
| 
 | |
| bool Linker::IdentifiedStructTypeSet::hasType(StructType *Ty) {
 | |
|   if (Ty->isOpaque())
 | |
|     return OpaqueStructTypes.count(Ty);
 | |
|   auto I = NonOpaqueStructTypes.find(Ty);
 | |
|   if (I == NonOpaqueStructTypes.end())
 | |
|     return false;
 | |
|   return *I == Ty;
 | |
| }
 | |
| 
 | |
| void Linker::init(Module *M, DiagnosticHandlerFunction DiagnosticHandler) {
 | |
|   this->Composite = M;
 | |
|   this->DiagnosticHandler = DiagnosticHandler;
 | |
| 
 | |
|   TypeFinder StructTypes;
 | |
|   StructTypes.run(*M, true);
 | |
|   for (StructType *Ty : StructTypes) {
 | |
|     if (Ty->isOpaque())
 | |
|       IdentifiedStructTypes.addOpaque(Ty);
 | |
|     else
 | |
|       IdentifiedStructTypes.addNonOpaque(Ty);
 | |
|   }
 | |
| }
 | |
| 
 | |
| Linker::Linker(Module *M, DiagnosticHandlerFunction DiagnosticHandler) {
 | |
|   init(M, DiagnosticHandler);
 | |
| }
 | |
| 
 | |
| Linker::Linker(Module *M) {
 | |
|   init(M, [this](const DiagnosticInfo &DI) {
 | |
|     Composite->getContext().diagnose(DI);
 | |
|   });
 | |
| }
 | |
| 
 | |
| Linker::~Linker() {
 | |
| }
 | |
| 
 | |
| void Linker::deleteModule() {
 | |
|   delete Composite;
 | |
|   Composite = nullptr;
 | |
| }
 | |
| 
 | |
| bool Linker::linkInModule(Module *Src, bool OverrideSymbols) {
 | |
|   ModuleLinker TheLinker(Composite, IdentifiedStructTypes, Src,
 | |
|                          DiagnosticHandler, OverrideSymbols);
 | |
|   bool RetCode = TheLinker.run();
 | |
|   Composite->dropTriviallyDeadConstantArrays();
 | |
|   return RetCode;
 | |
| }
 | |
| 
 | |
| void Linker::setModule(Module *Dst) {
 | |
|   init(Dst, DiagnosticHandler);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // LinkModules entrypoint.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| /// This function links two modules together, with the resulting Dest module
 | |
| /// modified to be the composite of the two input modules. If an error occurs,
 | |
| /// true is returned and ErrorMsg (if not null) is set to indicate the problem.
 | |
| /// Upon failure, the Dest module could be in a modified state, and shouldn't be
 | |
| /// relied on to be consistent.
 | |
| bool Linker::LinkModules(Module *Dest, Module *Src,
 | |
|                          DiagnosticHandlerFunction DiagnosticHandler) {
 | |
|   Linker L(Dest, DiagnosticHandler);
 | |
|   return L.linkInModule(Src);
 | |
| }
 | |
| 
 | |
| bool Linker::LinkModules(Module *Dest, Module *Src) {
 | |
|   Linker L(Dest);
 | |
|   return L.linkInModule(Src);
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // C API.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| LLVMBool LLVMLinkModules(LLVMModuleRef Dest, LLVMModuleRef Src,
 | |
|                          LLVMLinkerMode Unused, char **OutMessages) {
 | |
|   Module *D = unwrap(Dest);
 | |
|   std::string Message;
 | |
|   raw_string_ostream Stream(Message);
 | |
|   DiagnosticPrinterRawOStream DP(Stream);
 | |
| 
 | |
|   LLVMBool Result = Linker::LinkModules(
 | |
|       D, unwrap(Src), [&](const DiagnosticInfo &DI) { DI.print(DP); });
 | |
| 
 | |
|   if (OutMessages && Result)
 | |
|     *OutMessages = strdup(Message.c_str());
 | |
|   return Result;
 | |
| }
 |