mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	wasn't an optimization and it was causing lots of bugs. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@4779 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1740 lines
		
	
	
		
			60 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			1740 lines
		
	
	
		
			60 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
//===-- llvmAsmParser.y - Parser for llvm assembly files ---------*- C++ -*--=//
 | 
						|
//
 | 
						|
//  This file implements the bison parser for LLVM assembly languages files.
 | 
						|
//
 | 
						|
//===------------------------------------------------------------------------=//
 | 
						|
 | 
						|
%{
 | 
						|
#include "ParserInternals.h"
 | 
						|
#include "llvm/SymbolTable.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/iTerminators.h"
 | 
						|
#include "llvm/iMemory.h"
 | 
						|
#include "llvm/iOperators.h"
 | 
						|
#include "llvm/iPHINode.h"
 | 
						|
#include "Support/STLExtras.h"
 | 
						|
#include "Support/DepthFirstIterator.h"
 | 
						|
#include <list>
 | 
						|
#include <utility>
 | 
						|
#include <algorithm>
 | 
						|
using std::list;
 | 
						|
using std::vector;
 | 
						|
using std::pair;
 | 
						|
using std::map;
 | 
						|
using std::pair;
 | 
						|
using std::make_pair;
 | 
						|
using std::string;
 | 
						|
 | 
						|
int yyerror(const char *ErrorMsg); // Forward declarations to prevent "implicit
 | 
						|
int yylex();                       // declaration" of xxx warnings.
 | 
						|
int yyparse();
 | 
						|
 | 
						|
static Module *ParserResult;
 | 
						|
string CurFilename;
 | 
						|
 | 
						|
// DEBUG_UPREFS - Define this symbol if you want to enable debugging output
 | 
						|
// relating to upreferences in the input stream.
 | 
						|
//
 | 
						|
//#define DEBUG_UPREFS 1
 | 
						|
#ifdef DEBUG_UPREFS
 | 
						|
#define UR_OUT(X) std::cerr << X
 | 
						|
#else
 | 
						|
#define UR_OUT(X)
 | 
						|
#endif
 | 
						|
 | 
						|
#define YYERROR_VERBOSE 1
 | 
						|
 | 
						|
// HACK ALERT: This variable is used to implement the automatic conversion of
 | 
						|
// load/store instructions with indexes into a load/store + getelementptr pair
 | 
						|
// of instructions.  When this compatiblity "Feature" is removed, this should be
 | 
						|
// too.
 | 
						|
//
 | 
						|
static BasicBlock *CurBB;
 | 
						|
 | 
						|
 | 
						|
// This contains info used when building the body of a function.  It is
 | 
						|
// destroyed when the function is completed.
 | 
						|
//
 | 
						|
typedef vector<Value *> ValueList;           // Numbered defs
 | 
						|
static void ResolveDefinitions(vector<ValueList> &LateResolvers,
 | 
						|
                               vector<ValueList> *FutureLateResolvers = 0);
 | 
						|
 | 
						|
static struct PerModuleInfo {
 | 
						|
  Module *CurrentModule;
 | 
						|
  vector<ValueList>    Values;     // Module level numbered definitions
 | 
						|
  vector<ValueList>    LateResolveValues;
 | 
						|
  vector<PATypeHolder> Types;
 | 
						|
  map<ValID, PATypeHolder> LateResolveTypes;
 | 
						|
 | 
						|
  // GlobalRefs - This maintains a mapping between <Type, ValID>'s and forward
 | 
						|
  // references to global values.  Global values may be referenced before they
 | 
						|
  // are defined, and if so, the temporary object that they represent is held
 | 
						|
  // here.  This is used for forward references of ConstantPointerRefs.
 | 
						|
  //
 | 
						|
  typedef map<pair<const PointerType *, ValID>, GlobalVariable*> GlobalRefsType;
 | 
						|
  GlobalRefsType GlobalRefs;
 | 
						|
 | 
						|
  void ModuleDone() {
 | 
						|
    // If we could not resolve some functions at function compilation time
 | 
						|
    // (calls to functions before they are defined), resolve them now...  Types
 | 
						|
    // are resolved when the constant pool has been completely parsed.
 | 
						|
    //
 | 
						|
    ResolveDefinitions(LateResolveValues);
 | 
						|
 | 
						|
    // Check to make sure that all global value forward references have been
 | 
						|
    // resolved!
 | 
						|
    //
 | 
						|
    if (!GlobalRefs.empty()) {
 | 
						|
      string UndefinedReferences = "Unresolved global references exist:\n";
 | 
						|
      
 | 
						|
      for (GlobalRefsType::iterator I = GlobalRefs.begin(), E =GlobalRefs.end();
 | 
						|
           I != E; ++I) {
 | 
						|
        UndefinedReferences += "  " + I->first.first->getDescription() + " " +
 | 
						|
                               I->first.second.getName() + "\n";
 | 
						|
      }
 | 
						|
      ThrowException(UndefinedReferences);
 | 
						|
    }
 | 
						|
 | 
						|
    Values.clear();         // Clear out function local definitions
 | 
						|
    Types.clear();
 | 
						|
    CurrentModule = 0;
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  // DeclareNewGlobalValue - Called every time a new GV has been defined.  This
 | 
						|
  // is used to remove things from the forward declaration map, resolving them
 | 
						|
  // to the correct thing as needed.
 | 
						|
  //
 | 
						|
  void DeclareNewGlobalValue(GlobalValue *GV, ValID D) {
 | 
						|
    // Check to see if there is a forward reference to this global variable...
 | 
						|
    // if there is, eliminate it and patch the reference to use the new def'n.
 | 
						|
    GlobalRefsType::iterator I = GlobalRefs.find(make_pair(GV->getType(), D));
 | 
						|
 | 
						|
    if (I != GlobalRefs.end()) {
 | 
						|
      GlobalVariable *OldGV = I->second;   // Get the placeholder...
 | 
						|
      I->first.second.destroy();  // Free string memory if neccesary
 | 
						|
      
 | 
						|
      // Loop over all of the uses of the GlobalValue.  The only thing they are
 | 
						|
      // allowed to be is ConstantPointerRef's.
 | 
						|
      assert(OldGV->use_size() == 1 && "Only one reference should exist!");
 | 
						|
      User *U = OldGV->use_back();  // Must be a ConstantPointerRef...
 | 
						|
      ConstantPointerRef *CPR = cast<ConstantPointerRef>(U);
 | 
						|
        
 | 
						|
      // Change the const pool reference to point to the real global variable
 | 
						|
      // now.  This should drop a use from the OldGV.
 | 
						|
      CPR->mutateReferences(OldGV, GV);
 | 
						|
      assert(OldGV->use_empty() && "All uses should be gone now!");
 | 
						|
      
 | 
						|
      // Remove OldGV from the module...
 | 
						|
      CurrentModule->getGlobalList().remove(OldGV);
 | 
						|
      delete OldGV;                        // Delete the old placeholder
 | 
						|
      
 | 
						|
      // Remove the map entry for the global now that it has been created...
 | 
						|
      GlobalRefs.erase(I);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
} CurModule;
 | 
						|
 | 
						|
static struct PerFunctionInfo {
 | 
						|
  Function *CurrentFunction;     // Pointer to current function being created
 | 
						|
 | 
						|
  vector<ValueList> Values;      // Keep track of numbered definitions
 | 
						|
  vector<ValueList> LateResolveValues;
 | 
						|
  vector<PATypeHolder> Types;
 | 
						|
  map<ValID, PATypeHolder> LateResolveTypes;
 | 
						|
  bool isDeclare;                // Is this function a forward declararation?
 | 
						|
 | 
						|
  inline PerFunctionInfo() {
 | 
						|
    CurrentFunction = 0;
 | 
						|
    isDeclare = false;
 | 
						|
  }
 | 
						|
 | 
						|
  inline ~PerFunctionInfo() {}
 | 
						|
 | 
						|
  inline void FunctionStart(Function *M) {
 | 
						|
    CurrentFunction = M;
 | 
						|
  }
 | 
						|
 | 
						|
  void FunctionDone() {
 | 
						|
    // If we could not resolve some blocks at parsing time (forward branches)
 | 
						|
    // resolve the branches now...
 | 
						|
    ResolveDefinitions(LateResolveValues, &CurModule.LateResolveValues);
 | 
						|
 | 
						|
    Values.clear();         // Clear out function local definitions
 | 
						|
    Types.clear();
 | 
						|
    CurrentFunction = 0;
 | 
						|
    isDeclare = false;
 | 
						|
  }
 | 
						|
} CurMeth;  // Info for the current function...
 | 
						|
 | 
						|
static bool inFunctionScope() { return CurMeth.CurrentFunction != 0; }
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//               Code to handle definitions of all the types
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
static int InsertValue(Value *D, vector<ValueList> &ValueTab = CurMeth.Values) {
 | 
						|
  if (D->hasName()) return -1;           // Is this a numbered definition?
 | 
						|
 | 
						|
  // Yes, insert the value into the value table...
 | 
						|
  unsigned type = D->getType()->getUniqueID();
 | 
						|
  if (ValueTab.size() <= type)
 | 
						|
    ValueTab.resize(type+1, ValueList());
 | 
						|
  //printf("Values[%d][%d] = %d\n", type, ValueTab[type].size(), D);
 | 
						|
  ValueTab[type].push_back(D);
 | 
						|
  return ValueTab[type].size()-1;
 | 
						|
}
 | 
						|
 | 
						|
// TODO: FIXME when Type are not const
 | 
						|
static void InsertType(const Type *Ty, vector<PATypeHolder> &Types) {
 | 
						|
  Types.push_back(Ty);
 | 
						|
}
 | 
						|
 | 
						|
static const Type *getTypeVal(const ValID &D, bool DoNotImprovise = false) {
 | 
						|
  switch (D.Type) {
 | 
						|
  case ValID::NumberVal: {                 // Is it a numbered definition?
 | 
						|
    unsigned Num = (unsigned)D.Num;
 | 
						|
 | 
						|
    // Module constants occupy the lowest numbered slots...
 | 
						|
    if (Num < CurModule.Types.size()) 
 | 
						|
      return CurModule.Types[Num];
 | 
						|
 | 
						|
    Num -= CurModule.Types.size();
 | 
						|
 | 
						|
    // Check that the number is within bounds...
 | 
						|
    if (Num <= CurMeth.Types.size())
 | 
						|
      return CurMeth.Types[Num];
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case ValID::NameVal: {                // Is it a named definition?
 | 
						|
    string Name(D.Name);
 | 
						|
    SymbolTable *SymTab = 0;
 | 
						|
    Value *N = 0;
 | 
						|
    if (inFunctionScope()) {
 | 
						|
      SymTab = &CurMeth.CurrentFunction->getSymbolTable();
 | 
						|
      N = SymTab->lookup(Type::TypeTy, Name);
 | 
						|
    }
 | 
						|
 | 
						|
    if (N == 0) {
 | 
						|
      // Symbol table doesn't automatically chain yet... because the function
 | 
						|
      // hasn't been added to the module...
 | 
						|
      //
 | 
						|
      SymTab = &CurModule.CurrentModule->getSymbolTable();
 | 
						|
      N = SymTab->lookup(Type::TypeTy, Name);
 | 
						|
      if (N == 0) break;
 | 
						|
    }
 | 
						|
 | 
						|
    D.destroy();  // Free old strdup'd memory...
 | 
						|
    return cast<const Type>(N);
 | 
						|
  }
 | 
						|
  default:
 | 
						|
    ThrowException("Internal parser error: Invalid symbol type reference!");
 | 
						|
  }
 | 
						|
 | 
						|
  // If we reached here, we referenced either a symbol that we don't know about
 | 
						|
  // or an id number that hasn't been read yet.  We may be referencing something
 | 
						|
  // forward, so just create an entry to be resolved later and get to it...
 | 
						|
  //
 | 
						|
  if (DoNotImprovise) return 0;  // Do we just want a null to be returned?
 | 
						|
 | 
						|
  map<ValID, PATypeHolder> &LateResolver = inFunctionScope() ? 
 | 
						|
    CurMeth.LateResolveTypes : CurModule.LateResolveTypes;
 | 
						|
  
 | 
						|
  map<ValID, PATypeHolder>::iterator I = LateResolver.find(D);
 | 
						|
  if (I != LateResolver.end()) {
 | 
						|
    return I->second;
 | 
						|
  }
 | 
						|
 | 
						|
  Type *Typ = OpaqueType::get();
 | 
						|
  LateResolver.insert(make_pair(D, Typ));
 | 
						|
  return Typ;
 | 
						|
}
 | 
						|
 | 
						|
static Value *lookupInSymbolTable(const Type *Ty, const string &Name) {
 | 
						|
  SymbolTable &SymTab = 
 | 
						|
    inFunctionScope() ? CurMeth.CurrentFunction->getSymbolTable() :
 | 
						|
                        CurModule.CurrentModule->getSymbolTable();
 | 
						|
  return SymTab.lookup(Ty, Name);
 | 
						|
}
 | 
						|
 | 
						|
// getValNonImprovising - Look up the value specified by the provided type and
 | 
						|
// the provided ValID.  If the value exists and has already been defined, return
 | 
						|
// it.  Otherwise return null.
 | 
						|
//
 | 
						|
static Value *getValNonImprovising(const Type *Ty, const ValID &D) {
 | 
						|
  if (isa<FunctionType>(Ty))
 | 
						|
    ThrowException("Functions are not values and "
 | 
						|
                   "must be referenced as pointers");
 | 
						|
 | 
						|
  switch (D.Type) {
 | 
						|
  case ValID::NumberVal: {                 // Is it a numbered definition?
 | 
						|
    unsigned type = Ty->getUniqueID();
 | 
						|
    unsigned Num = (unsigned)D.Num;
 | 
						|
 | 
						|
    // Module constants occupy the lowest numbered slots...
 | 
						|
    if (type < CurModule.Values.size()) {
 | 
						|
      if (Num < CurModule.Values[type].size()) 
 | 
						|
        return CurModule.Values[type][Num];
 | 
						|
 | 
						|
      Num -= CurModule.Values[type].size();
 | 
						|
    }
 | 
						|
 | 
						|
    // Make sure that our type is within bounds
 | 
						|
    if (CurMeth.Values.size() <= type) return 0;
 | 
						|
 | 
						|
    // Check that the number is within bounds...
 | 
						|
    if (CurMeth.Values[type].size() <= Num) return 0;
 | 
						|
  
 | 
						|
    return CurMeth.Values[type][Num];
 | 
						|
  }
 | 
						|
 | 
						|
  case ValID::NameVal: {                // Is it a named definition?
 | 
						|
    Value *N = lookupInSymbolTable(Ty, string(D.Name));
 | 
						|
    if (N == 0) return 0;
 | 
						|
 | 
						|
    D.destroy();  // Free old strdup'd memory...
 | 
						|
    return N;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check to make sure that "Ty" is an integral type, and that our 
 | 
						|
  // value will fit into the specified type...
 | 
						|
  case ValID::ConstSIntVal:    // Is it a constant pool reference??
 | 
						|
    if (!ConstantSInt::isValueValidForType(Ty, D.ConstPool64))
 | 
						|
      ThrowException("Signed integral constant '" +
 | 
						|
                     itostr(D.ConstPool64) + "' is invalid for type '" + 
 | 
						|
                     Ty->getDescription() + "'!");
 | 
						|
    return ConstantSInt::get(Ty, D.ConstPool64);
 | 
						|
 | 
						|
  case ValID::ConstUIntVal:     // Is it an unsigned const pool reference?
 | 
						|
    if (!ConstantUInt::isValueValidForType(Ty, D.UConstPool64)) {
 | 
						|
      if (!ConstantSInt::isValueValidForType(Ty, D.ConstPool64)) {
 | 
						|
	ThrowException("Integral constant '" + utostr(D.UConstPool64) +
 | 
						|
                       "' is invalid or out of range!");
 | 
						|
      } else {     // This is really a signed reference.  Transmogrify.
 | 
						|
	return ConstantSInt::get(Ty, D.ConstPool64);
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      return ConstantUInt::get(Ty, D.UConstPool64);
 | 
						|
    }
 | 
						|
 | 
						|
  case ValID::ConstFPVal:        // Is it a floating point const pool reference?
 | 
						|
    if (!ConstantFP::isValueValidForType(Ty, D.ConstPoolFP))
 | 
						|
      ThrowException("FP constant invalid for type!!");
 | 
						|
    return ConstantFP::get(Ty, D.ConstPoolFP);
 | 
						|
    
 | 
						|
  case ValID::ConstNullVal:      // Is it a null value?
 | 
						|
    if (!isa<PointerType>(Ty))
 | 
						|
      ThrowException("Cannot create a a non pointer null!");
 | 
						|
    return ConstantPointerNull::get(cast<PointerType>(Ty));
 | 
						|
    
 | 
						|
  case ValID::ConstantVal:       // Fully resolved constant?
 | 
						|
    if (D.ConstantValue->getType() != Ty)
 | 
						|
      ThrowException("Constant expression type different from required type!");
 | 
						|
    return D.ConstantValue;
 | 
						|
 | 
						|
  default:
 | 
						|
    assert(0 && "Unhandled case!");
 | 
						|
    return 0;
 | 
						|
  }   // End of switch
 | 
						|
 | 
						|
  assert(0 && "Unhandled case!");
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// getVal - This function is identical to getValNonImprovising, except that if a
 | 
						|
// value is not already defined, it "improvises" by creating a placeholder var
 | 
						|
// that looks and acts just like the requested variable.  When the value is
 | 
						|
// defined later, all uses of the placeholder variable are replaced with the
 | 
						|
// real thing.
 | 
						|
//
 | 
						|
static Value *getVal(const Type *Ty, const ValID &D) {
 | 
						|
  assert(Ty != Type::TypeTy && "Should use getTypeVal for types!");
 | 
						|
 | 
						|
  // See if the value has already been defined...
 | 
						|
  Value *V = getValNonImprovising(Ty, D);
 | 
						|
  if (V) return V;
 | 
						|
 | 
						|
  // If we reached here, we referenced either a symbol that we don't know about
 | 
						|
  // or an id number that hasn't been read yet.  We may be referencing something
 | 
						|
  // forward, so just create an entry to be resolved later and get to it...
 | 
						|
  //
 | 
						|
  Value *d = 0;
 | 
						|
  switch (Ty->getPrimitiveID()) {
 | 
						|
  case Type::LabelTyID:  d = new   BBPlaceHolder(Ty, D); break;
 | 
						|
  default:               d = new ValuePlaceHolder(Ty, D); break;
 | 
						|
  }
 | 
						|
 | 
						|
  assert(d != 0 && "How did we not make something?");
 | 
						|
  if (inFunctionScope())
 | 
						|
    InsertValue(d, CurMeth.LateResolveValues);
 | 
						|
  else 
 | 
						|
    InsertValue(d, CurModule.LateResolveValues);
 | 
						|
  return d;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//              Code to handle forward references in instructions
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This code handles the late binding needed with statements that reference
 | 
						|
// values not defined yet... for example, a forward branch, or the PHI node for
 | 
						|
// a loop body.
 | 
						|
//
 | 
						|
// This keeps a table (CurMeth.LateResolveValues) of all such forward references
 | 
						|
// and back patchs after we are done.
 | 
						|
//
 | 
						|
 | 
						|
// ResolveDefinitions - If we could not resolve some defs at parsing 
 | 
						|
// time (forward branches, phi functions for loops, etc...) resolve the 
 | 
						|
// defs now...
 | 
						|
//
 | 
						|
static void ResolveDefinitions(vector<ValueList> &LateResolvers,
 | 
						|
                               vector<ValueList> *FutureLateResolvers) {
 | 
						|
  // Loop over LateResolveDefs fixing up stuff that couldn't be resolved
 | 
						|
  for (unsigned ty = 0; ty < LateResolvers.size(); ty++) {
 | 
						|
    while (!LateResolvers[ty].empty()) {
 | 
						|
      Value *V = LateResolvers[ty].back();
 | 
						|
      assert(!isa<Type>(V) && "Types should be in LateResolveTypes!");
 | 
						|
 | 
						|
      LateResolvers[ty].pop_back();
 | 
						|
      ValID &DID = getValIDFromPlaceHolder(V);
 | 
						|
 | 
						|
      Value *TheRealValue = getValNonImprovising(Type::getUniqueIDType(ty),DID);
 | 
						|
      if (TheRealValue) {
 | 
						|
        V->replaceAllUsesWith(TheRealValue);
 | 
						|
        delete V;
 | 
						|
      } else if (FutureLateResolvers) {
 | 
						|
        // Functions have their unresolved items forwarded to the module late
 | 
						|
        // resolver table
 | 
						|
        InsertValue(V, *FutureLateResolvers);
 | 
						|
      } else {
 | 
						|
	if (DID.Type == ValID::NameVal)
 | 
						|
	  ThrowException("Reference to an invalid definition: '" +DID.getName()+
 | 
						|
			 "' of type '" + V->getType()->getDescription() + "'",
 | 
						|
			 getLineNumFromPlaceHolder(V));
 | 
						|
	else
 | 
						|
	  ThrowException("Reference to an invalid definition: #" +
 | 
						|
			 itostr(DID.Num) + " of type '" + 
 | 
						|
			 V->getType()->getDescription() + "'",
 | 
						|
			 getLineNumFromPlaceHolder(V));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  LateResolvers.clear();
 | 
						|
}
 | 
						|
 | 
						|
// ResolveTypeTo - A brand new type was just declared.  This means that (if
 | 
						|
// name is not null) things referencing Name can be resolved.  Otherwise, things
 | 
						|
// refering to the number can be resolved.  Do this now.
 | 
						|
//
 | 
						|
static void ResolveTypeTo(char *Name, const Type *ToTy) {
 | 
						|
  vector<PATypeHolder> &Types = inFunctionScope() ? 
 | 
						|
     CurMeth.Types : CurModule.Types;
 | 
						|
 | 
						|
   ValID D;
 | 
						|
   if (Name) D = ValID::create(Name);
 | 
						|
   else      D = ValID::create((int)Types.size());
 | 
						|
 | 
						|
   map<ValID, PATypeHolder> &LateResolver = inFunctionScope() ? 
 | 
						|
     CurMeth.LateResolveTypes : CurModule.LateResolveTypes;
 | 
						|
  
 | 
						|
   map<ValID, PATypeHolder>::iterator I = LateResolver.find(D);
 | 
						|
   if (I != LateResolver.end()) {
 | 
						|
     ((DerivedType*)I->second.get())->refineAbstractTypeTo(ToTy);
 | 
						|
     LateResolver.erase(I);
 | 
						|
   }
 | 
						|
}
 | 
						|
 | 
						|
// ResolveTypes - At this point, all types should be resolved.  Any that aren't
 | 
						|
// are errors.
 | 
						|
//
 | 
						|
static void ResolveTypes(map<ValID, PATypeHolder> &LateResolveTypes) {
 | 
						|
  if (!LateResolveTypes.empty()) {
 | 
						|
    const ValID &DID = LateResolveTypes.begin()->first;
 | 
						|
 | 
						|
    if (DID.Type == ValID::NameVal)
 | 
						|
      ThrowException("Reference to an invalid type: '" +DID.getName() + "'");
 | 
						|
    else
 | 
						|
      ThrowException("Reference to an invalid type: #" + itostr(DID.Num));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// setValueName - Set the specified value to the name given.  The name may be
 | 
						|
// null potentially, in which case this is a noop.  The string passed in is
 | 
						|
// assumed to be a malloc'd string buffer, and is freed by this function.
 | 
						|
//
 | 
						|
// This function returns true if the value has already been defined, but is
 | 
						|
// allowed to be redefined in the specified context.  If the name is a new name
 | 
						|
// for the typeplane, false is returned.
 | 
						|
//
 | 
						|
static bool setValueName(Value *V, char *NameStr) {
 | 
						|
  if (NameStr == 0) return false;
 | 
						|
  
 | 
						|
  string Name(NameStr);           // Copy string
 | 
						|
  free(NameStr);                  // Free old string
 | 
						|
 | 
						|
  if (V->getType() == Type::VoidTy) 
 | 
						|
    ThrowException("Can't assign name '" + Name + 
 | 
						|
		   "' to a null valued instruction!");
 | 
						|
 | 
						|
  SymbolTable &ST = inFunctionScope() ? 
 | 
						|
    CurMeth.CurrentFunction->getSymbolTable() : 
 | 
						|
    CurModule.CurrentModule->getSymbolTable();
 | 
						|
 | 
						|
  Value *Existing = ST.lookup(V->getType(), Name);
 | 
						|
  if (Existing) {    // Inserting a name that is already defined???
 | 
						|
    // There is only one case where this is allowed: when we are refining an
 | 
						|
    // opaque type.  In this case, Existing will be an opaque type.
 | 
						|
    if (const Type *Ty = dyn_cast<const Type>(Existing)) {
 | 
						|
      if (const OpaqueType *OpTy = dyn_cast<OpaqueType>(Ty)) {
 | 
						|
	// We ARE replacing an opaque type!
 | 
						|
	((OpaqueType*)OpTy)->refineAbstractTypeTo(cast<Type>(V));
 | 
						|
	return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, we are a simple redefinition of a value, check to see if it
 | 
						|
    // is defined the same as the old one...
 | 
						|
    if (const Type *Ty = dyn_cast<const Type>(Existing)) {
 | 
						|
      if (Ty == cast<const Type>(V)) return true;  // Yes, it's equal.
 | 
						|
      // std::cerr << "Type: " << Ty->getDescription() << " != "
 | 
						|
      //      << cast<const Type>(V)->getDescription() << "!\n";
 | 
						|
    } else if (GlobalVariable *EGV = dyn_cast<GlobalVariable>(Existing)) {
 | 
						|
      // We are allowed to redefine a global variable in two circumstances:
 | 
						|
      // 1. If at least one of the globals is uninitialized or 
 | 
						|
      // 2. If both initializers have the same value.
 | 
						|
      //
 | 
						|
      // This can only be done if the const'ness of the vars is the same.
 | 
						|
      //
 | 
						|
      if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
 | 
						|
        if (EGV->isConstant() == GV->isConstant() &&
 | 
						|
            (!EGV->hasInitializer() || !GV->hasInitializer() ||
 | 
						|
             EGV->getInitializer() == GV->getInitializer())) {
 | 
						|
 | 
						|
          // Make sure the existing global version gets the initializer!
 | 
						|
          if (GV->hasInitializer() && !EGV->hasInitializer())
 | 
						|
            EGV->setInitializer(GV->getInitializer());
 | 
						|
          
 | 
						|
	  delete GV;     // Destroy the duplicate!
 | 
						|
          return true;   // They are equivalent!
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    ThrowException("Redefinition of value named '" + Name + "' in the '" +
 | 
						|
		   V->getType()->getDescription() + "' type plane!");
 | 
						|
  }
 | 
						|
 | 
						|
  V->setName(Name, &ST);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Code for handling upreferences in type names...
 | 
						|
//
 | 
						|
 | 
						|
// TypeContains - Returns true if Ty contains E in it.
 | 
						|
//
 | 
						|
static bool TypeContains(const Type *Ty, const Type *E) {
 | 
						|
  return find(df_begin(Ty), df_end(Ty), E) != df_end(Ty);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static vector<pair<unsigned, OpaqueType *> > UpRefs;
 | 
						|
 | 
						|
static PATypeHolder HandleUpRefs(const Type *ty) {
 | 
						|
  PATypeHolder Ty(ty);
 | 
						|
  UR_OUT("Type '" << ty->getDescription() << 
 | 
						|
         "' newly formed.  Resolving upreferences.\n" <<
 | 
						|
         UpRefs.size() << " upreferences active!\n");
 | 
						|
  for (unsigned i = 0; i < UpRefs.size(); ) {
 | 
						|
    UR_OUT("  UR#" << i << " - TypeContains(" << Ty->getDescription() << ", " 
 | 
						|
	   << UpRefs[i].second->getDescription() << ") = " 
 | 
						|
	   << (TypeContains(Ty, UpRefs[i].second) ? "true" : "false") << endl);
 | 
						|
    if (TypeContains(Ty, UpRefs[i].second)) {
 | 
						|
      unsigned Level = --UpRefs[i].first;   // Decrement level of upreference
 | 
						|
      UR_OUT("  Uplevel Ref Level = " << Level << endl);
 | 
						|
      if (Level == 0) {                     // Upreference should be resolved! 
 | 
						|
	UR_OUT("  * Resolving upreference for "
 | 
						|
               << UpRefs[i].second->getDescription() << endl;
 | 
						|
	       string OldName = UpRefs[i].second->getDescription());
 | 
						|
	UpRefs[i].second->refineAbstractTypeTo(Ty);
 | 
						|
	UpRefs.erase(UpRefs.begin()+i);     // Remove from upreference list...
 | 
						|
	UR_OUT("  * Type '" << OldName << "' refined upreference to: "
 | 
						|
	       << (const void*)Ty << ", " << Ty->getDescription() << endl);
 | 
						|
	continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    ++i;                                  // Otherwise, no resolve, move on...
 | 
						|
  }
 | 
						|
  // FIXME: TODO: this should return the updated type
 | 
						|
  return Ty;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//            RunVMAsmParser - Define an interface to this parser
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
Module *RunVMAsmParser(const string &Filename, FILE *F) {
 | 
						|
  llvmAsmin = F;
 | 
						|
  CurFilename = Filename;
 | 
						|
  llvmAsmlineno = 1;      // Reset the current line number...
 | 
						|
 | 
						|
  CurModule.CurrentModule = new Module();  // Allocate a new module to read
 | 
						|
  yyparse();       // Parse the file.
 | 
						|
  Module *Result = ParserResult;
 | 
						|
  llvmAsmin = stdin;    // F is about to go away, don't use it anymore...
 | 
						|
  ParserResult = 0;
 | 
						|
 | 
						|
  return Result;
 | 
						|
}
 | 
						|
 | 
						|
%}
 | 
						|
 | 
						|
%union {
 | 
						|
  Module                           *ModuleVal;
 | 
						|
  Function                         *FunctionVal;
 | 
						|
  std::pair<PATypeHolder*, char*>  *ArgVal;
 | 
						|
  BasicBlock                       *BasicBlockVal;
 | 
						|
  TerminatorInst                   *TermInstVal;
 | 
						|
  Instruction                      *InstVal;
 | 
						|
  Constant                         *ConstVal;
 | 
						|
 | 
						|
  const Type                       *PrimType;
 | 
						|
  PATypeHolder                     *TypeVal;
 | 
						|
  Value                            *ValueVal;
 | 
						|
 | 
						|
  std::vector<std::pair<PATypeHolder*,char*> > *ArgList;
 | 
						|
  std::vector<Value*>              *ValueList;
 | 
						|
  std::list<PATypeHolder>          *TypeList;
 | 
						|
  std::list<std::pair<Value*,
 | 
						|
                      BasicBlock*> > *PHIList; // Represent the RHS of PHI node
 | 
						|
  std::vector<std::pair<Constant*, BasicBlock*> > *JumpTable;
 | 
						|
  std::vector<Constant*>           *ConstVector;
 | 
						|
 | 
						|
  int64_t                           SInt64Val;
 | 
						|
  uint64_t                          UInt64Val;
 | 
						|
  int                               SIntVal;
 | 
						|
  unsigned                          UIntVal;
 | 
						|
  double                            FPVal;
 | 
						|
  bool                              BoolVal;
 | 
						|
 | 
						|
  char                             *StrVal;   // This memory is strdup'd!
 | 
						|
  ValID                             ValIDVal; // strdup'd memory maybe!
 | 
						|
 | 
						|
  Instruction::BinaryOps            BinaryOpVal;
 | 
						|
  Instruction::TermOps              TermOpVal;
 | 
						|
  Instruction::MemoryOps            MemOpVal;
 | 
						|
  Instruction::OtherOps             OtherOpVal;
 | 
						|
}
 | 
						|
 | 
						|
%type <ModuleVal>     Module FunctionList
 | 
						|
%type <FunctionVal>   Function FunctionProto FunctionHeader BasicBlockList
 | 
						|
%type <BasicBlockVal> BasicBlock InstructionList
 | 
						|
%type <TermInstVal>   BBTerminatorInst
 | 
						|
%type <InstVal>       Inst InstVal MemoryInst
 | 
						|
%type <ConstVal>      ConstVal ConstExpr
 | 
						|
%type <ConstVector>   ConstVector
 | 
						|
%type <ArgList>       ArgList ArgListH
 | 
						|
%type <ArgVal>        ArgVal
 | 
						|
%type <PHIList>       PHIList
 | 
						|
%type <ValueList>     ValueRefList ValueRefListE  // For call param lists
 | 
						|
%type <ValueList>     IndexList                   // For GEP derived indices
 | 
						|
%type <TypeList>      TypeListI ArgTypeListI
 | 
						|
%type <JumpTable>     JumpTable
 | 
						|
%type <BoolVal>       GlobalType OptInternal      // GLOBAL or CONSTANT? Intern?
 | 
						|
 | 
						|
// ValueRef - Unresolved reference to a definition or BB
 | 
						|
%type <ValIDVal>      ValueRef ConstValueRef SymbolicValueRef
 | 
						|
%type <ValueVal>      ResolvedVal            // <type> <valref> pair
 | 
						|
// Tokens and types for handling constant integer values
 | 
						|
//
 | 
						|
// ESINT64VAL - A negative number within long long range
 | 
						|
%token <SInt64Val> ESINT64VAL
 | 
						|
 | 
						|
// EUINT64VAL - A positive number within uns. long long range
 | 
						|
%token <UInt64Val> EUINT64VAL
 | 
						|
%type  <SInt64Val> EINT64VAL
 | 
						|
 | 
						|
%token  <SIntVal>   SINTVAL   // Signed 32 bit ints...
 | 
						|
%token  <UIntVal>   UINTVAL   // Unsigned 32 bit ints...
 | 
						|
%type   <SIntVal>   INTVAL
 | 
						|
%token  <FPVal>     FPVAL     // Float or Double constant
 | 
						|
 | 
						|
// Built in types...
 | 
						|
%type  <TypeVal> Types TypesV UpRTypes UpRTypesV
 | 
						|
%type  <PrimType> SIntType UIntType IntType FPType PrimType   // Classifications
 | 
						|
%token <PrimType> VOID BOOL SBYTE UBYTE SHORT USHORT INT UINT LONG ULONG
 | 
						|
%token <PrimType> FLOAT DOUBLE TYPE LABEL
 | 
						|
 | 
						|
%token <StrVal>     VAR_ID LABELSTR STRINGCONSTANT
 | 
						|
%type  <StrVal>  OptVAR_ID OptAssign FuncName
 | 
						|
 | 
						|
 | 
						|
%token IMPLEMENTATION TRUE FALSE BEGINTOK ENDTOK DECLARE GLOBAL CONSTANT
 | 
						|
%token TO EXCEPT DOTDOTDOT NULL_TOK CONST INTERNAL OPAQUE NOT EXTERNAL
 | 
						|
 | 
						|
// Basic Block Terminating Operators 
 | 
						|
%token <TermOpVal> RET BR SWITCH
 | 
						|
 | 
						|
// Binary Operators 
 | 
						|
%type  <BinaryOpVal> BinaryOps  // all the binary operators
 | 
						|
%type  <BinaryOpVal> ArithmeticOps LogicalOps SetCondOps // Binops Subcatagories
 | 
						|
%token <BinaryOpVal> ADD SUB MUL DIV REM AND OR XOR
 | 
						|
%token <BinaryOpVal> SETLE SETGE SETLT SETGT SETEQ SETNE  // Binary Comarators
 | 
						|
 | 
						|
// Memory Instructions
 | 
						|
%token <MemOpVal> MALLOC ALLOCA FREE LOAD STORE GETELEMENTPTR
 | 
						|
 | 
						|
// Other Operators
 | 
						|
%type  <OtherOpVal> ShiftOps
 | 
						|
%token <OtherOpVal> PHI CALL INVOKE CAST SHL SHR
 | 
						|
 | 
						|
%start Module
 | 
						|
%%
 | 
						|
 | 
						|
// Handle constant integer size restriction and conversion...
 | 
						|
//
 | 
						|
 | 
						|
INTVAL : SINTVAL;
 | 
						|
INTVAL : UINTVAL {
 | 
						|
  if ($1 > (uint32_t)INT32_MAX)     // Outside of my range!
 | 
						|
    ThrowException("Value too large for type!");
 | 
						|
  $$ = (int32_t)$1;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
EINT64VAL : ESINT64VAL;      // These have same type and can't cause problems...
 | 
						|
EINT64VAL : EUINT64VAL {
 | 
						|
  if ($1 > (uint64_t)INT64_MAX)     // Outside of my range!
 | 
						|
    ThrowException("Value too large for type!");
 | 
						|
  $$ = (int64_t)$1;
 | 
						|
};
 | 
						|
 | 
						|
// Operations that are notably excluded from this list include: 
 | 
						|
// RET, BR, & SWITCH because they end basic blocks and are treated specially.
 | 
						|
//
 | 
						|
ArithmeticOps: ADD | SUB | MUL | DIV | REM;
 | 
						|
LogicalOps   : AND | OR | XOR;
 | 
						|
SetCondOps   : SETLE | SETGE | SETLT | SETGT | SETEQ | SETNE;
 | 
						|
BinaryOps : ArithmeticOps | LogicalOps | SetCondOps;
 | 
						|
 | 
						|
ShiftOps  : SHL | SHR;
 | 
						|
 | 
						|
// These are some types that allow classification if we only want a particular 
 | 
						|
// thing... for example, only a signed, unsigned, or integral type.
 | 
						|
SIntType :  LONG |  INT |  SHORT | SBYTE;
 | 
						|
UIntType : ULONG | UINT | USHORT | UBYTE;
 | 
						|
IntType  : SIntType | UIntType;
 | 
						|
FPType   : FLOAT | DOUBLE;
 | 
						|
 | 
						|
// OptAssign - Value producing statements have an optional assignment component
 | 
						|
OptAssign : VAR_ID '=' {
 | 
						|
    $$ = $1;
 | 
						|
  }
 | 
						|
  | /*empty*/ { 
 | 
						|
    $$ = 0; 
 | 
						|
  };
 | 
						|
 | 
						|
OptInternal : INTERNAL { $$ = true; } | /*empty*/ { $$ = false; };
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
// Types includes all predefined types... except void, because it can only be
 | 
						|
// used in specific contexts (function returning void for example).  To have
 | 
						|
// access to it, a user must explicitly use TypesV.
 | 
						|
//
 | 
						|
 | 
						|
// TypesV includes all of 'Types', but it also includes the void type.
 | 
						|
TypesV    : Types    | VOID { $$ = new PATypeHolder($1); };
 | 
						|
UpRTypesV : UpRTypes | VOID { $$ = new PATypeHolder($1); };
 | 
						|
 | 
						|
Types     : UpRTypes {
 | 
						|
    if (UpRefs.size())
 | 
						|
      ThrowException("Invalid upreference in type: " + (*$1)->getDescription());
 | 
						|
    $$ = $1;
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
// Derived types are added later...
 | 
						|
//
 | 
						|
PrimType : BOOL | SBYTE | UBYTE | SHORT  | USHORT | INT   | UINT ;
 | 
						|
PrimType : LONG | ULONG | FLOAT | DOUBLE | TYPE   | LABEL;
 | 
						|
UpRTypes : OPAQUE {
 | 
						|
    $$ = new PATypeHolder(OpaqueType::get());
 | 
						|
  }
 | 
						|
  | PrimType {
 | 
						|
    $$ = new PATypeHolder($1);
 | 
						|
  };
 | 
						|
UpRTypes : SymbolicValueRef {            // Named types are also simple types...
 | 
						|
  $$ = new PATypeHolder(getTypeVal($1));
 | 
						|
};
 | 
						|
 | 
						|
// Include derived types in the Types production.
 | 
						|
//
 | 
						|
UpRTypes : '\\' EUINT64VAL {                   // Type UpReference
 | 
						|
    if ($2 > (uint64_t)INT64_MAX) ThrowException("Value out of range!");
 | 
						|
    OpaqueType *OT = OpaqueType::get();        // Use temporary placeholder
 | 
						|
    UpRefs.push_back(make_pair((unsigned)$2, OT));  // Add to vector...
 | 
						|
    $$ = new PATypeHolder(OT);
 | 
						|
    UR_OUT("New Upreference!\n");
 | 
						|
  }
 | 
						|
  | UpRTypesV '(' ArgTypeListI ')' {           // Function derived type?
 | 
						|
    vector<const Type*> Params;
 | 
						|
    mapto($3->begin(), $3->end(), std::back_inserter(Params), 
 | 
						|
	  std::mem_fun_ref(&PATypeHandle<Type>::get));
 | 
						|
    bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
 | 
						|
    if (isVarArg) Params.pop_back();
 | 
						|
 | 
						|
    $$ = new PATypeHolder(HandleUpRefs(FunctionType::get(*$1,Params,isVarArg)));
 | 
						|
    delete $3;      // Delete the argument list
 | 
						|
    delete $1;      // Delete the old type handle
 | 
						|
  }
 | 
						|
  | '[' EUINT64VAL 'x' UpRTypes ']' {          // Sized array type?
 | 
						|
    $$ = new PATypeHolder(HandleUpRefs(ArrayType::get(*$4, (unsigned)$2)));
 | 
						|
    delete $4;
 | 
						|
  }
 | 
						|
  | '{' TypeListI '}' {                        // Structure type?
 | 
						|
    vector<const Type*> Elements;
 | 
						|
    mapto($2->begin(), $2->end(), std::back_inserter(Elements), 
 | 
						|
	std::mem_fun_ref(&PATypeHandle<Type>::get));
 | 
						|
 | 
						|
    $$ = new PATypeHolder(HandleUpRefs(StructType::get(Elements)));
 | 
						|
    delete $2;
 | 
						|
  }
 | 
						|
  | '{' '}' {                                  // Empty structure type?
 | 
						|
    $$ = new PATypeHolder(StructType::get(vector<const Type*>()));
 | 
						|
  }
 | 
						|
  | UpRTypes '*' {                             // Pointer type?
 | 
						|
    $$ = new PATypeHolder(HandleUpRefs(PointerType::get(*$1)));
 | 
						|
    delete $1;
 | 
						|
  };
 | 
						|
 | 
						|
// TypeList - Used for struct declarations and as a basis for function type 
 | 
						|
// declaration type lists
 | 
						|
//
 | 
						|
TypeListI : UpRTypes {
 | 
						|
    $$ = new list<PATypeHolder>();
 | 
						|
    $$->push_back(*$1); delete $1;
 | 
						|
  }
 | 
						|
  | TypeListI ',' UpRTypes {
 | 
						|
    ($$=$1)->push_back(*$3); delete $3;
 | 
						|
  };
 | 
						|
 | 
						|
// ArgTypeList - List of types for a function type declaration...
 | 
						|
ArgTypeListI : TypeListI
 | 
						|
  | TypeListI ',' DOTDOTDOT {
 | 
						|
    ($$=$1)->push_back(Type::VoidTy);
 | 
						|
  }
 | 
						|
  | DOTDOTDOT {
 | 
						|
    ($$ = new list<PATypeHolder>())->push_back(Type::VoidTy);
 | 
						|
  }
 | 
						|
  | /*empty*/ {
 | 
						|
    $$ = new list<PATypeHolder>();
 | 
						|
  };
 | 
						|
 | 
						|
// ConstVal - The various declarations that go into the constant pool.  This
 | 
						|
// production is used ONLY to represent constants that show up AFTER a 'const',
 | 
						|
// 'constant' or 'global' token at global scope.  Constants that can be inlined
 | 
						|
// into other expressions (such as integers and constexprs) are handled by the
 | 
						|
// ResolvedVal, ValueRef and ConstValueRef productions.
 | 
						|
//
 | 
						|
ConstVal: Types '[' ConstVector ']' { // Nonempty unsized arr
 | 
						|
    const ArrayType *ATy = dyn_cast<const ArrayType>($1->get());
 | 
						|
    if (ATy == 0)
 | 
						|
      ThrowException("Cannot make array constant with type: '" + 
 | 
						|
                     (*$1)->getDescription() + "'!");
 | 
						|
    const Type *ETy = ATy->getElementType();
 | 
						|
    int NumElements = ATy->getNumElements();
 | 
						|
 | 
						|
    // Verify that we have the correct size...
 | 
						|
    if (NumElements != -1 && NumElements != (int)$3->size())
 | 
						|
      ThrowException("Type mismatch: constant sized array initialized with " +
 | 
						|
		     utostr($3->size()) +  " arguments, but has size of " + 
 | 
						|
		     itostr(NumElements) + "!");
 | 
						|
 | 
						|
    // Verify all elements are correct type!
 | 
						|
    for (unsigned i = 0; i < $3->size(); i++) {
 | 
						|
      if (ETy != (*$3)[i]->getType())
 | 
						|
	ThrowException("Element #" + utostr(i) + " is not of type '" + 
 | 
						|
		       ETy->getDescription() +"' as required!\nIt is of type '"+
 | 
						|
		       (*$3)[i]->getType()->getDescription() + "'.");
 | 
						|
    }
 | 
						|
 | 
						|
    $$ = ConstantArray::get(ATy, *$3);
 | 
						|
    delete $1; delete $3;
 | 
						|
  }
 | 
						|
  | Types '[' ']' {
 | 
						|
    const ArrayType *ATy = dyn_cast<const ArrayType>($1->get());
 | 
						|
    if (ATy == 0)
 | 
						|
      ThrowException("Cannot make array constant with type: '" + 
 | 
						|
                     (*$1)->getDescription() + "'!");
 | 
						|
 | 
						|
    int NumElements = ATy->getNumElements();
 | 
						|
    if (NumElements != -1 && NumElements != 0) 
 | 
						|
      ThrowException("Type mismatch: constant sized array initialized with 0"
 | 
						|
		     " arguments, but has size of " + itostr(NumElements) +"!");
 | 
						|
    $$ = ConstantArray::get(ATy, vector<Constant*>());
 | 
						|
    delete $1;
 | 
						|
  }
 | 
						|
  | Types 'c' STRINGCONSTANT {
 | 
						|
    const ArrayType *ATy = dyn_cast<const ArrayType>($1->get());
 | 
						|
    if (ATy == 0)
 | 
						|
      ThrowException("Cannot make array constant with type: '" + 
 | 
						|
                     (*$1)->getDescription() + "'!");
 | 
						|
 | 
						|
    int NumElements = ATy->getNumElements();
 | 
						|
    const Type *ETy = ATy->getElementType();
 | 
						|
    char *EndStr = UnEscapeLexed($3, true);
 | 
						|
    if (NumElements != -1 && NumElements != (EndStr-$3))
 | 
						|
      ThrowException("Can't build string constant of size " + 
 | 
						|
		     itostr((int)(EndStr-$3)) +
 | 
						|
		     " when array has size " + itostr(NumElements) + "!");
 | 
						|
    vector<Constant*> Vals;
 | 
						|
    if (ETy == Type::SByteTy) {
 | 
						|
      for (char *C = $3; C != EndStr; ++C)
 | 
						|
	Vals.push_back(ConstantSInt::get(ETy, *C));
 | 
						|
    } else if (ETy == Type::UByteTy) {
 | 
						|
      for (char *C = $3; C != EndStr; ++C)
 | 
						|
	Vals.push_back(ConstantUInt::get(ETy, *C));
 | 
						|
    } else {
 | 
						|
      free($3);
 | 
						|
      ThrowException("Cannot build string arrays of non byte sized elements!");
 | 
						|
    }
 | 
						|
    free($3);
 | 
						|
    $$ = ConstantArray::get(ATy, Vals);
 | 
						|
    delete $1;
 | 
						|
  }
 | 
						|
  | Types '{' ConstVector '}' {
 | 
						|
    const StructType *STy = dyn_cast<const StructType>($1->get());
 | 
						|
    if (STy == 0)
 | 
						|
      ThrowException("Cannot make struct constant with type: '" + 
 | 
						|
                     (*$1)->getDescription() + "'!");
 | 
						|
    // FIXME: TODO: Check to see that the constants are compatible with the type
 | 
						|
    // initializer!
 | 
						|
    $$ = ConstantStruct::get(STy, *$3);
 | 
						|
    delete $1; delete $3;
 | 
						|
  }
 | 
						|
  | Types NULL_TOK {
 | 
						|
    const PointerType *PTy = dyn_cast<const PointerType>($1->get());
 | 
						|
    if (PTy == 0)
 | 
						|
      ThrowException("Cannot make null pointer constant with type: '" + 
 | 
						|
                     (*$1)->getDescription() + "'!");
 | 
						|
 | 
						|
    $$ = ConstantPointerNull::get(PTy);
 | 
						|
    delete $1;
 | 
						|
  }
 | 
						|
  | Types SymbolicValueRef {
 | 
						|
    const PointerType *Ty = dyn_cast<const PointerType>($1->get());
 | 
						|
    if (Ty == 0)
 | 
						|
      ThrowException("Global const reference must be a pointer type!");
 | 
						|
 | 
						|
    // ConstExprs can exist in the body of a function, thus creating
 | 
						|
    // ConstantPointerRefs whenever they refer to a variable.  Because we are in
 | 
						|
    // the context of a function, getValNonImprovising will search the functions
 | 
						|
    // symbol table instead of the module symbol table for the global symbol,
 | 
						|
    // which throws things all off.  To get around this, we just tell
 | 
						|
    // getValNonImprovising that we are at global scope here.
 | 
						|
    //
 | 
						|
    Function *SavedCurFn = CurMeth.CurrentFunction;
 | 
						|
    CurMeth.CurrentFunction = 0;
 | 
						|
 | 
						|
    Value *V = getValNonImprovising(Ty, $2);
 | 
						|
 | 
						|
    CurMeth.CurrentFunction = SavedCurFn;
 | 
						|
 | 
						|
 | 
						|
    // If this is an initializer for a constant pointer, which is referencing a
 | 
						|
    // (currently) undefined variable, create a stub now that shall be replaced
 | 
						|
    // in the future with the right type of variable.
 | 
						|
    //
 | 
						|
    if (V == 0) {
 | 
						|
      assert(isa<PointerType>(Ty) && "Globals may only be used as pointers!");
 | 
						|
      const PointerType *PT = cast<PointerType>(Ty);
 | 
						|
 | 
						|
      // First check to see if the forward references value is already created!
 | 
						|
      PerModuleInfo::GlobalRefsType::iterator I =
 | 
						|
	CurModule.GlobalRefs.find(make_pair(PT, $2));
 | 
						|
    
 | 
						|
      if (I != CurModule.GlobalRefs.end()) {
 | 
						|
	V = I->second;             // Placeholder already exists, use it...
 | 
						|
      } else {
 | 
						|
	// TODO: Include line number info by creating a subclass of
 | 
						|
	// TODO: GlobalVariable here that includes the said information!
 | 
						|
	
 | 
						|
	// Create a placeholder for the global variable reference...
 | 
						|
	GlobalVariable *GV = new GlobalVariable(PT->getElementType(),
 | 
						|
                                                false, true);
 | 
						|
	// Keep track of the fact that we have a forward ref to recycle it
 | 
						|
	CurModule.GlobalRefs.insert(make_pair(make_pair(PT, $2), GV));
 | 
						|
 | 
						|
	// Must temporarily push this value into the module table...
 | 
						|
	CurModule.CurrentModule->getGlobalList().push_back(GV);
 | 
						|
	V = GV;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    GlobalValue *GV = cast<GlobalValue>(V);
 | 
						|
    $$ = ConstantPointerRef::get(GV);
 | 
						|
    delete $1;            // Free the type handle
 | 
						|
  }
 | 
						|
  | Types ConstExpr {
 | 
						|
    if ($1->get() != $2->getType())
 | 
						|
      ThrowException("Mismatched types for constant expression!");
 | 
						|
    $$ = $2;
 | 
						|
    delete $1;
 | 
						|
  };
 | 
						|
 | 
						|
ConstVal : SIntType EINT64VAL {      // integral constants
 | 
						|
    if (!ConstantSInt::isValueValidForType($1, $2))
 | 
						|
      ThrowException("Constant value doesn't fit in type!");
 | 
						|
    $$ = ConstantSInt::get($1, $2);
 | 
						|
  }
 | 
						|
  | UIntType EUINT64VAL {            // integral constants
 | 
						|
    if (!ConstantUInt::isValueValidForType($1, $2))
 | 
						|
      ThrowException("Constant value doesn't fit in type!");
 | 
						|
    $$ = ConstantUInt::get($1, $2);
 | 
						|
  }
 | 
						|
  | BOOL TRUE {                      // Boolean constants
 | 
						|
    $$ = ConstantBool::True;
 | 
						|
  }
 | 
						|
  | BOOL FALSE {                     // Boolean constants
 | 
						|
    $$ = ConstantBool::False;
 | 
						|
  }
 | 
						|
  | FPType FPVAL {                   // Float & Double constants
 | 
						|
    $$ = ConstantFP::get($1, $2);
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
ConstExpr: CAST '(' ConstVal TO Types ')' {
 | 
						|
    $$ = ConstantExpr::getCast($3, $5->get());
 | 
						|
    delete $5;
 | 
						|
  }
 | 
						|
  | GETELEMENTPTR '(' ConstVal IndexList ')' {
 | 
						|
    if (!isa<PointerType>($3->getType()))
 | 
						|
      ThrowException("GetElementPtr requires a pointer operand!");
 | 
						|
 | 
						|
    const Type *IdxTy =
 | 
						|
      GetElementPtrInst::getIndexedType($3->getType(), *$4, true);
 | 
						|
    if (!IdxTy)
 | 
						|
      ThrowException("Index list invalid for constant getelementptr!");
 | 
						|
 | 
						|
    vector<Constant*> IdxVec;
 | 
						|
    for (unsigned i = 0, e = $4->size(); i != e; ++i)
 | 
						|
      if (Constant *C = dyn_cast<Constant>((*$4)[i]))
 | 
						|
        IdxVec.push_back(C);
 | 
						|
      else
 | 
						|
        ThrowException("Indices to constant getelementptr must be constants!");
 | 
						|
 | 
						|
    delete $4;
 | 
						|
 | 
						|
    $$ = ConstantExpr::getGetElementPtr($3, IdxVec);
 | 
						|
  }
 | 
						|
  | BinaryOps '(' ConstVal ',' ConstVal ')' {
 | 
						|
    if ($3->getType() != $5->getType())
 | 
						|
      ThrowException("Binary operator types must match!");
 | 
						|
    $$ = ConstantExpr::get($1, $3, $5);
 | 
						|
  }
 | 
						|
  | ShiftOps '(' ConstVal ',' ConstVal ')' {
 | 
						|
    if ($5->getType() != Type::UByteTy)
 | 
						|
      ThrowException("Shift count for shift constant must be unsigned byte!");
 | 
						|
    $$ = ConstantExpr::get($1, $3, $5);
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
// ConstVector - A list of comma seperated constants.
 | 
						|
ConstVector : ConstVector ',' ConstVal {
 | 
						|
    ($$ = $1)->push_back($3);
 | 
						|
  }
 | 
						|
  | ConstVal {
 | 
						|
    $$ = new vector<Constant*>();
 | 
						|
    $$->push_back($1);
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
// GlobalType - Match either GLOBAL or CONSTANT for global declarations...
 | 
						|
GlobalType : GLOBAL { $$ = false; } | CONSTANT { $$ = true; };
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                             Rules to match Modules
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
// Module rule: Capture the result of parsing the whole file into a result
 | 
						|
// variable...
 | 
						|
//
 | 
						|
Module : FunctionList {
 | 
						|
  $$ = ParserResult = $1;
 | 
						|
  CurModule.ModuleDone();
 | 
						|
};
 | 
						|
 | 
						|
// FunctionList - A list of functions, preceeded by a constant pool.
 | 
						|
//
 | 
						|
FunctionList : FunctionList Function {
 | 
						|
    $$ = $1;
 | 
						|
    assert($2->getParent() == 0 && "Function already in module!");
 | 
						|
    $1->getFunctionList().push_back($2);
 | 
						|
    CurMeth.FunctionDone();
 | 
						|
  } 
 | 
						|
  | FunctionList FunctionProto {
 | 
						|
    $$ = $1;
 | 
						|
  }
 | 
						|
  | FunctionList IMPLEMENTATION {
 | 
						|
    $$ = $1;
 | 
						|
  }
 | 
						|
  | ConstPool {
 | 
						|
    $$ = CurModule.CurrentModule;
 | 
						|
    // Resolve circular types before we parse the body of the module
 | 
						|
    ResolveTypes(CurModule.LateResolveTypes);
 | 
						|
  };
 | 
						|
 | 
						|
// ConstPool - Constants with optional names assigned to them.
 | 
						|
ConstPool : ConstPool OptAssign CONST ConstVal { 
 | 
						|
    if (setValueName($4, $2)) { assert(0 && "No redefinitions allowed!"); }
 | 
						|
    InsertValue($4);
 | 
						|
  }
 | 
						|
  | ConstPool OptAssign TYPE TypesV {  // Types can be defined in the const pool
 | 
						|
    // Eagerly resolve types.  This is not an optimization, this is a
 | 
						|
    // requirement that is due to the fact that we could have this:
 | 
						|
    //
 | 
						|
    // %list = type { %list * }
 | 
						|
    // %list = type { %list * }    ; repeated type decl
 | 
						|
    //
 | 
						|
    // If types are not resolved eagerly, then the two types will not be
 | 
						|
    // determined to be the same type!
 | 
						|
    //
 | 
						|
    ResolveTypeTo($2, $4->get());
 | 
						|
 | 
						|
    // TODO: FIXME when Type are not const
 | 
						|
    if (!setValueName(const_cast<Type*>($4->get()), $2)) {
 | 
						|
      // If this is not a redefinition of a type...
 | 
						|
      if (!$2) {
 | 
						|
        InsertType($4->get(),
 | 
						|
                   inFunctionScope() ? CurMeth.Types : CurModule.Types);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    delete $4;
 | 
						|
  }
 | 
						|
  | ConstPool FunctionProto {       // Function prototypes can be in const pool
 | 
						|
  }
 | 
						|
  | ConstPool OptAssign OptInternal GlobalType ConstVal {
 | 
						|
    const Type *Ty = $5->getType();
 | 
						|
    // Global declarations appear in Constant Pool
 | 
						|
    Constant *Initializer = $5;
 | 
						|
    if (Initializer == 0)
 | 
						|
      ThrowException("Global value initializer is not a constant!");
 | 
						|
    
 | 
						|
    GlobalVariable *GV = new GlobalVariable(Ty, $4, $3, Initializer);
 | 
						|
    if (!setValueName(GV, $2)) {   // If not redefining...
 | 
						|
      CurModule.CurrentModule->getGlobalList().push_back(GV);
 | 
						|
      int Slot = InsertValue(GV, CurModule.Values);
 | 
						|
 | 
						|
      if (Slot != -1) {
 | 
						|
	CurModule.DeclareNewGlobalValue(GV, ValID::create(Slot));
 | 
						|
      } else {
 | 
						|
	CurModule.DeclareNewGlobalValue(GV, ValID::create(
 | 
						|
				                (char*)GV->getName().c_str()));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  | ConstPool OptAssign OptInternal EXTERNAL GlobalType Types {
 | 
						|
    const Type *Ty = *$6;
 | 
						|
    // Global declarations appear in Constant Pool
 | 
						|
    GlobalVariable *GV = new GlobalVariable(Ty, $5, $3);
 | 
						|
    if (!setValueName(GV, $2)) {   // If not redefining...
 | 
						|
      CurModule.CurrentModule->getGlobalList().push_back(GV);
 | 
						|
      int Slot = InsertValue(GV, CurModule.Values);
 | 
						|
 | 
						|
      if (Slot != -1) {
 | 
						|
	CurModule.DeclareNewGlobalValue(GV, ValID::create(Slot));
 | 
						|
      } else {
 | 
						|
	assert(GV->hasName() && "Not named and not numbered!?");
 | 
						|
	CurModule.DeclareNewGlobalValue(GV, ValID::create(
 | 
						|
				                (char*)GV->getName().c_str()));
 | 
						|
      }
 | 
						|
    }
 | 
						|
    delete $6;
 | 
						|
  }
 | 
						|
  | /* empty: end of list */ { 
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                       Rules to match Function Headers
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
OptVAR_ID : VAR_ID | /*empty*/ { $$ = 0; };
 | 
						|
 | 
						|
ArgVal : Types OptVAR_ID {
 | 
						|
  if (*$1 == Type::VoidTy)
 | 
						|
    ThrowException("void typed arguments are invalid!");
 | 
						|
  $$ = new pair<PATypeHolder*, char*>($1, $2);
 | 
						|
};
 | 
						|
 | 
						|
ArgListH : ArgListH ',' ArgVal {
 | 
						|
    $$ = $1;
 | 
						|
    $1->push_back(*$3);
 | 
						|
    delete $3;
 | 
						|
  }
 | 
						|
  | ArgVal {
 | 
						|
    $$ = new vector<pair<PATypeHolder*,char*> >();
 | 
						|
    $$->push_back(*$1);
 | 
						|
    delete $1;
 | 
						|
  };
 | 
						|
 | 
						|
ArgList : ArgListH {
 | 
						|
    $$ = $1;
 | 
						|
  }
 | 
						|
  | ArgListH ',' DOTDOTDOT {
 | 
						|
    $$ = $1;
 | 
						|
    $$->push_back(pair<PATypeHolder*, char*>(new PATypeHolder(Type::VoidTy),0));
 | 
						|
  }
 | 
						|
  | DOTDOTDOT {
 | 
						|
    $$ = new vector<pair<PATypeHolder*,char*> >();
 | 
						|
    $$->push_back(pair<PATypeHolder*, char*>(new PATypeHolder(Type::VoidTy),0));
 | 
						|
  }
 | 
						|
  | /* empty */ {
 | 
						|
    $$ = 0;
 | 
						|
  };
 | 
						|
 | 
						|
FuncName : VAR_ID | STRINGCONSTANT;
 | 
						|
 | 
						|
FunctionHeaderH : OptInternal TypesV FuncName '(' ArgList ')' {
 | 
						|
  UnEscapeLexed($3);
 | 
						|
  string FunctionName($3);
 | 
						|
  
 | 
						|
  vector<const Type*> ParamTypeList;
 | 
						|
  if ($5) {   // If there are arguments...
 | 
						|
    for (vector<pair<PATypeHolder*,char*> >::iterator I = $5->begin();
 | 
						|
         I != $5->end(); ++I)
 | 
						|
      ParamTypeList.push_back(I->first->get());
 | 
						|
  }
 | 
						|
 | 
						|
  bool isVarArg = ParamTypeList.size() && ParamTypeList.back() == Type::VoidTy;
 | 
						|
  if (isVarArg) ParamTypeList.pop_back();
 | 
						|
 | 
						|
  const FunctionType *FT = FunctionType::get(*$2, ParamTypeList, isVarArg);
 | 
						|
  const PointerType *PFT = PointerType::get(FT);
 | 
						|
  delete $2;
 | 
						|
 | 
						|
  Function *Fn = 0;
 | 
						|
  // Is the function already in symtab?
 | 
						|
  if ((Fn = CurModule.CurrentModule->getFunction(FunctionName, FT))) {
 | 
						|
    // Yes it is.  If this is the case, either we need to be a forward decl,
 | 
						|
    // or it needs to be.
 | 
						|
    if (!CurMeth.isDeclare && !Fn->isExternal())
 | 
						|
      ThrowException("Redefinition of function '" + FunctionName + "'!");
 | 
						|
    
 | 
						|
    // Make sure that we keep track of the internal marker, even if there was
 | 
						|
    // a previous "declare".
 | 
						|
    if ($1)
 | 
						|
      Fn->setInternalLinkage(true);
 | 
						|
 | 
						|
    // If we found a preexisting function prototype, remove it from the
 | 
						|
    // module, so that we don't get spurious conflicts with global & local
 | 
						|
    // variables.
 | 
						|
    //
 | 
						|
    CurModule.CurrentModule->getFunctionList().remove(Fn);
 | 
						|
 | 
						|
    // Make sure to strip off any argument names so we can't get conflicts...
 | 
						|
    for (Function::aiterator AI = Fn->abegin(), AE = Fn->aend(); AI != AE; ++AI)
 | 
						|
      AI->setName("");
 | 
						|
 | 
						|
  } else  {  // Not already defined?
 | 
						|
    Fn = new Function(FT, $1, FunctionName);
 | 
						|
    InsertValue(Fn, CurModule.Values);
 | 
						|
    CurModule.DeclareNewGlobalValue(Fn, ValID::create($3));
 | 
						|
  }
 | 
						|
  free($3);  // Free strdup'd memory!
 | 
						|
 | 
						|
  CurMeth.FunctionStart(Fn);
 | 
						|
 | 
						|
  // Add all of the arguments we parsed to the function...
 | 
						|
  if ($5) {                     // Is null if empty...
 | 
						|
    if (isVarArg) {  // Nuke the last entry
 | 
						|
      assert($5->back().first->get() == Type::VoidTy && $5->back().second == 0&&
 | 
						|
             "Not a varargs marker!");
 | 
						|
      delete $5->back().first;
 | 
						|
      $5->pop_back();  // Delete the last entry
 | 
						|
    }
 | 
						|
    Function::aiterator ArgIt = Fn->abegin();
 | 
						|
    for (vector<pair<PATypeHolder*, char*> >::iterator I = $5->begin();
 | 
						|
         I != $5->end(); ++I, ++ArgIt) {
 | 
						|
      delete I->first;                          // Delete the typeholder...
 | 
						|
 | 
						|
      if (setValueName(ArgIt, I->second))       // Insert arg into symtab...
 | 
						|
        assert(0 && "No arg redef allowed!");
 | 
						|
      
 | 
						|
      InsertValue(ArgIt);
 | 
						|
    }
 | 
						|
 | 
						|
    delete $5;                     // We're now done with the argument list
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
BEGIN : BEGINTOK | '{';                // Allow BEGIN or '{' to start a function
 | 
						|
 | 
						|
FunctionHeader : FunctionHeaderH BEGIN {
 | 
						|
  $$ = CurMeth.CurrentFunction;
 | 
						|
 | 
						|
  // Resolve circular types before we parse the body of the function.
 | 
						|
  ResolveTypes(CurMeth.LateResolveTypes);
 | 
						|
};
 | 
						|
 | 
						|
END : ENDTOK | '}';                    // Allow end of '}' to end a function
 | 
						|
 | 
						|
Function : BasicBlockList END {
 | 
						|
  $$ = $1;
 | 
						|
};
 | 
						|
 | 
						|
FunctionProto : DECLARE { CurMeth.isDeclare = true; } FunctionHeaderH {
 | 
						|
  $$ = CurMeth.CurrentFunction;
 | 
						|
  assert($$->getParent() == 0 && "Function already in module!");
 | 
						|
  CurModule.CurrentModule->getFunctionList().push_back($$);
 | 
						|
  CurMeth.FunctionDone();
 | 
						|
};
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                        Rules to match Basic Blocks
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
ConstValueRef : ESINT64VAL {    // A reference to a direct constant
 | 
						|
    $$ = ValID::create($1);
 | 
						|
  }
 | 
						|
  | EUINT64VAL {
 | 
						|
    $$ = ValID::create($1);
 | 
						|
  }
 | 
						|
  | FPVAL {                     // Perhaps it's an FP constant?
 | 
						|
    $$ = ValID::create($1);
 | 
						|
  }
 | 
						|
  | TRUE {
 | 
						|
    $$ = ValID::create(ConstantBool::True);
 | 
						|
  } 
 | 
						|
  | FALSE {
 | 
						|
    $$ = ValID::create(ConstantBool::False);
 | 
						|
  }
 | 
						|
  | NULL_TOK {
 | 
						|
    $$ = ValID::createNull();
 | 
						|
  }
 | 
						|
  | ConstExpr {
 | 
						|
    $$ = ValID::create($1);
 | 
						|
  };
 | 
						|
 | 
						|
// SymbolicValueRef - Reference to one of two ways of symbolically refering to
 | 
						|
// another value.
 | 
						|
//
 | 
						|
SymbolicValueRef : INTVAL {  // Is it an integer reference...?
 | 
						|
    $$ = ValID::create($1);
 | 
						|
  }
 | 
						|
  | VAR_ID {                 // Is it a named reference...?
 | 
						|
    $$ = ValID::create($1);
 | 
						|
  };
 | 
						|
 | 
						|
// ValueRef - A reference to a definition... either constant or symbolic
 | 
						|
ValueRef : SymbolicValueRef | ConstValueRef;
 | 
						|
 | 
						|
 | 
						|
// ResolvedVal - a <type> <value> pair.  This is used only in cases where the
 | 
						|
// type immediately preceeds the value reference, and allows complex constant
 | 
						|
// pool references (for things like: 'ret [2 x int] [ int 12, int 42]')
 | 
						|
ResolvedVal : Types ValueRef {
 | 
						|
    $$ = getVal(*$1, $2); delete $1;
 | 
						|
  };
 | 
						|
 | 
						|
BasicBlockList : BasicBlockList BasicBlock {
 | 
						|
    ($$ = $1)->getBasicBlockList().push_back($2);
 | 
						|
  }
 | 
						|
  | FunctionHeader BasicBlock { // Do not allow functions with 0 basic blocks   
 | 
						|
    ($$ = $1)->getBasicBlockList().push_back($2);
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
// Basic blocks are terminated by branching instructions: 
 | 
						|
// br, br/cc, switch, ret
 | 
						|
//
 | 
						|
BasicBlock : InstructionList OptAssign BBTerminatorInst  {
 | 
						|
    if (setValueName($3, $2)) { assert(0 && "No redefn allowed!"); }
 | 
						|
    InsertValue($3);
 | 
						|
 | 
						|
    $1->getInstList().push_back($3);
 | 
						|
    InsertValue($1);
 | 
						|
    $$ = $1;
 | 
						|
  }
 | 
						|
  | LABELSTR InstructionList OptAssign BBTerminatorInst  {
 | 
						|
    if (setValueName($4, $3)) { assert(0 && "No redefn allowed!"); }
 | 
						|
    InsertValue($4);
 | 
						|
 | 
						|
    $2->getInstList().push_back($4);
 | 
						|
    if (setValueName($2, $1)) { assert(0 && "No label redef allowed!"); }
 | 
						|
 | 
						|
    InsertValue($2);
 | 
						|
    $$ = $2;
 | 
						|
  };
 | 
						|
 | 
						|
InstructionList : InstructionList Inst {
 | 
						|
    $1->getInstList().push_back($2);
 | 
						|
    $$ = $1;
 | 
						|
  }
 | 
						|
  | /* empty */ {
 | 
						|
    $$ = CurBB = new BasicBlock();
 | 
						|
  };
 | 
						|
 | 
						|
BBTerminatorInst : RET ResolvedVal {              // Return with a result...
 | 
						|
    $$ = new ReturnInst($2);
 | 
						|
  }
 | 
						|
  | RET VOID {                                       // Return with no result...
 | 
						|
    $$ = new ReturnInst();
 | 
						|
  }
 | 
						|
  | BR LABEL ValueRef {                         // Unconditional Branch...
 | 
						|
    $$ = new BranchInst(cast<BasicBlock>(getVal(Type::LabelTy, $3)));
 | 
						|
  }                                                  // Conditional Branch...
 | 
						|
  | BR BOOL ValueRef ',' LABEL ValueRef ',' LABEL ValueRef {  
 | 
						|
    $$ = new BranchInst(cast<BasicBlock>(getVal(Type::LabelTy, $6)), 
 | 
						|
			cast<BasicBlock>(getVal(Type::LabelTy, $9)),
 | 
						|
			getVal(Type::BoolTy, $3));
 | 
						|
  }
 | 
						|
  | SWITCH IntType ValueRef ',' LABEL ValueRef '[' JumpTable ']' {
 | 
						|
    SwitchInst *S = new SwitchInst(getVal($2, $3), 
 | 
						|
                                   cast<BasicBlock>(getVal(Type::LabelTy, $6)));
 | 
						|
    $$ = S;
 | 
						|
 | 
						|
    vector<pair<Constant*,BasicBlock*> >::iterator I = $8->begin(),
 | 
						|
      E = $8->end();
 | 
						|
    for (; I != E; ++I)
 | 
						|
      S->dest_push_back(I->first, I->second);
 | 
						|
  }
 | 
						|
  | INVOKE TypesV ValueRef '(' ValueRefListE ')' TO ResolvedVal 
 | 
						|
    EXCEPT ResolvedVal {
 | 
						|
    const PointerType *PFTy;
 | 
						|
    const FunctionType *Ty;
 | 
						|
 | 
						|
    if (!(PFTy = dyn_cast<PointerType>($2->get())) ||
 | 
						|
        !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
 | 
						|
      // Pull out the types of all of the arguments...
 | 
						|
      vector<const Type*> ParamTypes;
 | 
						|
      if ($5) {
 | 
						|
        for (vector<Value*>::iterator I = $5->begin(), E = $5->end(); I!=E; ++I)
 | 
						|
          ParamTypes.push_back((*I)->getType());
 | 
						|
      }
 | 
						|
 | 
						|
      bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy;
 | 
						|
      if (isVarArg) ParamTypes.pop_back();
 | 
						|
 | 
						|
      Ty = FunctionType::get($2->get(), ParamTypes, isVarArg);
 | 
						|
      PFTy = PointerType::get(Ty);
 | 
						|
    }
 | 
						|
    delete $2;
 | 
						|
 | 
						|
    Value *V = getVal(PFTy, $3);   // Get the function we're calling...
 | 
						|
 | 
						|
    BasicBlock *Normal = dyn_cast<BasicBlock>($8);
 | 
						|
    BasicBlock *Except = dyn_cast<BasicBlock>($10);
 | 
						|
 | 
						|
    if (Normal == 0 || Except == 0)
 | 
						|
      ThrowException("Invoke instruction without label destinations!");
 | 
						|
 | 
						|
    // Create the call node...
 | 
						|
    if (!$5) {                                   // Has no arguments?
 | 
						|
      $$ = new InvokeInst(V, Normal, Except, vector<Value*>());
 | 
						|
    } else {                                     // Has arguments?
 | 
						|
      // Loop through FunctionType's arguments and ensure they are specified
 | 
						|
      // correctly!
 | 
						|
      //
 | 
						|
      FunctionType::ParamTypes::const_iterator I = Ty->getParamTypes().begin();
 | 
						|
      FunctionType::ParamTypes::const_iterator E = Ty->getParamTypes().end();
 | 
						|
      vector<Value*>::iterator ArgI = $5->begin(), ArgE = $5->end();
 | 
						|
 | 
						|
      for (; ArgI != ArgE && I != E; ++ArgI, ++I)
 | 
						|
	if ((*ArgI)->getType() != *I)
 | 
						|
	  ThrowException("Parameter " +(*ArgI)->getName()+ " is not of type '" +
 | 
						|
			 (*I)->getDescription() + "'!");
 | 
						|
 | 
						|
      if (I != E || (ArgI != ArgE && !Ty->isVarArg()))
 | 
						|
	ThrowException("Invalid number of parameters detected!");
 | 
						|
 | 
						|
      $$ = new InvokeInst(V, Normal, Except, *$5);
 | 
						|
    }
 | 
						|
    delete $5;
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
 | 
						|
JumpTable : JumpTable IntType ConstValueRef ',' LABEL ValueRef {
 | 
						|
    $$ = $1;
 | 
						|
    Constant *V = cast<Constant>(getValNonImprovising($2, $3));
 | 
						|
    if (V == 0)
 | 
						|
      ThrowException("May only switch on a constant pool value!");
 | 
						|
 | 
						|
    $$->push_back(make_pair(V, cast<BasicBlock>(getVal($5, $6))));
 | 
						|
  }
 | 
						|
  | IntType ConstValueRef ',' LABEL ValueRef {
 | 
						|
    $$ = new vector<pair<Constant*, BasicBlock*> >();
 | 
						|
    Constant *V = cast<Constant>(getValNonImprovising($1, $2));
 | 
						|
 | 
						|
    if (V == 0)
 | 
						|
      ThrowException("May only switch on a constant pool value!");
 | 
						|
 | 
						|
    $$->push_back(make_pair(V, cast<BasicBlock>(getVal($4, $5))));
 | 
						|
  };
 | 
						|
 | 
						|
Inst : OptAssign InstVal {
 | 
						|
  // Is this definition named?? if so, assign the name...
 | 
						|
  if (setValueName($2, $1)) { assert(0 && "No redefin allowed!"); }
 | 
						|
  InsertValue($2);
 | 
						|
  $$ = $2;
 | 
						|
};
 | 
						|
 | 
						|
PHIList : Types '[' ValueRef ',' ValueRef ']' {    // Used for PHI nodes
 | 
						|
    $$ = new list<pair<Value*, BasicBlock*> >();
 | 
						|
    $$->push_back(make_pair(getVal(*$1, $3), 
 | 
						|
                            cast<BasicBlock>(getVal(Type::LabelTy, $5))));
 | 
						|
    delete $1;
 | 
						|
  }
 | 
						|
  | PHIList ',' '[' ValueRef ',' ValueRef ']' {
 | 
						|
    $$ = $1;
 | 
						|
    $1->push_back(make_pair(getVal($1->front().first->getType(), $4),
 | 
						|
                            cast<BasicBlock>(getVal(Type::LabelTy, $6))));
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
ValueRefList : ResolvedVal {    // Used for call statements, and memory insts...
 | 
						|
    $$ = new vector<Value*>();
 | 
						|
    $$->push_back($1);
 | 
						|
  }
 | 
						|
  | ValueRefList ',' ResolvedVal {
 | 
						|
    $$ = $1;
 | 
						|
    $1->push_back($3);
 | 
						|
  };
 | 
						|
 | 
						|
// ValueRefListE - Just like ValueRefList, except that it may also be empty!
 | 
						|
ValueRefListE : ValueRefList | /*empty*/ { $$ = 0; };
 | 
						|
 | 
						|
InstVal : ArithmeticOps Types ValueRef ',' ValueRef {
 | 
						|
    if (!(*$2)->isInteger() && !(*$2)->isFloatingPoint())
 | 
						|
      ThrowException("Arithmetic operator requires integer or FP operands!");
 | 
						|
    $$ = BinaryOperator::create($1, getVal(*$2, $3), getVal(*$2, $5));
 | 
						|
    if ($$ == 0)
 | 
						|
      ThrowException("binary operator returned null!");
 | 
						|
    delete $2;
 | 
						|
  }
 | 
						|
  | LogicalOps Types ValueRef ',' ValueRef {
 | 
						|
    if (!(*$2)->isIntegral())
 | 
						|
      ThrowException("Logical operator requires integral operands!");
 | 
						|
    $$ = BinaryOperator::create($1, getVal(*$2, $3), getVal(*$2, $5));
 | 
						|
    if ($$ == 0)
 | 
						|
      ThrowException("binary operator returned null!");
 | 
						|
    delete $2;
 | 
						|
  }
 | 
						|
  | SetCondOps Types ValueRef ',' ValueRef {
 | 
						|
    $$ = new SetCondInst($1, getVal(*$2, $3), getVal(*$2, $5));
 | 
						|
    if ($$ == 0)
 | 
						|
      ThrowException("binary operator returned null!");
 | 
						|
    delete $2;
 | 
						|
  }
 | 
						|
  | NOT ResolvedVal {
 | 
						|
    std::cerr << "WARNING: Use of eliminated 'not' instruction:"
 | 
						|
              << " Replacing with 'xor'.\n";
 | 
						|
 | 
						|
    Value *Ones = ConstantIntegral::getAllOnesValue($2->getType());
 | 
						|
    if (Ones == 0)
 | 
						|
      ThrowException("Expected integral type for not instruction!");
 | 
						|
 | 
						|
    $$ = BinaryOperator::create(Instruction::Xor, $2, Ones);
 | 
						|
    if ($$ == 0)
 | 
						|
      ThrowException("Could not create a xor instruction!");
 | 
						|
  }
 | 
						|
  | ShiftOps ResolvedVal ',' ResolvedVal {
 | 
						|
    if ($4->getType() != Type::UByteTy)
 | 
						|
      ThrowException("Shift amount must be ubyte!");
 | 
						|
    $$ = new ShiftInst($1, $2, $4);
 | 
						|
  }
 | 
						|
  | CAST ResolvedVal TO Types {
 | 
						|
    $$ = new CastInst($2, *$4);
 | 
						|
    delete $4;
 | 
						|
  }
 | 
						|
  | PHI PHIList {
 | 
						|
    const Type *Ty = $2->front().first->getType();
 | 
						|
    $$ = new PHINode(Ty);
 | 
						|
    while ($2->begin() != $2->end()) {
 | 
						|
      if ($2->front().first->getType() != Ty) 
 | 
						|
	ThrowException("All elements of a PHI node must be of the same type!");
 | 
						|
      cast<PHINode>($$)->addIncoming($2->front().first, $2->front().second);
 | 
						|
      $2->pop_front();
 | 
						|
    }
 | 
						|
    delete $2;  // Free the list...
 | 
						|
  } 
 | 
						|
  | CALL TypesV ValueRef '(' ValueRefListE ')' {
 | 
						|
    const PointerType *PFTy;
 | 
						|
    const FunctionType *Ty;
 | 
						|
 | 
						|
    if (!(PFTy = dyn_cast<PointerType>($2->get())) ||
 | 
						|
        !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
 | 
						|
      // Pull out the types of all of the arguments...
 | 
						|
      vector<const Type*> ParamTypes;
 | 
						|
      if ($5) {
 | 
						|
        for (vector<Value*>::iterator I = $5->begin(), E = $5->end(); I!=E; ++I)
 | 
						|
          ParamTypes.push_back((*I)->getType());
 | 
						|
      }
 | 
						|
 | 
						|
      bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy;
 | 
						|
      if (isVarArg) ParamTypes.pop_back();
 | 
						|
 | 
						|
      Ty = FunctionType::get($2->get(), ParamTypes, isVarArg);
 | 
						|
      PFTy = PointerType::get(Ty);
 | 
						|
    }
 | 
						|
    delete $2;
 | 
						|
 | 
						|
    Value *V = getVal(PFTy, $3);   // Get the function we're calling...
 | 
						|
 | 
						|
    // Create the call node...
 | 
						|
    if (!$5) {                                   // Has no arguments?
 | 
						|
      // Make sure no arguments is a good thing!
 | 
						|
      if (Ty->getNumParams() != 0)
 | 
						|
        ThrowException("No arguments passed to a function that "
 | 
						|
                       "expects arguments!");
 | 
						|
 | 
						|
      $$ = new CallInst(V, vector<Value*>());
 | 
						|
    } else {                                     // Has arguments?
 | 
						|
      // Loop through FunctionType's arguments and ensure they are specified
 | 
						|
      // correctly!
 | 
						|
      //
 | 
						|
      FunctionType::ParamTypes::const_iterator I = Ty->getParamTypes().begin();
 | 
						|
      FunctionType::ParamTypes::const_iterator E = Ty->getParamTypes().end();
 | 
						|
      vector<Value*>::iterator ArgI = $5->begin(), ArgE = $5->end();
 | 
						|
 | 
						|
      for (; ArgI != ArgE && I != E; ++ArgI, ++I)
 | 
						|
	if ((*ArgI)->getType() != *I)
 | 
						|
	  ThrowException("Parameter " +(*ArgI)->getName()+ " is not of type '" +
 | 
						|
			 (*I)->getDescription() + "'!");
 | 
						|
 | 
						|
      if (I != E || (ArgI != ArgE && !Ty->isVarArg()))
 | 
						|
	ThrowException("Invalid number of parameters detected!");
 | 
						|
 | 
						|
      $$ = new CallInst(V, *$5);
 | 
						|
    }
 | 
						|
    delete $5;
 | 
						|
  }
 | 
						|
  | MemoryInst {
 | 
						|
    $$ = $1;
 | 
						|
  };
 | 
						|
 | 
						|
 | 
						|
// IndexList - List of indices for GEP based instructions...
 | 
						|
IndexList : ',' ValueRefList { 
 | 
						|
  $$ = $2; 
 | 
						|
} | /* empty */ { 
 | 
						|
  $$ = new vector<Value*>(); 
 | 
						|
};
 | 
						|
 | 
						|
MemoryInst : MALLOC Types {
 | 
						|
    $$ = new MallocInst(*$2);
 | 
						|
    delete $2;
 | 
						|
  }
 | 
						|
  | MALLOC Types ',' UINT ValueRef {
 | 
						|
    $$ = new MallocInst(*$2, getVal($4, $5));
 | 
						|
    delete $2;
 | 
						|
  }
 | 
						|
  | ALLOCA Types {
 | 
						|
    $$ = new AllocaInst(*$2);
 | 
						|
    delete $2;
 | 
						|
  }
 | 
						|
  | ALLOCA Types ',' UINT ValueRef {
 | 
						|
    $$ = new AllocaInst(*$2, getVal($4, $5));
 | 
						|
    delete $2;
 | 
						|
  }
 | 
						|
  | FREE ResolvedVal {
 | 
						|
    if (!isa<PointerType>($2->getType()))
 | 
						|
      ThrowException("Trying to free nonpointer type " + 
 | 
						|
                     $2->getType()->getDescription() + "!");
 | 
						|
    $$ = new FreeInst($2);
 | 
						|
  }
 | 
						|
 | 
						|
  | LOAD Types ValueRef IndexList {
 | 
						|
    if (!isa<PointerType>($2->get()))
 | 
						|
      ThrowException("Can't load from nonpointer type: " +
 | 
						|
		     (*$2)->getDescription());
 | 
						|
    if (GetElementPtrInst::getIndexedType(*$2, *$4) == 0)
 | 
						|
      ThrowException("Invalid indices for load instruction!");
 | 
						|
 | 
						|
    Value *Src = getVal(*$2, $3);
 | 
						|
    if (!$4->empty()) {
 | 
						|
      std::cerr << "WARNING: Use of index load instruction:"
 | 
						|
                << " replacing with getelementptr/load pair.\n";
 | 
						|
      // Create a getelementptr hack instruction to do the right thing for
 | 
						|
      // compatibility.
 | 
						|
      //
 | 
						|
      Instruction *I = new GetElementPtrInst(Src, *$4);
 | 
						|
      CurBB->getInstList().push_back(I);
 | 
						|
      Src = I;
 | 
						|
    }
 | 
						|
 | 
						|
    $$ = new LoadInst(Src);
 | 
						|
    delete $4;   // Free the vector...
 | 
						|
    delete $2;
 | 
						|
  }
 | 
						|
  | STORE ResolvedVal ',' Types ValueRef IndexList {
 | 
						|
    if (!isa<PointerType>($4->get()))
 | 
						|
      ThrowException("Can't store to a nonpointer type: " +
 | 
						|
                     (*$4)->getDescription());
 | 
						|
    const Type *ElTy = GetElementPtrInst::getIndexedType(*$4, *$6);
 | 
						|
    if (ElTy == 0)
 | 
						|
      ThrowException("Can't store into that field list!");
 | 
						|
    if (ElTy != $2->getType())
 | 
						|
      ThrowException("Can't store '" + $2->getType()->getDescription() +
 | 
						|
                     "' into space of type '" + ElTy->getDescription() + "'!");
 | 
						|
 | 
						|
    Value *Ptr = getVal(*$4, $5);
 | 
						|
    if (!$6->empty()) {
 | 
						|
      std::cerr << "WARNING: Use of index store instruction:"
 | 
						|
                << " replacing with getelementptr/store pair.\n";
 | 
						|
      // Create a getelementptr hack instruction to do the right thing for
 | 
						|
      // compatibility.
 | 
						|
      //
 | 
						|
      Instruction *I = new GetElementPtrInst(Ptr, *$6);
 | 
						|
      CurBB->getInstList().push_back(I);
 | 
						|
      Ptr = I;
 | 
						|
    }
 | 
						|
 | 
						|
    $$ = new StoreInst($2, Ptr);
 | 
						|
    delete $4; delete $6;
 | 
						|
  }
 | 
						|
  | GETELEMENTPTR Types ValueRef IndexList {
 | 
						|
    for (unsigned i = 0, e = $4->size(); i != e; ++i) {
 | 
						|
      if ((*$4)[i]->getType() == Type::UIntTy) {
 | 
						|
        std::cerr << "WARNING: Use of uint type indexes to getelementptr "
 | 
						|
                  << "instruction: replacing with casts to long type.\n";
 | 
						|
        Instruction *I = new CastInst((*$4)[i], Type::LongTy);
 | 
						|
        CurBB->getInstList().push_back(I);
 | 
						|
        (*$4)[i] = I;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!isa<PointerType>($2->get()))
 | 
						|
      ThrowException("getelementptr insn requires pointer operand!");
 | 
						|
    if (!GetElementPtrInst::getIndexedType(*$2, *$4, true))
 | 
						|
      ThrowException("Can't get element ptr '" + (*$2)->getDescription()+ "'!");
 | 
						|
    $$ = new GetElementPtrInst(getVal(*$2, $3), *$4);
 | 
						|
    delete $2; delete $4;
 | 
						|
  };
 | 
						|
 | 
						|
%%
 | 
						|
int yyerror(const char *ErrorMsg) {
 | 
						|
  string where  = string((CurFilename == "-")? string("<stdin>") : CurFilename)
 | 
						|
                  + ":" + utostr((unsigned) llvmAsmlineno) + ": ";
 | 
						|
  string errMsg = string(ErrorMsg) + string("\n") + where + " while reading ";
 | 
						|
  if (yychar == YYEMPTY)
 | 
						|
    errMsg += "end-of-file.";
 | 
						|
  else
 | 
						|
    errMsg += "token: '" + string(llvmAsmtext, llvmAsmleng) + "'";
 | 
						|
  ThrowException(errMsg);
 | 
						|
  return 0;
 | 
						|
}
 |