mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@3501 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			372 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			372 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- InstrForest.cpp - Build instruction forest for inst selection -----===//
 | |
| //
 | |
| //  The key goal is to group instructions into a single
 | |
| //  tree if one or more of them might be potentially combined into a single
 | |
| //  complex instruction in the target machine.
 | |
| //  Since this grouping is completely machine-independent, we do it as
 | |
| //  aggressive as possible to exploit any possible taret instructions.
 | |
| //  In particular, we group two instructions O and I if:
 | |
| //      (1) Instruction O computes an operand used by instruction I,
 | |
| //  and (2) O and I are part of the same basic block,
 | |
| //  and (3) O has only a single use, viz., I.
 | |
| // 
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/CodeGen/InstrForest.h"
 | |
| #include "llvm/CodeGen/MachineCodeForInstruction.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/iTerminators.h"
 | |
| #include "llvm/iMemory.h"
 | |
| #include "llvm/Constant.h"
 | |
| #include "llvm/Type.h"
 | |
| #include "llvm/CodeGen/MachineInstr.h"
 | |
| #include "Support/STLExtras.h"
 | |
| #include <alloca.h>
 | |
| using std::cerr;
 | |
| using std::vector;
 | |
| 
 | |
| //------------------------------------------------------------------------ 
 | |
| // class InstrTreeNode
 | |
| //------------------------------------------------------------------------ 
 | |
| 
 | |
| void
 | |
| InstrTreeNode::dump(int dumpChildren, int indent) const
 | |
| {
 | |
|   dumpNode(indent);
 | |
|   
 | |
|   if (dumpChildren)
 | |
|     {
 | |
|       if (LeftChild)
 | |
| 	LeftChild->dump(dumpChildren, indent+1);
 | |
|       if (RightChild)
 | |
| 	RightChild->dump(dumpChildren, indent+1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| InstructionNode::InstructionNode(Instruction* I)
 | |
|   : InstrTreeNode(NTInstructionNode, I),
 | |
|     codeIsFoldedIntoParent(false)
 | |
| {
 | |
|   opLabel = I->getOpcode();
 | |
| 
 | |
|   // Distinguish special cases of some instructions such as Ret and Br
 | |
|   // 
 | |
|   if (opLabel == Instruction::Ret && cast<ReturnInst>(I)->getReturnValue())
 | |
|     {
 | |
|       opLabel = RetValueOp;              	 // ret(value) operation
 | |
|     }
 | |
|   else if (opLabel ==Instruction::Br && !cast<BranchInst>(I)->isUnconditional())
 | |
|     {
 | |
|       opLabel = BrCondOp;		// br(cond) operation
 | |
|     }
 | |
|   else if (opLabel >= Instruction::SetEQ && opLabel <= Instruction::SetGT)
 | |
|     {
 | |
|       opLabel = SetCCOp;		// common label for all SetCC ops
 | |
|     }
 | |
|   else if (opLabel == Instruction::Alloca && I->getNumOperands() > 0)
 | |
|     {
 | |
|       opLabel = AllocaN;		 // Alloca(ptr, N) operation
 | |
|     }
 | |
|   else if (opLabel == Instruction::GetElementPtr &&
 | |
| 	   cast<GetElementPtrInst>(I)->hasIndices())
 | |
|     {
 | |
|       opLabel = opLabel + 100;		 // getElem with index vector
 | |
|     }
 | |
|   else if (opLabel == Instruction::Xor &&
 | |
|            BinaryOperator::isNot(I))
 | |
|     {
 | |
|       opLabel = (I->getType() == Type::BoolTy)?  NotOp  // boolean Not operator
 | |
|                                               : BNotOp; // bitwise Not operator
 | |
|     }
 | |
|   else if (opLabel == Instruction::And ||
 | |
|            opLabel == Instruction::Or ||
 | |
|            opLabel == Instruction::Xor)
 | |
|     {
 | |
|       // Distinguish bitwise operators from logical operators!
 | |
|       if (I->getType() != Type::BoolTy)
 | |
|         opLabel = opLabel + 100;	 // bitwise operator
 | |
|     }
 | |
|   else if (opLabel == Instruction::Cast)
 | |
|     {
 | |
|       const Type *ITy = I->getType();
 | |
|       switch(ITy->getPrimitiveID())
 | |
| 	{
 | |
| 	case Type::BoolTyID:    opLabel = ToBoolTy;    break;
 | |
| 	case Type::UByteTyID:   opLabel = ToUByteTy;   break;
 | |
| 	case Type::SByteTyID:   opLabel = ToSByteTy;   break;
 | |
| 	case Type::UShortTyID:  opLabel = ToUShortTy;  break;
 | |
| 	case Type::ShortTyID:   opLabel = ToShortTy;   break;
 | |
| 	case Type::UIntTyID:    opLabel = ToUIntTy;    break;
 | |
| 	case Type::IntTyID:     opLabel = ToIntTy;     break;
 | |
| 	case Type::ULongTyID:   opLabel = ToULongTy;   break;
 | |
| 	case Type::LongTyID:    opLabel = ToLongTy;    break;
 | |
| 	case Type::FloatTyID:   opLabel = ToFloatTy;   break;
 | |
| 	case Type::DoubleTyID:  opLabel = ToDoubleTy;  break;
 | |
| 	case Type::ArrayTyID:   opLabel = ToArrayTy;   break;
 | |
| 	case Type::PointerTyID: opLabel = ToPointerTy; break;
 | |
| 	default:
 | |
| 	  // Just use `Cast' opcode otherwise. It's probably ignored.
 | |
| 	  break;
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| void
 | |
| InstructionNode::dumpNode(int indent) const
 | |
| {
 | |
|   for (int i=0; i < indent; i++)
 | |
|     cerr << "    ";
 | |
|   cerr << getInstruction()->getOpcodeName()
 | |
|        << " [label " << getOpLabel() << "]" << "\n";
 | |
| }
 | |
| 
 | |
| 
 | |
| void
 | |
| VRegListNode::dumpNode(int indent) const
 | |
| {
 | |
|   for (int i=0; i < indent; i++)
 | |
|     cerr << "    ";
 | |
|   
 | |
|   cerr << "List" << "\n";
 | |
| }
 | |
| 
 | |
| 
 | |
| void
 | |
| VRegNode::dumpNode(int indent) const
 | |
| {
 | |
|   for (int i=0; i < indent; i++)
 | |
|     cerr << "    ";
 | |
|   
 | |
|   cerr << "VReg " << getValue() << "\t(type "
 | |
|        << (int) getValue()->getValueType() << ")" << "\n";
 | |
| }
 | |
| 
 | |
| void
 | |
| ConstantNode::dumpNode(int indent) const
 | |
| {
 | |
|   for (int i=0; i < indent; i++)
 | |
|     cerr << "    ";
 | |
|   
 | |
|   cerr << "Constant " << getValue() << "\t(type "
 | |
|        << (int) getValue()->getValueType() << ")" << "\n";
 | |
| }
 | |
| 
 | |
| void
 | |
| LabelNode::dumpNode(int indent) const
 | |
| {
 | |
|   for (int i=0; i < indent; i++)
 | |
|     cerr << "    ";
 | |
|   
 | |
|   cerr << "Label " << getValue() << "\n";
 | |
| }
 | |
| 
 | |
| //------------------------------------------------------------------------
 | |
| // class InstrForest
 | |
| // 
 | |
| // A forest of instruction trees, usually for a single method.
 | |
| //------------------------------------------------------------------------ 
 | |
| 
 | |
| InstrForest::InstrForest(Function *F)
 | |
| {
 | |
|   for (Function::iterator BB = F->begin(), FE = F->end(); BB != FE; ++BB) {
 | |
|     for(BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | |
|       buildTreeForInstruction(I);
 | |
|   }
 | |
| }
 | |
| 
 | |
| InstrForest::~InstrForest()
 | |
| {
 | |
|   for_each(treeRoots.begin(), treeRoots.end(), deleter<InstructionNode>);
 | |
| }
 | |
| 
 | |
| void
 | |
| InstrForest::dump() const
 | |
| {
 | |
|   for (const_root_iterator I = roots_begin(); I != roots_end(); ++I)
 | |
|     (*I)->dump(/*dumpChildren*/ 1, /*indent*/ 0);
 | |
| }
 | |
| 
 | |
| inline void
 | |
| InstrForest::eraseRoot(InstructionNode* node)
 | |
| {
 | |
|   for (RootSet::reverse_iterator RI=treeRoots.rbegin(), RE=treeRoots.rend();
 | |
|        RI != RE; ++RI)
 | |
|     if (*RI == node)
 | |
|       treeRoots.erase(RI.base()-1);
 | |
| }
 | |
| 
 | |
| inline void
 | |
| InstrForest::noteTreeNodeForInstr(Instruction *instr,
 | |
| 				  InstructionNode *treeNode)
 | |
| {
 | |
|   (*this)[instr] = treeNode;
 | |
|   treeRoots.push_back(treeNode);	// mark node as root of a new tree
 | |
| }
 | |
| 
 | |
| 
 | |
| inline void
 | |
| InstrForest::setLeftChild(InstrTreeNode *parent, InstrTreeNode *child)
 | |
| {
 | |
|   parent->LeftChild = child;
 | |
|   child->Parent = parent;
 | |
|   if (InstructionNode* instrNode = dyn_cast<InstructionNode>(child))
 | |
|     eraseRoot(instrNode); // no longer a tree root
 | |
| }
 | |
| 
 | |
| inline void
 | |
| InstrForest::setRightChild(InstrTreeNode *parent, InstrTreeNode *child)
 | |
| {
 | |
|   parent->RightChild = child;
 | |
|   child->Parent = parent;
 | |
|   if (InstructionNode* instrNode = dyn_cast<InstructionNode>(child))
 | |
|     eraseRoot(instrNode); // no longer a tree root
 | |
| }
 | |
| 
 | |
| 
 | |
| InstructionNode*
 | |
| InstrForest::buildTreeForInstruction(Instruction *instr)
 | |
| {
 | |
|   InstructionNode *treeNode = getTreeNodeForInstr(instr);
 | |
|   if (treeNode)
 | |
|     {
 | |
|       // treeNode has already been constructed for this instruction
 | |
|       assert(treeNode->getInstruction() == instr);
 | |
|       return treeNode;
 | |
|     }
 | |
|   
 | |
|   // Otherwise, create a new tree node for this instruction.
 | |
|   // 
 | |
|   treeNode = new InstructionNode(instr);
 | |
|   noteTreeNodeForInstr(instr, treeNode);
 | |
|   
 | |
|   if (instr->getOpcode() == Instruction::Call)
 | |
|     { // Operands of call instruction
 | |
|       return treeNode;
 | |
|     }
 | |
|   
 | |
|   // If the instruction has more than 2 instruction operands,
 | |
|   // then we need to create artificial list nodes to hold them.
 | |
|   // (Note that we only count operands that get tree nodes, and not
 | |
|   // others such as branch labels for a branch or switch instruction.)
 | |
|   //
 | |
|   // To do this efficiently, we'll walk all operands, build treeNodes
 | |
|   // for all appropriate operands and save them in an array.  We then
 | |
|   // insert children at the end, creating list nodes where needed.
 | |
|   // As a performance optimization, allocate a child array only
 | |
|   // if a fixed array is too small.
 | |
|   // 
 | |
|   int numChildren = 0;
 | |
|   InstrTreeNode **childArray =
 | |
|     (InstrTreeNode **)alloca(instr->getNumOperands()*sizeof(InstrTreeNode *));
 | |
|   
 | |
|   //
 | |
|   // Walk the operands of the instruction
 | |
|   // 
 | |
|   for (Instruction::op_iterator O = instr->op_begin(); O!=instr->op_end(); ++O)
 | |
|     {
 | |
|       Value* operand = *O;
 | |
|       
 | |
|       // Check if the operand is a data value, not an branch label, type,
 | |
|       // method or module.  If the operand is an address type (i.e., label
 | |
|       // or method) that is used in an non-branching operation, e.g., `add'.
 | |
|       // that should be considered a data value.
 | |
|     
 | |
|       // Check latter condition here just to simplify the next IF.
 | |
|       bool includeAddressOperand =
 | |
| 	(isa<BasicBlock>(operand) || isa<Function>(operand))
 | |
| 	&& !instr->isTerminator();
 | |
|     
 | |
|       if (includeAddressOperand || isa<Instruction>(operand) ||
 | |
| 	  isa<Constant>(operand) || isa<Argument>(operand) ||
 | |
| 	  isa<GlobalVariable>(operand))
 | |
| 	{
 | |
| 	  // This operand is a data value
 | |
| 	
 | |
| 	  // An instruction that computes the incoming value is added as a
 | |
| 	  // child of the current instruction if:
 | |
| 	  //   the value has only a single use
 | |
| 	  //   AND both instructions are in the same basic block.
 | |
| 	  //   AND the current instruction is not a PHI (because the incoming
 | |
| 	  //		value is conceptually in a predecessor block,
 | |
| 	  //		even though it may be in the same static block)
 | |
| 	  // 
 | |
| 	  // (Note that if the value has only a single use (viz., `instr'),
 | |
| 	  //  the def of the value can be safely moved just before instr
 | |
| 	  //  and therefore it is safe to combine these two instructions.)
 | |
| 	  // 
 | |
| 	  // In all other cases, the virtual register holding the value
 | |
| 	  // is used directly, i.e., made a child of the instruction node.
 | |
| 	  // 
 | |
| 	  InstrTreeNode* opTreeNode;
 | |
| 	  if (isa<Instruction>(operand) && operand->use_size() == 1 &&
 | |
| 	      cast<Instruction>(operand)->getParent() == instr->getParent() &&
 | |
| 	      instr->getOpcode() != Instruction::PHINode &&
 | |
| 	      instr->getOpcode() != Instruction::Call)
 | |
| 	    {
 | |
| 	      // Recursively create a treeNode for it.
 | |
| 	      opTreeNode = buildTreeForInstruction((Instruction*)operand);
 | |
| 	    }
 | |
| 	  else if (Constant *CPV = dyn_cast<Constant>(operand))
 | |
| 	    {
 | |
| 	      // Create a leaf node for a constant
 | |
| 	      opTreeNode = new ConstantNode(CPV);
 | |
| 	    }
 | |
| 	  else
 | |
| 	    {
 | |
| 	      // Create a leaf node for the virtual register
 | |
| 	      opTreeNode = new VRegNode(operand);
 | |
| 	    }
 | |
| 
 | |
| 	  childArray[numChildren++] = opTreeNode;
 | |
| 	}
 | |
|     }
 | |
|   
 | |
|   //-------------------------------------------------------------------- 
 | |
|   // Add any selected operands as children in the tree.
 | |
|   // Certain instructions can have more than 2 in some instances (viz.,
 | |
|   // a CALL or a memory access -- LOAD, STORE, and GetElemPtr -- to an
 | |
|   // array or struct). Make the operands of every such instruction into
 | |
|   // a right-leaning binary tree with the operand nodes at the leaves
 | |
|   // and VRegList nodes as internal nodes.
 | |
|   //-------------------------------------------------------------------- 
 | |
|   
 | |
|   InstrTreeNode *parent = treeNode;
 | |
|   
 | |
|   if (numChildren > 2)
 | |
|     {
 | |
|       unsigned instrOpcode = treeNode->getInstruction()->getOpcode();
 | |
|       assert(instrOpcode == Instruction::PHINode ||
 | |
| 	     instrOpcode == Instruction::Call ||
 | |
| 	     instrOpcode == Instruction::Load ||
 | |
| 	     instrOpcode == Instruction::Store ||
 | |
| 	     instrOpcode == Instruction::GetElementPtr);
 | |
|     }
 | |
|   
 | |
|   // Insert the first child as a direct child
 | |
|   if (numChildren >= 1)
 | |
|     setLeftChild(parent, childArray[0]);
 | |
| 
 | |
|   int n;
 | |
|   
 | |
|   // Create a list node for children 2 .. N-1, if any
 | |
|   for (n = numChildren-1; n >= 2; n--)
 | |
|     {
 | |
|       // We have more than two children
 | |
|       InstrTreeNode *listNode = new VRegListNode();
 | |
|       setRightChild(parent, listNode);
 | |
|       setLeftChild(listNode, childArray[numChildren - n]);
 | |
|       parent = listNode;
 | |
|     }
 | |
|   
 | |
|   // Now insert the last remaining child (if any).
 | |
|   if (numChildren >= 2)
 | |
|     {
 | |
|       assert(n == 1);
 | |
|       setRightChild(parent, childArray[numChildren - 1]);
 | |
|     }
 | |
|   
 | |
|   return treeNode;
 | |
| }
 |