mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	wasn't an optimization and it was causing lots of bugs. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@4779 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			364 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			364 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- FunctionResolution.cpp - Resolve declarations to implementations ---===//
 | |
| //
 | |
| // Loop over the functions that are in the module and look for functions that
 | |
| // have the same name.  More often than not, there will be things like:
 | |
| //
 | |
| //    declare void %foo(...)
 | |
| //    void %foo(int, int) { ... }
 | |
| //
 | |
| // because of the way things are declared in C.  If this is the case, patch
 | |
| // things up.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/IPO.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/SymbolTable.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/iOther.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "Support/Statistic.h"
 | |
| #include <algorithm>
 | |
| 
 | |
| using std::vector;
 | |
| using std::string;
 | |
| using std::cerr;
 | |
| 
 | |
| namespace {
 | |
|   Statistic<>NumResolved("funcresolve", "Number of varargs functions resolved");
 | |
|   Statistic<> NumGlobals("funcresolve", "Number of global variables resolved");
 | |
| 
 | |
|   struct FunctionResolvingPass : public Pass {
 | |
|     bool run(Module &M);
 | |
|   };
 | |
|   RegisterOpt<FunctionResolvingPass> X("funcresolve", "Resolve Functions");
 | |
| }
 | |
| 
 | |
| Pass *createFunctionResolvingPass() {
 | |
|   return new FunctionResolvingPass();
 | |
| }
 | |
| 
 | |
| // ConvertCallTo - Convert a call to a varargs function with no arg types
 | |
| // specified to a concrete nonvarargs function.
 | |
| //
 | |
| static void ConvertCallTo(CallInst *CI, Function *Dest) {
 | |
|   const FunctionType::ParamTypes &ParamTys =
 | |
|     Dest->getFunctionType()->getParamTypes();
 | |
|   BasicBlock *BB = CI->getParent();
 | |
| 
 | |
|   // Keep an iterator to where we want to insert cast instructions if the
 | |
|   // argument types don't agree.
 | |
|   //
 | |
|   BasicBlock::iterator BBI = CI;
 | |
|   assert(CI->getNumOperands()-1 == ParamTys.size() &&
 | |
|          "Function calls resolved funny somehow, incompatible number of args");
 | |
| 
 | |
|   vector<Value*> Params;
 | |
| 
 | |
|   // Convert all of the call arguments over... inserting cast instructions if
 | |
|   // the types are not compatible.
 | |
|   for (unsigned i = 1; i < CI->getNumOperands(); ++i) {
 | |
|     Value *V = CI->getOperand(i);
 | |
| 
 | |
|     if (V->getType() != ParamTys[i-1])  // Must insert a cast...
 | |
|       V = new CastInst(V, ParamTys[i-1], "argcast", BBI);
 | |
| 
 | |
|     Params.push_back(V);
 | |
|   }
 | |
| 
 | |
|   // Replace the old call instruction with a new call instruction that calls
 | |
|   // the real function.
 | |
|   //
 | |
|   Instruction *NewCall = new CallInst(Dest, Params, "", BBI);
 | |
| 
 | |
|   // Remove the old call instruction from the program...
 | |
|   BB->getInstList().remove(BBI);
 | |
| 
 | |
|   // Transfer the name over...
 | |
|   if (NewCall->getType() != Type::VoidTy)
 | |
|     NewCall->setName(CI->getName());
 | |
| 
 | |
|   // Replace uses of the old instruction with the appropriate values...
 | |
|   //
 | |
|   if (NewCall->getType() == CI->getType()) {
 | |
|     CI->replaceAllUsesWith(NewCall);
 | |
|     NewCall->setName(CI->getName());
 | |
| 
 | |
|   } else if (NewCall->getType() == Type::VoidTy) {
 | |
|     // Resolved function does not return a value but the prototype does.  This
 | |
|     // often occurs because undefined functions default to returning integers.
 | |
|     // Just replace uses of the call (which are broken anyway) with dummy
 | |
|     // values.
 | |
|     CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
 | |
|   } else if (CI->getType() == Type::VoidTy) {
 | |
|     // If we are gaining a new return value, we don't have to do anything
 | |
|     // special here, because it will automatically be ignored.
 | |
|   } else {
 | |
|     // Insert a cast instruction to convert the return value of the function
 | |
|     // into it's new type.  Of course we only need to do this if the return
 | |
|     // value of the function is actually USED.
 | |
|     //
 | |
|     if (!CI->use_empty()) {
 | |
|       // Insert the new cast instruction...
 | |
|       CastInst *NewCast = new CastInst(NewCall, CI->getType(),
 | |
|                                        NewCall->getName(), BBI);
 | |
|       CI->replaceAllUsesWith(NewCast);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // The old instruction is no longer needed, destroy it!
 | |
|   delete CI;
 | |
| }
 | |
| 
 | |
| 
 | |
| static bool ResolveFunctions(Module &M, vector<GlobalValue*> &Globals,
 | |
|                              Function *Concrete) {
 | |
|   bool Changed = false;
 | |
|   for (unsigned i = 0; i != Globals.size(); ++i)
 | |
|     if (Globals[i] != Concrete) {
 | |
|       Function *Old = cast<Function>(Globals[i]);
 | |
|       const FunctionType *OldMT = Old->getFunctionType();
 | |
|       const FunctionType *ConcreteMT = Concrete->getFunctionType();
 | |
|       
 | |
|       assert(OldMT->getParamTypes().size() <=
 | |
|              ConcreteMT->getParamTypes().size() &&
 | |
|              "Concrete type must have more specified parameters!");
 | |
|       
 | |
|       // Check to make sure that if there are specified types, that they
 | |
|       // match...
 | |
|       //
 | |
|       for (unsigned i = 0; i < OldMT->getParamTypes().size(); ++i)
 | |
|         if (OldMT->getParamTypes()[i] != ConcreteMT->getParamTypes()[i]) {
 | |
|           cerr << "Parameter types conflict for: '" << OldMT
 | |
|                << "' and '" << ConcreteMT << "'\n";
 | |
|           return Changed;
 | |
|         }
 | |
|       
 | |
|       // Attempt to convert all of the uses of the old function to the
 | |
|       // concrete form of the function.  If there is a use of the fn that
 | |
|       // we don't understand here we punt to avoid making a bad
 | |
|       // transformation.
 | |
|       //
 | |
|       // At this point, we know that the return values are the same for
 | |
|       // our two functions and that the Old function has no varargs fns
 | |
|       // specified.  In otherwords it's just <retty> (...)
 | |
|       //
 | |
|       for (unsigned i = 0; i < Old->use_size(); ) {
 | |
|         User *U = *(Old->use_begin()+i);
 | |
|         if (CastInst *CI = dyn_cast<CastInst>(U)) {
 | |
|           // Convert casts directly
 | |
|           assert(CI->getOperand(0) == Old);
 | |
|           CI->setOperand(0, Concrete);
 | |
|           Changed = true;
 | |
|           ++NumResolved;
 | |
|         } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
 | |
|           // Can only fix up calls TO the argument, not args passed in.
 | |
|           if (CI->getCalledValue() == Old) {
 | |
|             ConvertCallTo(CI, Concrete);
 | |
|             Changed = true;
 | |
|             ++NumResolved;
 | |
|           } else {
 | |
|             cerr << "Couldn't cleanup this function call, must be an"
 | |
|                  << " argument or something!" << CI;
 | |
|             ++i;
 | |
|           }
 | |
|         } else {
 | |
|           cerr << "Cannot convert use of function: " << U << "\n";
 | |
|           ++i;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| 
 | |
| static bool ResolveGlobalVariables(Module &M, vector<GlobalValue*> &Globals,
 | |
|                                    GlobalVariable *Concrete) {
 | |
|   bool Changed = false;
 | |
|   assert(isa<ArrayType>(Concrete->getType()->getElementType()) &&
 | |
|          "Concrete version should be an array type!");
 | |
| 
 | |
|   // Get the type of the things that may be resolved to us...
 | |
|   const Type *AETy =
 | |
|     cast<ArrayType>(Concrete->getType()->getElementType())->getElementType();
 | |
| 
 | |
|   std::vector<Constant*> Args;
 | |
|   Args.push_back(Constant::getNullValue(Type::LongTy));
 | |
|   Args.push_back(Constant::getNullValue(Type::LongTy));
 | |
|   ConstantExpr *Replacement =
 | |
|     ConstantExpr::getGetElementPtr(ConstantPointerRef::get(Concrete), Args);
 | |
|   
 | |
|   for (unsigned i = 0; i != Globals.size(); ++i)
 | |
|     if (Globals[i] != Concrete) {
 | |
|       GlobalVariable *Old = cast<GlobalVariable>(Globals[i]);
 | |
|       if (Old->getType()->getElementType() != AETy) {
 | |
|         std::cerr << "WARNING: Two global variables exist with the same name "
 | |
|                   << "that cannot be resolved!\n";
 | |
|         return false;
 | |
|       }
 | |
| 
 | |
|       // In this case, Old is a pointer to T, Concrete is a pointer to array of
 | |
|       // T.  Because of this, replace all uses of Old with a constantexpr
 | |
|       // getelementptr that returns the address of the first element of the
 | |
|       // array.
 | |
|       //
 | |
|       Old->replaceAllUsesWith(Replacement);
 | |
|       // Since there are no uses of Old anymore, remove it from the module.
 | |
|       M.getGlobalList().erase(Old);
 | |
| 
 | |
|       ++NumGlobals;
 | |
|       Changed = true;
 | |
|     }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| static bool ProcessGlobalsWithSameName(Module &M,
 | |
|                                        vector<GlobalValue*> &Globals) {
 | |
|   assert(!Globals.empty() && "Globals list shouldn't be empty here!");
 | |
| 
 | |
|   bool isFunction = isa<Function>(Globals[0]);   // Is this group all functions?
 | |
|   bool Changed = false;
 | |
|   GlobalValue *Concrete = 0;  // The most concrete implementation to resolve to
 | |
| 
 | |
|   assert((isFunction ^ isa<GlobalVariable>(Globals[0])) &&
 | |
|          "Should either be function or gvar!");
 | |
| 
 | |
|   for (unsigned i = 0; i != Globals.size(); ) {
 | |
|     if (isa<Function>(Globals[i]) != isFunction) {
 | |
|       std::cerr << "WARNING: Found function and global variable with the "
 | |
|                 << "same name: '" << Globals[i]->getName() << "'.\n";
 | |
|       return false;                 // Don't know how to handle this, bail out!
 | |
|     }
 | |
| 
 | |
|     if (isFunction) {
 | |
|       // For functions, we look to merge functions definitions of "int (...)"
 | |
|       // to 'int (int)' or 'int ()' or whatever else is not completely generic.
 | |
|       //
 | |
|       Function *F = cast<Function>(Globals[i]);
 | |
|       if (!F->isExternal()) {
 | |
|         if (Concrete && !Concrete->isExternal())
 | |
|           return false;   // Found two different functions types.  Can't choose!
 | |
|         
 | |
|         Concrete = Globals[i];
 | |
|       } else if (Concrete) {
 | |
|         if (Concrete->isExternal()) // If we have multiple external symbols...x
 | |
|           if (F->getFunctionType()->getNumParams() > 
 | |
|               cast<Function>(Concrete)->getFunctionType()->getNumParams())
 | |
|             Concrete = F;  // We are more concrete than "Concrete"!
 | |
| 
 | |
|       } else {
 | |
|         Concrete = F;
 | |
|       }
 | |
|       ++i;
 | |
|     } else {
 | |
|       // For global variables, we have to merge C definitions int A[][4] with
 | |
|       // int[6][4]
 | |
|       GlobalVariable *GV = cast<GlobalVariable>(Globals[i]);
 | |
|       if (Concrete == 0) {
 | |
|         if (isa<ArrayType>(GV->getType()->getElementType()))
 | |
|           Concrete = GV;
 | |
|       } else {    // Must have different types... one is an array of the other?
 | |
|         const ArrayType *AT =
 | |
|           dyn_cast<ArrayType>(GV->getType()->getElementType());
 | |
| 
 | |
|         // If GV is an array of Concrete, then GV is the array.
 | |
|         if (AT && AT->getElementType() == Concrete->getType()->getElementType())
 | |
|           Concrete = GV;
 | |
|         else {
 | |
|           // Concrete must be an array type, check to see if the element type of
 | |
|           // concrete is already GV.
 | |
|           AT = cast<ArrayType>(Concrete->getType()->getElementType());
 | |
|           if (AT->getElementType() != GV->getType()->getElementType())
 | |
|             Concrete = 0;           // Don't know how to handle it!
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       ++i;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (Globals.size() > 1) {         // Found a multiply defined global...
 | |
|     // We should find exactly one concrete function definition, which is
 | |
|     // probably the implementation.  Change all of the function definitions and
 | |
|     // uses to use it instead.
 | |
|     //
 | |
|     if (!Concrete) {
 | |
|       cerr << "WARNING: Found function types that are not compatible:\n";
 | |
|       for (unsigned i = 0; i < Globals.size(); ++i) {
 | |
|         cerr << "\t" << Globals[i]->getType()->getDescription() << " %"
 | |
|              << Globals[i]->getName() << "\n";
 | |
|       }
 | |
|       cerr << "  No linkage of globals named '" << Globals[0]->getName()
 | |
|            << "' performed!\n";
 | |
|       return Changed;
 | |
|     }
 | |
| 
 | |
|     if (isFunction)
 | |
|       return Changed | ResolveFunctions(M, Globals, cast<Function>(Concrete));
 | |
|     else
 | |
|       return Changed | ResolveGlobalVariables(M, Globals,
 | |
|                                               cast<GlobalVariable>(Concrete));
 | |
|   }
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool FunctionResolvingPass::run(Module &M) {
 | |
|   SymbolTable &ST = M.getSymbolTable();
 | |
| 
 | |
|   std::map<string, vector<GlobalValue*> > Globals;
 | |
| 
 | |
|   // Loop over the entries in the symbol table. If an entry is a func pointer,
 | |
|   // then add it to the Functions map.  We do a two pass algorithm here to avoid
 | |
|   // problems with iterators getting invalidated if we did a one pass scheme.
 | |
|   //
 | |
|   for (SymbolTable::iterator I = ST.begin(), E = ST.end(); I != E; ++I)
 | |
|     if (const PointerType *PT = dyn_cast<PointerType>(I->first)) {
 | |
|       SymbolTable::VarMap &Plane = I->second;
 | |
|       for (SymbolTable::type_iterator PI = Plane.begin(), PE = Plane.end();
 | |
|            PI != PE; ++PI) {
 | |
|         GlobalValue *GV = cast<GlobalValue>(PI->second);
 | |
|         assert(PI->first == GV->getName() &&
 | |
|                "Global name and symbol table do not agree!");
 | |
|         if (GV->hasExternalLinkage())  // Only resolve decls to external fns
 | |
|           Globals[PI->first].push_back(GV);
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // Now we have a list of all functions with a particular name.  If there is
 | |
|   // more than one entry in a list, merge the functions together.
 | |
|   //
 | |
|   for (std::map<string, vector<GlobalValue*> >::iterator I = Globals.begin(), 
 | |
|          E = Globals.end(); I != E; ++I)
 | |
|     Changed |= ProcessGlobalsWithSameName(M, I->second);
 | |
| 
 | |
|   // Now loop over all of the globals, checking to see if any are trivially
 | |
|   // dead.  If so, remove them now.
 | |
| 
 | |
|   for (Module::iterator I = M.begin(), E = M.end(); I != E; )
 | |
|     if (I->isExternal() && I->use_empty()) {
 | |
|       Function *F = I;
 | |
|       ++I;
 | |
|       M.getFunctionList().erase(F);
 | |
|       ++NumResolved;
 | |
|       Changed = true;
 | |
|     } else {
 | |
|       ++I;
 | |
|     }
 | |
| 
 | |
|   for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; )
 | |
|     if (I->isExternal() && I->use_empty()) {
 | |
|       GlobalVariable *GV = I;
 | |
|       ++I;
 | |
|       M.getGlobalList().erase(GV);
 | |
|       ++NumGlobals;
 | |
|       Changed = true;
 | |
|     } else {
 | |
|       ++I;
 | |
|     }
 | |
| 
 | |
|   return Changed;
 | |
| }
 |