mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@4649 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			215 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			215 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- ProfilePaths.cpp - interface to insert instrumentation ---*- C++ -*--=//
 | |
| //
 | |
| // This inserts intrumentation for counting
 | |
| // execution of paths though a given function
 | |
| // Its implemented as a "Function" Pass, and called using opt
 | |
| //
 | |
| // This pass is implemented by using algorithms similar to 
 | |
| // 1."Efficient Path Profiling": Ball, T. and Larus, J. R., 
 | |
| // Proceedings of Micro-29, Dec 1996, Paris, France.
 | |
| // 2."Efficiently Counting Program events with support for on-line
 | |
| //   "queries": Ball T., ACM Transactions on Programming Languages
 | |
| //   and systems, Sep 1994.
 | |
| //
 | |
| // The algorithms work on a Graph constructed over the nodes
 | |
| // made from Basic Blocks: The transformations then take place on
 | |
| // the constucted graph (implementation in Graph.cpp and GraphAuxillary.cpp)
 | |
| // and finally, appropriate instrumentation is placed over suitable edges.
 | |
| // (code inserted through EdgeCode.cpp).
 | |
| // 
 | |
| // The algorithm inserts code such that every acyclic path in the CFG
 | |
| // of a function is identified through a unique number. the code insertion
 | |
| // is optimal in the sense that its inserted over a minimal set of edges. Also,
 | |
| // the algorithm makes sure than initialization, path increment and counter
 | |
| // update can be collapsed into minimum number of edges.
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Instrumentation/ProfilePaths.h"
 | |
| #include "llvm/Transforms/Utils/UnifyFunctionExitNodes.h"
 | |
| #include "llvm/Transforms/Instrumentation/Graph.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/iMemory.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/Module.h"
 | |
| #include <iostream>
 | |
| #include <fstream>
 | |
| 
 | |
| using std::vector;
 | |
| 
 | |
| struct ProfilePaths : public FunctionPass {
 | |
|   bool runOnFunction(Function &F);
 | |
| 
 | |
|   // Before this pass, make sure that there is only one 
 | |
|   // entry and only one exit node for the function in the CFG of the function
 | |
|   //
 | |
|   void ProfilePaths::getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|     AU.addRequired<UnifyFunctionExitNodes>();
 | |
|   }
 | |
| };
 | |
| 
 | |
| static RegisterOpt<ProfilePaths> X("paths", "Profile Paths");
 | |
| 
 | |
| // createProfilePathsPass - Create a new pass to add path profiling
 | |
| //
 | |
| Pass *createProfilePathsPass() {
 | |
|   return new ProfilePaths();
 | |
| }
 | |
| 
 | |
| 
 | |
| static Node *findBB(std::vector<Node *> &st, BasicBlock *BB){
 | |
|   for(std::vector<Node *>::iterator si=st.begin(); si!=st.end(); ++si){
 | |
|     if(((*si)->getElement())==BB){
 | |
|       return *si;
 | |
|     }
 | |
|   }
 | |
|   return NULL;
 | |
| }
 | |
| 
 | |
| //Per function pass for inserting counters and trigger code
 | |
| bool ProfilePaths::runOnFunction(Function &F){
 | |
| 
 | |
|   static int mn = -1;
 | |
| 
 | |
|   if(F.isExternal()) {
 | |
|     return false;
 | |
|   }
 | |
|  
 | |
|   //increment counter for instrumented functions. mn is now function#
 | |
|   mn++;
 | |
|   
 | |
|   // Transform the cfg s.t. we have just one exit node
 | |
|   BasicBlock *ExitNode = getAnalysis<UnifyFunctionExitNodes>().getExitNode();  
 | |
| 
 | |
|   //iterating over BBs and making graph
 | |
|   std::vector<Node *> nodes;
 | |
|   std::vector<Edge> edges;
 | |
| 
 | |
|   Node *tmp;
 | |
|   Node *exitNode = 0, *startNode = 0;
 | |
| 
 | |
|   // The nodes must be uniquesly identified:
 | |
|   // That is, no two nodes must hav same BB*
 | |
|   
 | |
|   for (Function::iterator BB = F.begin(), BE = F.end(); BB != BE; ++BB) {
 | |
|     Node *nd=new Node(BB);
 | |
|     nodes.push_back(nd); 
 | |
|     if(&*BB == ExitNode)
 | |
|       exitNode=nd;
 | |
|     if(&*BB==F.begin())
 | |
|       startNode=nd;
 | |
|   }
 | |
| 
 | |
|   // now do it againto insert edges
 | |
|   for (Function::iterator BB = F.begin(), BE = F.end(); BB != BE; ++BB){
 | |
|     Node *nd=findBB(nodes, BB);
 | |
|     assert(nd && "No node for this edge!");
 | |
| 
 | |
|     for(BasicBlock::succ_iterator s=succ_begin(BB), se=succ_end(BB); 
 | |
| 	s!=se; ++s){
 | |
|       Node *nd2=findBB(nodes,*s);
 | |
|       assert(nd2 && "No node for this edge!");
 | |
|       Edge ed(nd,nd2,0);
 | |
|       edges.push_back(ed);
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   Graph g(nodes,edges, startNode, exitNode);
 | |
| 
 | |
| #ifdef DEBUG_PATH_PROFILES  
 | |
|   std::cerr<<"Original graph\n";
 | |
|   printGraph(g);
 | |
| #endif
 | |
| 
 | |
|   BasicBlock *fr = &F.front();
 | |
|   
 | |
|   // The graph is made acyclic: this is done
 | |
|   // by removing back edges for now, and adding them later on
 | |
|   vector<Edge> be;
 | |
|   std::map<Node *, int> nodePriority; //it ranks nodes in depth first order traversal
 | |
|   g.getBackEdges(be, nodePriority);
 | |
|   
 | |
| #ifdef DEBUG_PATH_PROFILES
 | |
|   std::cerr<<"BackEdges-------------\n";
 | |
|   for(vector<Edge>::iterator VI=be.begin(); VI!=be.end(); ++VI){
 | |
|     printEdge(*VI);
 | |
|     cerr<<"\n";
 | |
|   }
 | |
|   std::cerr<<"------\n";
 | |
| #endif
 | |
| 
 | |
| #ifdef DEBUG_PATH_PROFILES
 | |
|   cerr<<"Backedges:"<<be.size()<<endl;
 | |
| #endif
 | |
|   //Now we need to reflect the effect of back edges
 | |
|   //This is done by adding dummy edges
 | |
|   //If a->b is a back edge
 | |
|   //Then we add 2 back edges for it:
 | |
|   //1. from root->b (in vector stDummy)
 | |
|   //and 2. from a->exit (in vector exDummy)
 | |
|   vector<Edge> stDummy;
 | |
|   vector<Edge> exDummy;
 | |
|   addDummyEdges(stDummy, exDummy, g, be);
 | |
| 
 | |
| #ifdef DEBUG_PATH_PROFILES
 | |
|   std::cerr<<"After adding dummy edges\n";
 | |
|   printGraph(g);
 | |
| #endif
 | |
| 
 | |
|   // Now, every edge in the graph is assigned a weight
 | |
|   // This weight later adds on to assign path
 | |
|   // numbers to different paths in the graph
 | |
|   //  All paths for now are acyclic,
 | |
|   // since no back edges in the graph now
 | |
|   // numPaths is the number of acyclic paths in the graph
 | |
|   int numPaths=valueAssignmentToEdges(g, nodePriority, be);
 | |
| 
 | |
|   if(numPaths<=1 || numPaths >5000) return false;
 | |
|   
 | |
| #ifdef DEBUG_PATH_PROFILES  
 | |
|   printGraph(g);
 | |
| #endif
 | |
| 
 | |
|   //create instruction allocation r and count
 | |
|   //r is the variable that'll act like an accumulator
 | |
|   //all along the path, we just add edge values to r
 | |
|   //and at the end, r reflects the path number
 | |
|   //count is an array: count[x] would store
 | |
|   //the number of executions of path numbered x
 | |
| 
 | |
|   Instruction *rVar=new 
 | |
|     AllocaInst(Type::IntTy, 
 | |
|                ConstantUInt::get(Type::UIntTy,1),"R");
 | |
| 
 | |
|   Instruction *countVar=new 
 | |
|     AllocaInst(Type::IntTy, 
 | |
|                ConstantUInt::get(Type::UIntTy, numPaths), "Count");
 | |
|   
 | |
|   static GlobalVariable *threshold = NULL;
 | |
|   static bool insertedThreshold = false;
 | |
| 
 | |
|   if(!insertedThreshold){
 | |
|     threshold = new GlobalVariable(Type::IntTy, false, false, 0,
 | |
|                                                    "reopt_threshold");
 | |
| 
 | |
|     F.getParent()->getGlobalList().push_back(threshold);
 | |
|     insertedThreshold = true;
 | |
|   }
 | |
| 
 | |
|   assert(threshold && "GlobalVariable threshold not defined!");
 | |
| 
 | |
|   // insert initialization code in first (entry) BB
 | |
|   // this includes initializing r and count
 | |
|   insertInTopBB(&F.getEntryNode(),numPaths, rVar, countVar, threshold);
 | |
|     
 | |
|   //now process the graph: get path numbers,
 | |
|   //get increments along different paths,
 | |
|   //and assign "increments" and "updates" (to r and count)
 | |
|   //"optimally". Finally, insert llvm code along various edges
 | |
|   processGraph(g, rVar, countVar, be, stDummy, exDummy, numPaths, mn, 
 | |
|                threshold);    
 | |
|    
 | |
|   return true;  // Always modifies function
 | |
| }
 |