mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	rank map cache for instruction ranks git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@5030 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			278 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			278 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
 | |
| //
 | |
| // This pass reassociates commutative expressions in an order that is designed
 | |
| // to promote better constant propogation, GCSE, LICM, PRE...
 | |
| //
 | |
| // For example: 4 + (x + 5) -> x + (4 + 5)
 | |
| //
 | |
| // Note that this pass works best if left shifts have been promoted to explicit
 | |
| // multiplies before this pass executes.
 | |
| //
 | |
| // In the implementation of this algorithm, constants are assigned rank = 0,
 | |
| // function arguments are rank = 1, and other values are assigned ranks
 | |
| // corresponding to the reverse post order traversal of current function
 | |
| // (starting at 2), which effectively gives values in deep loops higher rank
 | |
| // than values not in loops.
 | |
| //
 | |
| // This code was originally written by Chris Lattner, and was then cleaned up
 | |
| // and perfected by Casey Carter.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Transforms/Scalar.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/iOperators.h"
 | |
| #include "llvm/Type.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Constant.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "Support/PostOrderIterator.h"
 | |
| #include "Support/Statistic.h"
 | |
| 
 | |
| namespace {
 | |
|   Statistic<> NumLinear ("reassociate","Number of insts linearized");
 | |
|   Statistic<> NumChanged("reassociate","Number of insts reassociated");
 | |
|   Statistic<> NumSwapped("reassociate","Number of insts with operands swapped");
 | |
| 
 | |
|   class Reassociate : public FunctionPass {
 | |
|     std::map<BasicBlock*, unsigned> RankMap;
 | |
|     std::map<Instruction*, unsigned> InstRankMap;
 | |
|   public:
 | |
|     bool runOnFunction(Function &F);
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.setPreservesCFG();
 | |
|     }
 | |
|   private:
 | |
|     void BuildRankMap(Function &F);
 | |
|     unsigned getRank(Value *V);
 | |
|     bool ReassociateExpr(BinaryOperator *I);
 | |
|     bool ReassociateBB(BasicBlock *BB);
 | |
|   };
 | |
| 
 | |
|   RegisterOpt<Reassociate> X("reassociate", "Reassociate expressions");
 | |
| }
 | |
| 
 | |
| Pass *createReassociatePass() { return new Reassociate(); }
 | |
| 
 | |
| void Reassociate::BuildRankMap(Function &F) {
 | |
|   unsigned i = 1;
 | |
|   ReversePostOrderTraversal<Function*> RPOT(&F);
 | |
|   for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
 | |
|          E = RPOT.end(); I != E; ++I)
 | |
|     RankMap[*I] = ++i;
 | |
| }
 | |
| 
 | |
| unsigned Reassociate::getRank(Value *V) {
 | |
|   if (isa<Argument>(V)) return 1;   // Function argument...
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V)) {
 | |
|     // If this is an expression, return the MAX(rank(LHS), rank(RHS)) so that we
 | |
|     // can reassociate expressions for code motion!  Since we do not recurse for
 | |
|     // PHI nodes, we cannot have infinite recursion here, because there cannot
 | |
|     // be loops in the value graph that do not go through PHI nodes.
 | |
|     //
 | |
|     if (I->getOpcode() == Instruction::PHINode ||
 | |
|         I->getOpcode() == Instruction::Alloca ||
 | |
|         I->getOpcode() == Instruction::Malloc || isa<TerminatorInst>(I) ||
 | |
|         I->hasSideEffects())
 | |
|       return RankMap[I->getParent()];
 | |
| 
 | |
|     unsigned &CachedRank = InstRankMap[I];
 | |
|     if (CachedRank) return CachedRank;    // Rank already known?
 | |
| 
 | |
|     // If not, compute it!
 | |
|     unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
 | |
|     for (unsigned i = 0, e = I->getNumOperands();
 | |
|          i != e && Rank != MaxRank; ++i)
 | |
|       Rank = std::max(Rank, getRank(I->getOperand(i)));
 | |
| 
 | |
|     return CachedRank = Rank;
 | |
|   }
 | |
| 
 | |
|   // Otherwise it's a global or constant, rank 0.
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool Reassociate::ReassociateExpr(BinaryOperator *I) {
 | |
|   Value *LHS = I->getOperand(0);
 | |
|   Value *RHS = I->getOperand(1);
 | |
|   unsigned LHSRank = getRank(LHS);
 | |
|   unsigned RHSRank = getRank(RHS);
 | |
|   
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // Make sure the LHS of the operand always has the greater rank...
 | |
|   if (LHSRank < RHSRank) {
 | |
|     bool Success = !I->swapOperands();
 | |
|     assert(Success && "swapOperands failed");
 | |
| 
 | |
|     std::swap(LHS, RHS);
 | |
|     std::swap(LHSRank, RHSRank);
 | |
|     Changed = true;
 | |
|     ++NumSwapped;
 | |
|     DEBUG(std::cerr << "Transposed: " << I
 | |
|           /* << " Result BB: " << I->getParent()*/);
 | |
|   }
 | |
|   
 | |
|   // If the LHS is the same operator as the current one is, and if we are the
 | |
|   // only expression using it...
 | |
|   //
 | |
|   if (BinaryOperator *LHSI = dyn_cast<BinaryOperator>(LHS))
 | |
|     if (LHSI->getOpcode() == I->getOpcode() && LHSI->use_size() == 1) {
 | |
|       // If the rank of our current RHS is less than the rank of the LHS's LHS,
 | |
|       // then we reassociate the two instructions...
 | |
|       if (RHSRank < getRank(LHSI->getOperand(0))) {
 | |
|         unsigned TakeOp = 0;
 | |
|         if (BinaryOperator *IOp = dyn_cast<BinaryOperator>(LHSI->getOperand(0)))
 | |
|           if (IOp->getOpcode() == LHSI->getOpcode())
 | |
|             TakeOp = 1;   // Hoist out non-tree portion
 | |
| 
 | |
|         // Convert ((a + 12) + 10) into (a + (12 + 10))
 | |
|         I->setOperand(0, LHSI->getOperand(TakeOp));
 | |
|         LHSI->setOperand(TakeOp, RHS);
 | |
|         I->setOperand(1, LHSI);
 | |
| 
 | |
|         // Move the LHS expression forward, to ensure that it is dominated by
 | |
|         // its operands.
 | |
|         LHSI->getParent()->getInstList().remove(LHSI);
 | |
|         I->getParent()->getInstList().insert(I, LHSI);
 | |
| 
 | |
|         ++NumChanged;
 | |
|         DEBUG(std::cerr << "Reassociated: " << I/* << " Result BB: "
 | |
|                                                    << I->getParent()*/);
 | |
| 
 | |
|         // Since we modified the RHS instruction, make sure that we recheck it.
 | |
|         ReassociateExpr(LHSI);
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| 
 | |
| // NegateValue - Insert instructions before the instruction pointed to by BI,
 | |
| // that computes the negative version of the value specified.  The negative
 | |
| // version of the value is returned, and BI is left pointing at the instruction
 | |
| // that should be processed next by the reassociation pass.
 | |
| //
 | |
| static Value *NegateValue(Value *V, BasicBlock::iterator &BI) {
 | |
|   // We are trying to expose opportunity for reassociation.  One of the things
 | |
|   // that we want to do to achieve this is to push a negation as deep into an
 | |
|   // expression chain as possible, to expose the add instructions.  In practice,
 | |
|   // this means that we turn this:
 | |
|   //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
 | |
|   // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
 | |
|   // the constants.  We assume that instcombine will clean up the mess later if
 | |
|   // we introduce tons of unneccesary negation instructions...
 | |
|   //
 | |
|   if (Instruction *I = dyn_cast<Instruction>(V))
 | |
|     if (I->getOpcode() == Instruction::Add && I->use_size() == 1) {
 | |
|       Value *RHS = NegateValue(I->getOperand(1), BI);
 | |
|       Value *LHS = NegateValue(I->getOperand(0), BI);
 | |
| 
 | |
|       // We must actually insert a new add instruction here, because the neg
 | |
|       // instructions do not dominate the old add instruction in general.  By
 | |
|       // adding it now, we are assured that the neg instructions we just
 | |
|       // inserted dominate the instruction we are about to insert after them.
 | |
|       //
 | |
|       return BinaryOperator::create(Instruction::Add, LHS, RHS,
 | |
|                                     I->getName()+".neg",
 | |
|                                     cast<Instruction>(RHS)->getNext());
 | |
|     }
 | |
| 
 | |
|   // Insert a 'neg' instruction that subtracts the value from zero to get the
 | |
|   // negation.
 | |
|   //
 | |
|   return BI = BinaryOperator::createNeg(V, V->getName() + ".neg", BI);
 | |
| }
 | |
| 
 | |
| 
 | |
| bool Reassociate::ReassociateBB(BasicBlock *BB) {
 | |
|   bool Changed = false;
 | |
|   for (BasicBlock::iterator BI = BB->begin(); BI != BB->end(); ++BI) {
 | |
| 
 | |
|     DEBUG(std::cerr << "Processing: " << *BI);
 | |
|     if (BI->getOpcode() == Instruction::Sub && !BinaryOperator::isNeg(BI)) {
 | |
|       // Convert a subtract into an add and a neg instruction... so that sub
 | |
|       // instructions can be commuted with other add instructions...
 | |
|       //
 | |
|       // Calculate the negative value of Operand 1 of the sub instruction...
 | |
|       // and set it as the RHS of the add instruction we just made...
 | |
|       //
 | |
|       std::string Name = BI->getName();
 | |
|       BI->setName("");
 | |
|       Instruction *New =
 | |
|         BinaryOperator::create(Instruction::Add, BI->getOperand(0),
 | |
|                                BI->getOperand(1), Name, BI);
 | |
| 
 | |
|       // Everyone now refers to the add instruction...
 | |
|       BI->replaceAllUsesWith(New);
 | |
| 
 | |
|       // Put the new add in the place of the subtract... deleting the subtract
 | |
|       BB->getInstList().erase(BI);
 | |
| 
 | |
|       BI = New;
 | |
|       New->setOperand(1, NegateValue(New->getOperand(1), BI));
 | |
|       
 | |
|       Changed = true;
 | |
|       DEBUG(std::cerr << "Negated: " << New /*<< " Result BB: " << BB*/);
 | |
|     }
 | |
| 
 | |
|     // If this instruction is a commutative binary operator, and the ranks of
 | |
|     // the two operands are sorted incorrectly, fix it now.
 | |
|     //
 | |
|     if (BI->isAssociative()) {
 | |
|       BinaryOperator *I = cast<BinaryOperator>(&*BI);
 | |
|       if (!I->use_empty()) {
 | |
|         // Make sure that we don't have a tree-shaped computation.  If we do,
 | |
|         // linearize it.  Convert (A+B)+(C+D) into ((A+B)+C)+D
 | |
|         //
 | |
|         Instruction *LHSI = dyn_cast<Instruction>(I->getOperand(0));
 | |
|         Instruction *RHSI = dyn_cast<Instruction>(I->getOperand(1));
 | |
|         if (LHSI && (int)LHSI->getOpcode() == I->getOpcode() &&
 | |
|             RHSI && (int)RHSI->getOpcode() == I->getOpcode() &&
 | |
|             RHSI->use_size() == 1) {
 | |
|           // Insert a new temporary instruction... (A+B)+C
 | |
|           BinaryOperator *Tmp = BinaryOperator::create(I->getOpcode(), LHSI,
 | |
|                                                        RHSI->getOperand(0),
 | |
|                                                        RHSI->getName()+".ra",
 | |
|                                                        BI);
 | |
|           BI = Tmp;
 | |
|           I->setOperand(0, Tmp);
 | |
|           I->setOperand(1, RHSI->getOperand(1));
 | |
| 
 | |
|           // Process the temporary instruction for reassociation now.
 | |
|           I = Tmp;
 | |
|           ++NumLinear;
 | |
|           Changed = true;
 | |
|           DEBUG(std::cerr << "Linearized: " << I/* << " Result BB: " << BB*/);
 | |
|         }
 | |
| 
 | |
|         // Make sure that this expression is correctly reassociated with respect
 | |
|         // to it's used values...
 | |
|         //
 | |
|         Changed |= ReassociateExpr(I);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool Reassociate::runOnFunction(Function &F) {
 | |
|   // Recalculate the rank map for F
 | |
|   BuildRankMap(F);
 | |
| 
 | |
|   bool Changed = false;
 | |
|   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
 | |
|     Changed |= ReassociateBB(FI);
 | |
| 
 | |
|   // We are done with the rank map...
 | |
|   RankMap.clear();
 | |
|   InstRankMap.clear();
 | |
|   return Changed;
 | |
| }
 |