mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	pass. Detect and flag them. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@4801 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			519 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			519 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==//
 | |
| //
 | |
| // This file defines the function verifier interface, that can be used for some
 | |
| // sanity checking of input to the system.
 | |
| //
 | |
| // Note that this does not provide full 'java style' security and verifications,
 | |
| // instead it just tries to ensure that code is well formed.
 | |
| //
 | |
| //  * Both of a binary operator's parameters are the same type
 | |
| //  * Verify that the indices of mem access instructions match other operands
 | |
| //  * Verify that arithmetic and other things are only performed on first class
 | |
| //    types.  Verify that shifts & logicals only happen on integrals f.e.
 | |
| //  . All of the constants in a switch statement are of the correct type
 | |
| //  * The code is in valid SSA form
 | |
| //  . It should be illegal to put a label into any other type (like a structure)
 | |
| //    or to return one. [except constant arrays!]
 | |
| //  * Only phi nodes can be self referential: 'add int %0, %0 ; <int>:0' is bad
 | |
| //  * PHI nodes must have an entry for each predecessor, with no extras.
 | |
| //  * PHI nodes must be the first thing in a basic block, all grouped together
 | |
| //  * PHI nodes must have at least one entry
 | |
| //  * All basic blocks should only end with terminator insts, not contain them
 | |
| //  * The entry node to a function must not have predecessors
 | |
| //  * All Instructions must be embeded into a basic block
 | |
| //  . Function's cannot take a void typed parameter
 | |
| //  * Verify that a function's argument list agrees with it's declared type.
 | |
| //  . Verify that arrays and structures have fixed elements: No unsized arrays.
 | |
| //  * It is illegal to specify a name for a void value.
 | |
| //  * It is illegal to have a internal global value with no intitalizer
 | |
| //  * It is illegal to have a ret instruction that returns a value that does not
 | |
| //    agree with the function return value type.
 | |
| //  * Function call argument types match the function prototype
 | |
| //  * All other things that are tested by asserts spread about the code...
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/Verifier.h"
 | |
| #include "llvm/Pass.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/iPHINode.h"
 | |
| #include "llvm/iTerminators.h"
 | |
| #include "llvm/iOther.h"
 | |
| #include "llvm/iOperators.h"
 | |
| #include "llvm/iMemory.h"
 | |
| #include "llvm/SymbolTable.h"
 | |
| #include "llvm/PassManager.h"
 | |
| #include "llvm/Analysis/Dominators.h"
 | |
| #include "llvm/Support/CFG.h"
 | |
| #include "llvm/Support/InstVisitor.h"
 | |
| #include "Support/STLExtras.h"
 | |
| #include <algorithm>
 | |
| 
 | |
| namespace {  // Anonymous namespace for class
 | |
| 
 | |
|   struct Verifier : public FunctionPass, InstVisitor<Verifier> {
 | |
|     bool Broken;          // Is this module found to be broken?
 | |
|     bool RealPass;        // Are we not being run by a PassManager?
 | |
|     bool AbortBroken;     // If broken, should it or should it not abort?
 | |
|     
 | |
|     DominatorSet *DS; // Dominator set, caution can be null!
 | |
| 
 | |
|     Verifier() : Broken(false), RealPass(true), AbortBroken(true), DS(0) {}
 | |
|     Verifier(bool AB) : Broken(false), RealPass(true), AbortBroken(AB), DS(0) {}
 | |
|     Verifier(DominatorSet &ds) 
 | |
|       : Broken(false), RealPass(false), AbortBroken(false), DS(&ds) {}
 | |
| 
 | |
| 
 | |
|     bool doInitialization(Module &M) {
 | |
|       verifySymbolTable(M.getSymbolTable());
 | |
| 
 | |
|       // If this is a real pass, in a pass manager, we must abort before
 | |
|       // returning back to the pass manager, or else the pass manager may try to
 | |
|       // run other passes on the broken module.
 | |
|       //
 | |
|       if (RealPass)
 | |
|         abortIfBroken();
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     bool runOnFunction(Function &F) {
 | |
|       // Get dominator information if we are being run by PassManager
 | |
|       if (RealPass) DS = &getAnalysis<DominatorSet>();
 | |
|       visit(F);
 | |
| 
 | |
|       // If this is a real pass, in a pass manager, we must abort before
 | |
|       // returning back to the pass manager, or else the pass manager may try to
 | |
|       // run other passes on the broken module.
 | |
|       //
 | |
|       if (RealPass)
 | |
|         abortIfBroken();
 | |
| 
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     bool doFinalization(Module &M) {
 | |
|       // Scan through, checking all of the external function's linkage now...
 | |
|       for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
 | |
|         if (I->isExternal() && I->hasInternalLinkage())
 | |
|           CheckFailed("Function Declaration has Internal Linkage!", I);
 | |
| 
 | |
|       for (Module::giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
 | |
|         if (I->isExternal() && I->hasInternalLinkage())
 | |
|           CheckFailed("Global Variable is external with internal linkage!", I);
 | |
| 
 | |
|       // If the module is broken, abort at this time.
 | |
|       abortIfBroken();
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.setPreservesAll();
 | |
|       if (RealPass)
 | |
|         AU.addRequired<DominatorSet>();
 | |
|     }
 | |
| 
 | |
|     // abortIfBroken - If the module is broken and we are supposed to abort on
 | |
|     // this condition, do so.
 | |
|     //
 | |
|     void abortIfBroken() const {
 | |
|       if (Broken && AbortBroken) {
 | |
|         std::cerr << "Broken module found, compilation aborted!\n";
 | |
|         abort();
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Verification methods...
 | |
|     void verifySymbolTable(SymbolTable &ST);
 | |
|     void visitFunction(Function &F);
 | |
|     void visitBasicBlock(BasicBlock &BB);
 | |
|     void visitPHINode(PHINode &PN);
 | |
|     void visitBinaryOperator(BinaryOperator &B);
 | |
|     void visitShiftInst(ShiftInst &SI);
 | |
|     void visitCallInst(CallInst &CI);
 | |
|     void visitGetElementPtrInst(GetElementPtrInst &GEP);
 | |
|     void visitLoadInst(LoadInst &LI);
 | |
|     void visitStoreInst(StoreInst &SI);
 | |
|     void visitInstruction(Instruction &I);
 | |
|     void visitTerminatorInst(TerminatorInst &I);
 | |
|     void visitReturnInst(ReturnInst &RI);
 | |
|     void visitUserOp1(Instruction &I);
 | |
|     void visitUserOp2(Instruction &I) { visitUserOp1(I); }
 | |
| 
 | |
|     // CheckFailed - A check failed, so print out the condition and the message
 | |
|     // that failed.  This provides a nice place to put a breakpoint if you want
 | |
|     // to see why something is not correct.
 | |
|     //
 | |
|     inline void CheckFailed(const std::string &Message,
 | |
|                             const Value *V1 = 0, const Value *V2 = 0,
 | |
|                             const Value *V3 = 0, const Value *V4 = 0) {
 | |
|       std::cerr << Message << "\n";
 | |
|       if (V1) std::cerr << *V1 << "\n";
 | |
|       if (V2) std::cerr << *V2 << "\n";
 | |
|       if (V3) std::cerr << *V3 << "\n";
 | |
|       if (V4) std::cerr << *V4 << "\n";
 | |
|       Broken = true;
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   RegisterPass<Verifier> X("verify", "Module Verifier");
 | |
| }
 | |
| 
 | |
| // Assert - We know that cond should be true, if not print an error message.
 | |
| #define Assert(C, M) \
 | |
|   do { if (!(C)) { CheckFailed(M); return; } } while (0)
 | |
| #define Assert1(C, M, V1) \
 | |
|   do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
 | |
| #define Assert2(C, M, V1, V2) \
 | |
|   do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
 | |
| #define Assert3(C, M, V1, V2, V3) \
 | |
|   do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
 | |
| #define Assert4(C, M, V1, V2, V3, V4) \
 | |
|   do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
 | |
| 
 | |
| 
 | |
| // verifySymbolTable - Verify that a function or module symbol table is ok
 | |
| //
 | |
| void Verifier::verifySymbolTable(SymbolTable &ST) {
 | |
|   // Loop over all of the types in the symbol table...
 | |
|   for (SymbolTable::iterator TI = ST.begin(), TE = ST.end(); TI != TE; ++TI)
 | |
|     for (SymbolTable::type_iterator I = TI->second.begin(),
 | |
|            E = TI->second.end(); I != E; ++I) {
 | |
|       Value *V = I->second;
 | |
| 
 | |
|       // Check that there are no void typed values in the symbol table.  Values
 | |
|       // with a void type cannot be put into symbol tables because they cannot
 | |
|       // have names!
 | |
|       Assert1(V->getType() != Type::VoidTy,
 | |
|               "Values with void type are not allowed to have names!", V);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| // visitFunction - Verify that a function is ok.
 | |
| //
 | |
| void Verifier::visitFunction(Function &F) {
 | |
|   // Check function arguments...
 | |
|   const FunctionType *FT = F.getFunctionType();
 | |
|   unsigned NumArgs = F.getArgumentList().size();
 | |
| 
 | |
|   Assert2(!FT->isVarArg(), "Cannot define varargs functions in LLVM!", &F, FT);
 | |
|   Assert2(FT->getNumParams() == NumArgs,
 | |
|           "# formal arguments must match # of arguments for function type!",
 | |
|           &F, FT);
 | |
| 
 | |
|   // Check that the argument values match the function type for this function...
 | |
|   unsigned i = 0;
 | |
|   for (Function::aiterator I = F.abegin(), E = F.aend(); I != E; ++I, ++i)
 | |
|     Assert2(I->getType() == FT->getParamType(i),
 | |
|             "Argument value does not match function argument type!",
 | |
|             I, FT->getParamType(i));
 | |
| 
 | |
|   if (!F.isExternal()) {
 | |
|     verifySymbolTable(F.getSymbolTable());
 | |
| 
 | |
|     // Check the entry node
 | |
|     BasicBlock *Entry = &F.getEntryNode();
 | |
|     Assert1(pred_begin(Entry) == pred_end(Entry),
 | |
|             "Entry block to function must not have predecessors!", Entry);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| // verifyBasicBlock - Verify that a basic block is well formed...
 | |
| //
 | |
| void Verifier::visitBasicBlock(BasicBlock &BB) {
 | |
|   // Ensure that basic blocks have terminators!
 | |
|   Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
 | |
| }
 | |
| 
 | |
| void Verifier::visitTerminatorInst(TerminatorInst &I) {
 | |
|   // Ensure that terminators only exist at the end of the basic block.
 | |
|   Assert1(&I == I.getParent()->getTerminator(),
 | |
|           "Terminator found in the middle of a basic block!", I.getParent());
 | |
|   visitInstruction(I);
 | |
| }
 | |
| 
 | |
| void Verifier::visitReturnInst(ReturnInst &RI) {
 | |
|   Function *F = RI.getParent()->getParent();
 | |
|   if (RI.getNumOperands() == 0)
 | |
|     Assert1(F->getReturnType() == Type::VoidTy,
 | |
|             "Function returns no value, but ret instruction found that does!",
 | |
|             &RI);
 | |
|   else
 | |
|     Assert2(F->getReturnType() == RI.getOperand(0)->getType(),
 | |
|             "Function return type does not match operand "
 | |
|             "type of return inst!", &RI, F->getReturnType());
 | |
| 
 | |
|   // Check to make sure that the return value has neccesary properties for
 | |
|   // terminators...
 | |
|   visitTerminatorInst(RI);
 | |
| }
 | |
| 
 | |
| // visitUserOp1 - User defined operators shouldn't live beyond the lifetime of a
 | |
| // pass, if any exist, it's an error.
 | |
| //
 | |
| void Verifier::visitUserOp1(Instruction &I) {
 | |
|   Assert1(0, "User-defined operators should not live outside of a pass!",
 | |
|           &I);
 | |
| }
 | |
| 
 | |
| // visitPHINode - Ensure that a PHI node is well formed.
 | |
| void Verifier::visitPHINode(PHINode &PN) {
 | |
|   // Ensure that the PHI nodes are all grouped together at the top of the block.
 | |
|   // This can be tested by checking whether the instruction before this is
 | |
|   // either nonexistant (because this is begin()) or is a PHI node.  If not,
 | |
|   // then there is some other instruction before a PHI.
 | |
|   Assert2(PN.getPrev() == 0 || isa<PHINode>(PN.getPrev()),
 | |
|           "PHI nodes not grouped at top of basic block!",
 | |
|           &PN, PN.getParent());
 | |
| 
 | |
|   // Ensure that PHI nodes have at least one entry!
 | |
|   Assert1(PN.getNumIncomingValues() != 0,
 | |
|           "PHI nodes must have at least one entry.  If the block is dead, "
 | |
|           "the PHI should be removed!",
 | |
|           &PN);
 | |
| 
 | |
|   std::vector<BasicBlock*> Preds(pred_begin(PN.getParent()),
 | |
|                                  pred_end(PN.getParent()));
 | |
|   // Loop over all of the incoming values, make sure that there are
 | |
|   // predecessors for each one...
 | |
|   //
 | |
|   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
 | |
|     // Make sure all of the incoming values are the right types...
 | |
|     Assert2(PN.getType() == PN.getIncomingValue(i)->getType(),
 | |
|             "PHI node argument type does not agree with PHI node type!",
 | |
|             &PN, PN.getIncomingValue(i));
 | |
| 
 | |
|     BasicBlock *BB = PN.getIncomingBlock(i);
 | |
|     std::vector<BasicBlock*>::iterator PI =
 | |
|       find(Preds.begin(), Preds.end(), BB);
 | |
|     Assert2(PI != Preds.end(), "PHI node has entry for basic block that"
 | |
|             " is not a predecessor!", &PN, BB);
 | |
|     Preds.erase(PI);
 | |
|   }
 | |
|   
 | |
|   // There should be no entries left in the predecessor list...
 | |
|   for (std::vector<BasicBlock*>::iterator I = Preds.begin(),
 | |
|          E = Preds.end(); I != E; ++I)
 | |
|     Assert2(0, "PHI node does not have entry for a predecessor basic block!",
 | |
|             &PN, *I);
 | |
| 
 | |
|   // Now we go through and check to make sure that if there is more than one
 | |
|   // entry for a particular basic block in this PHI node, that the incoming
 | |
|   // values are all identical.
 | |
|   //
 | |
|   std::vector<std::pair<BasicBlock*, Value*> > Values;
 | |
|   Values.reserve(PN.getNumIncomingValues());
 | |
|   for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
 | |
|     Values.push_back(std::make_pair(PN.getIncomingBlock(i),
 | |
|                                     PN.getIncomingValue(i)));
 | |
| 
 | |
|   // Sort the Values vector so that identical basic block entries are adjacent.
 | |
|   std::sort(Values.begin(), Values.end());
 | |
| 
 | |
|   // Check for identical basic blocks with differing incoming values...
 | |
|   for (unsigned i = 1, e = PN.getNumIncomingValues(); i < e; ++i)
 | |
|     Assert4(Values[i].first  != Values[i-1].first ||
 | |
|             Values[i].second == Values[i-1].second,
 | |
|             "PHI node has multiple entries for the same basic block with "
 | |
|             "different incoming values!", &PN, Values[i].first,
 | |
|             Values[i].second, Values[i-1].second);
 | |
| 
 | |
|   visitInstruction(PN);
 | |
| }
 | |
| 
 | |
| void Verifier::visitCallInst(CallInst &CI) {
 | |
|   Assert1(isa<PointerType>(CI.getOperand(0)->getType()),
 | |
|           "Called function must be a pointer!", &CI);
 | |
|   const PointerType *FPTy = cast<PointerType>(CI.getOperand(0)->getType());
 | |
|   Assert1(isa<FunctionType>(FPTy->getElementType()),
 | |
|           "Called function is not pointer to function type!", &CI);
 | |
| 
 | |
|   const FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
 | |
| 
 | |
|   // Verify that the correct number of arguments are being passed
 | |
|   if (FTy->isVarArg())
 | |
|     Assert1(CI.getNumOperands()-1 >= FTy->getNumParams(),
 | |
|             "Called function requires more parameters than were provided!",&CI);
 | |
|   else
 | |
|     Assert1(CI.getNumOperands()-1 == FTy->getNumParams(),
 | |
|             "Incorrect number of arguments passed to called function!", &CI);
 | |
| 
 | |
|   // Verify that all arguments to the call match the function type...
 | |
|   for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
 | |
|     Assert2(CI.getOperand(i+1)->getType() == FTy->getParamType(i),
 | |
|             "Call parameter type does not match function signature!",
 | |
|             CI.getOperand(i+1), FTy->getParamType(i));
 | |
| 
 | |
|   visitInstruction(CI);
 | |
| }
 | |
| 
 | |
| // visitBinaryOperator - Check that both arguments to the binary operator are
 | |
| // of the same type!
 | |
| //
 | |
| void Verifier::visitBinaryOperator(BinaryOperator &B) {
 | |
|   Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
 | |
|           "Both operands to a binary operator are not of the same type!", &B);
 | |
| 
 | |
|   // Check that logical operators are only used with integral operands.
 | |
|   if (B.getOpcode() == Instruction::And || B.getOpcode() == Instruction::Or ||
 | |
|       B.getOpcode() == Instruction::Xor) {
 | |
|     Assert1(B.getType()->isIntegral(),
 | |
|             "Logical operators only work with integral types!", &B);
 | |
|     Assert1(B.getType() == B.getOperand(0)->getType(),
 | |
|             "Logical operators must have same type for operands and result!",
 | |
|             &B);
 | |
|   } else if (isa<SetCondInst>(B)) {
 | |
|     // Check that setcc instructions return bool
 | |
|     Assert1(B.getType() == Type::BoolTy,
 | |
|             "setcc instructions must return boolean values!", &B);
 | |
|   } else {
 | |
|     // Arithmetic operators only work on integer or fp values
 | |
|     Assert1(B.getType() == B.getOperand(0)->getType(),
 | |
|             "Arithmetic operators must have same type for operands and result!",
 | |
|             &B);
 | |
|     Assert1(B.getType()->isInteger() || B.getType()->isFloatingPoint(),
 | |
|             "Arithmetic operators must have integer or fp type!", &B);
 | |
|   }
 | |
|   
 | |
|   visitInstruction(B);
 | |
| }
 | |
| 
 | |
| void Verifier::visitShiftInst(ShiftInst &SI) {
 | |
|   Assert1(SI.getType()->isInteger(),
 | |
|           "Shift must return an integer result!", &SI);
 | |
|   Assert1(SI.getType() == SI.getOperand(0)->getType(),
 | |
|           "Shift return type must be same as first operand!", &SI);
 | |
|   Assert1(SI.getOperand(1)->getType() == Type::UByteTy,
 | |
|           "Second operand to shift must be ubyte type!", &SI);
 | |
|   visitInstruction(SI);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
 | |
|   const Type *ElTy =
 | |
|     GetElementPtrInst::getIndexedType(GEP.getOperand(0)->getType(),
 | |
|                    std::vector<Value*>(GEP.idx_begin(), GEP.idx_end()), true);
 | |
|   Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
 | |
|   Assert2(PointerType::get(ElTy) == GEP.getType(),
 | |
|           "GEP is not of right type for indices!", &GEP, ElTy);
 | |
|   visitInstruction(GEP);
 | |
| }
 | |
| 
 | |
| void Verifier::visitLoadInst(LoadInst &LI) {
 | |
|   const Type *ElTy =
 | |
|     cast<PointerType>(LI.getOperand(0)->getType())->getElementType();
 | |
|   Assert2(ElTy == LI.getType(),
 | |
|           "Load is not of right type for indices!", &LI, ElTy);
 | |
|   visitInstruction(LI);
 | |
| }
 | |
| 
 | |
| void Verifier::visitStoreInst(StoreInst &SI) {
 | |
|   const Type *ElTy =
 | |
|     cast<PointerType>(SI.getOperand(1)->getType())->getElementType();
 | |
|   Assert2(ElTy == SI.getOperand(0)->getType(),
 | |
|           "Stored value is not of right type for indices!", &SI, ElTy);
 | |
|   visitInstruction(SI);
 | |
| }
 | |
| 
 | |
| 
 | |
| // verifyInstruction - Verify that an instruction is well formed.
 | |
| //
 | |
| void Verifier::visitInstruction(Instruction &I) {
 | |
|   BasicBlock *BB = I.getParent();  
 | |
|   Assert1(BB, "Instruction not embedded in basic block!", &I);
 | |
| 
 | |
|   // Check that all uses of the instruction, if they are instructions
 | |
|   // themselves, actually have parent basic blocks.  If the use is not an
 | |
|   // instruction, it is an error!
 | |
|   //
 | |
|   for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
 | |
|        UI != UE; ++UI) {
 | |
|     Assert1(isa<Instruction>(*UI), "Use of instruction is not an instruction!",
 | |
|             *UI);
 | |
|     Instruction *Used = cast<Instruction>(*UI);
 | |
|     Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
 | |
|             " embeded in a basic block!", &I, Used);
 | |
|   }
 | |
| 
 | |
|   if (!isa<PHINode>(I)) {   // Check that non-phi nodes are not self referential
 | |
|     for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
 | |
|          UI != UE; ++UI)
 | |
|       Assert1(*UI != (User*)&I,
 | |
|               "Only PHI nodes may reference their own value!", &I);
 | |
|   }
 | |
| 
 | |
|   // Check that void typed values don't have names
 | |
|   Assert1(I.getType() != Type::VoidTy || !I.hasName(),
 | |
|           "Instruction has a name, but provides a void value!", &I);
 | |
| 
 | |
|   // Check that a definition dominates all of its uses.
 | |
|   //
 | |
|   for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
 | |
|        UI != UE; ++UI) {
 | |
|     Instruction *Use = cast<Instruction>(*UI);
 | |
|       
 | |
|     // PHI nodes are more difficult than other nodes because they actually
 | |
|     // "use" the value in the predecessor basic blocks they correspond to.
 | |
|     if (PHINode *PN = dyn_cast<PHINode>(Use)) {
 | |
|       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | |
|         if (&I == PN->getIncomingValue(i)) {
 | |
|           // Make sure that I dominates the end of pred(i)
 | |
|           BasicBlock *Pred = PN->getIncomingBlock(i);
 | |
|           
 | |
|           // Use must be dominated by by definition unless use is unreachable!
 | |
|           Assert2(DS->dominates(BB, Pred) ||
 | |
|                   !DS->dominates(&BB->getParent()->getEntryNode(), Pred),
 | |
|                   "Instruction does not dominate all uses!",
 | |
|                   &I, PN);
 | |
|         }
 | |
| 
 | |
|     } else {
 | |
|       // Use must be dominated by by definition unless use is unreachable!
 | |
|       Assert2(DS->dominates(&I, Use) ||
 | |
|               !DS->dominates(&BB->getParent()->getEntryNode(),Use->getParent()),
 | |
|               "Instruction does not dominate all uses!", &I, Use);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //  Implement the public interfaces to this file...
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| Pass *createVerifierPass() {
 | |
|   return new Verifier();
 | |
| }
 | |
| 
 | |
| 
 | |
| // verifyFunction - Create 
 | |
| bool verifyFunction(const Function &f) {
 | |
|   Function &F = (Function&)f;
 | |
|   assert(!F.isExternal() && "Cannot verify external functions");
 | |
| 
 | |
|   DominatorSet DS;
 | |
|   DS.doInitialization(*F.getParent());
 | |
|   DS.runOnFunction(F);
 | |
| 
 | |
|   Verifier V(DS);
 | |
|   V.runOnFunction(F);
 | |
| 
 | |
|   DS.doFinalization(*F.getParent());
 | |
| 
 | |
|   return V.Broken;
 | |
| }
 | |
| 
 | |
| // verifyModule - Check a module for errors, printing messages on stderr.
 | |
| // Return true if the module is corrupt.
 | |
| //
 | |
| bool verifyModule(const Module &M) {
 | |
|   PassManager PM;
 | |
|   Verifier *V = new Verifier();
 | |
|   PM.add(V);
 | |
|   PM.run((Module&)M);
 | |
|   return V->Broken;
 | |
| }
 |