mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-10 18:34:09 +00:00
f98f2ce29e
A new backend supporting AMD GPUs: Radeon HD2XXX - HD7XXX git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169915 91177308-0d34-0410-b5e6-96231b3b80d8
1216 lines
39 KiB
C++
1216 lines
39 KiB
C++
//===-- AMDILPeepholeOptimizer.cpp - AMDGPU Peephole optimizations ---------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
/// \file
|
|
//==-----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "PeepholeOpt"
|
|
#ifdef DEBUG
|
|
#define DEBUGME (DebugFlag && isCurrentDebugType(DEBUG_TYPE))
|
|
#else
|
|
#define DEBUGME 0
|
|
#endif
|
|
|
|
#include "AMDILDevices.h"
|
|
#include "AMDGPUInstrInfo.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFunctionAnalysis.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
|
|
#include <sstream>
|
|
|
|
#if 0
|
|
STATISTIC(PointerAssignments, "Number of dynamic pointer "
|
|
"assigments discovered");
|
|
STATISTIC(PointerSubtract, "Number of pointer subtractions discovered");
|
|
#endif
|
|
|
|
using namespace llvm;
|
|
// The Peephole optimization pass is used to do simple last minute optimizations
|
|
// that are required for correct code or to remove redundant functions
|
|
namespace {
|
|
|
|
class OpaqueType;
|
|
|
|
class LLVM_LIBRARY_VISIBILITY AMDGPUPeepholeOpt : public FunctionPass {
|
|
public:
|
|
TargetMachine &TM;
|
|
static char ID;
|
|
AMDGPUPeepholeOpt(TargetMachine &tm);
|
|
~AMDGPUPeepholeOpt();
|
|
const char *getPassName() const;
|
|
bool runOnFunction(Function &F);
|
|
bool doInitialization(Module &M);
|
|
bool doFinalization(Module &M);
|
|
void getAnalysisUsage(AnalysisUsage &AU) const;
|
|
protected:
|
|
private:
|
|
// Function to initiate all of the instruction level optimizations.
|
|
bool instLevelOptimizations(BasicBlock::iterator *inst);
|
|
// Quick check to see if we need to dump all of the pointers into the
|
|
// arena. If this is correct, then we set all pointers to exist in arena. This
|
|
// is a workaround for aliasing of pointers in a struct/union.
|
|
bool dumpAllIntoArena(Function &F);
|
|
// Because I don't want to invalidate any pointers while in the
|
|
// safeNestedForEachFunction. I push atomic conversions to a vector and handle
|
|
// it later. This function does the conversions if required.
|
|
void doAtomicConversionIfNeeded(Function &F);
|
|
// Because __amdil_is_constant cannot be properly evaluated if
|
|
// optimizations are disabled, the call's are placed in a vector
|
|
// and evaluated after the __amdil_image* functions are evaluated
|
|
// which should allow the __amdil_is_constant function to be
|
|
// evaluated correctly.
|
|
void doIsConstCallConversionIfNeeded();
|
|
bool mChanged;
|
|
bool mDebug;
|
|
bool mConvertAtomics;
|
|
CodeGenOpt::Level optLevel;
|
|
// Run a series of tests to see if we can optimize a CALL instruction.
|
|
bool optimizeCallInst(BasicBlock::iterator *bbb);
|
|
// A peephole optimization to optimize bit extract sequences.
|
|
bool optimizeBitExtract(Instruction *inst);
|
|
// A peephole optimization to optimize bit insert sequences.
|
|
bool optimizeBitInsert(Instruction *inst);
|
|
bool setupBitInsert(Instruction *base,
|
|
Instruction *&src,
|
|
Constant *&mask,
|
|
Constant *&shift);
|
|
// Expand the bit field insert instruction on versions of OpenCL that
|
|
// don't support it.
|
|
bool expandBFI(CallInst *CI);
|
|
// Expand the bit field mask instruction on version of OpenCL that
|
|
// don't support it.
|
|
bool expandBFM(CallInst *CI);
|
|
// On 7XX and 8XX operations, we do not have 24 bit signed operations. So in
|
|
// this case we need to expand them. These functions check for 24bit functions
|
|
// and then expand.
|
|
bool isSigned24BitOps(CallInst *CI);
|
|
void expandSigned24BitOps(CallInst *CI);
|
|
// One optimization that can occur is that if the required workgroup size is
|
|
// specified then the result of get_local_size is known at compile time and
|
|
// can be returned accordingly.
|
|
bool isRWGLocalOpt(CallInst *CI);
|
|
// On northern island cards, the division is slightly less accurate than on
|
|
// previous generations, so we need to utilize a more accurate division. So we
|
|
// can translate the accurate divide to a normal divide on all other cards.
|
|
bool convertAccurateDivide(CallInst *CI);
|
|
void expandAccurateDivide(CallInst *CI);
|
|
// If the alignment is set incorrectly, it can produce really inefficient
|
|
// code. This checks for this scenario and fixes it if possible.
|
|
bool correctMisalignedMemOp(Instruction *inst);
|
|
|
|
// If we are in no opt mode, then we need to make sure that
|
|
// local samplers are properly propagated as constant propagation
|
|
// doesn't occur and we need to know the value of kernel defined
|
|
// samplers at compile time.
|
|
bool propagateSamplerInst(CallInst *CI);
|
|
|
|
// Helper functions
|
|
|
|
// Group of functions that recursively calculate the size of a structure based
|
|
// on it's sub-types.
|
|
size_t getTypeSize(Type * const T, bool dereferencePtr = false);
|
|
size_t getTypeSize(StructType * const ST, bool dereferencePtr = false);
|
|
size_t getTypeSize(IntegerType * const IT, bool dereferencePtr = false);
|
|
size_t getTypeSize(FunctionType * const FT,bool dereferencePtr = false);
|
|
size_t getTypeSize(ArrayType * const AT, bool dereferencePtr = false);
|
|
size_t getTypeSize(VectorType * const VT, bool dereferencePtr = false);
|
|
size_t getTypeSize(PointerType * const PT, bool dereferencePtr = false);
|
|
size_t getTypeSize(OpaqueType * const OT, bool dereferencePtr = false);
|
|
|
|
LLVMContext *mCTX;
|
|
Function *mF;
|
|
const AMDGPUSubtarget *mSTM;
|
|
SmallVector< std::pair<CallInst *, Function *>, 16> atomicFuncs;
|
|
SmallVector<CallInst *, 16> isConstVec;
|
|
}; // class AMDGPUPeepholeOpt
|
|
char AMDGPUPeepholeOpt::ID = 0;
|
|
|
|
// A template function that has two levels of looping before calling the
|
|
// function with a pointer to the current iterator.
|
|
template<class InputIterator, class SecondIterator, class Function>
|
|
Function safeNestedForEach(InputIterator First, InputIterator Last,
|
|
SecondIterator S, Function F) {
|
|
for ( ; First != Last; ++First) {
|
|
SecondIterator sf, sl;
|
|
for (sf = First->begin(), sl = First->end();
|
|
sf != sl; ) {
|
|
if (!F(&sf)) {
|
|
++sf;
|
|
}
|
|
}
|
|
}
|
|
return F;
|
|
}
|
|
|
|
} // anonymous namespace
|
|
|
|
namespace llvm {
|
|
FunctionPass *
|
|
createAMDGPUPeepholeOpt(TargetMachine &tm) {
|
|
return new AMDGPUPeepholeOpt(tm);
|
|
}
|
|
} // llvm namespace
|
|
|
|
AMDGPUPeepholeOpt::AMDGPUPeepholeOpt(TargetMachine &tm)
|
|
: FunctionPass(ID), TM(tm) {
|
|
mDebug = DEBUGME;
|
|
optLevel = TM.getOptLevel();
|
|
|
|
}
|
|
|
|
AMDGPUPeepholeOpt::~AMDGPUPeepholeOpt() {
|
|
}
|
|
|
|
const char *
|
|
AMDGPUPeepholeOpt::getPassName() const {
|
|
return "AMDGPU PeepHole Optimization Pass";
|
|
}
|
|
|
|
bool
|
|
containsPointerType(Type *Ty) {
|
|
if (!Ty) {
|
|
return false;
|
|
}
|
|
switch(Ty->getTypeID()) {
|
|
default:
|
|
return false;
|
|
case Type::StructTyID: {
|
|
const StructType *ST = dyn_cast<StructType>(Ty);
|
|
for (StructType::element_iterator stb = ST->element_begin(),
|
|
ste = ST->element_end(); stb != ste; ++stb) {
|
|
if (!containsPointerType(*stb)) {
|
|
continue;
|
|
}
|
|
return true;
|
|
}
|
|
break;
|
|
}
|
|
case Type::VectorTyID:
|
|
case Type::ArrayTyID:
|
|
return containsPointerType(dyn_cast<SequentialType>(Ty)->getElementType());
|
|
case Type::PointerTyID:
|
|
return true;
|
|
};
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
AMDGPUPeepholeOpt::dumpAllIntoArena(Function &F) {
|
|
bool dumpAll = false;
|
|
for (Function::const_arg_iterator cab = F.arg_begin(),
|
|
cae = F.arg_end(); cab != cae; ++cab) {
|
|
const Argument *arg = cab;
|
|
const PointerType *PT = dyn_cast<PointerType>(arg->getType());
|
|
if (!PT) {
|
|
continue;
|
|
}
|
|
Type *DereferencedType = PT->getElementType();
|
|
if (!dyn_cast<StructType>(DereferencedType)
|
|
) {
|
|
continue;
|
|
}
|
|
if (!containsPointerType(DereferencedType)) {
|
|
continue;
|
|
}
|
|
// FIXME: Because a pointer inside of a struct/union may be aliased to
|
|
// another pointer we need to take the conservative approach and place all
|
|
// pointers into the arena until more advanced detection is implemented.
|
|
dumpAll = true;
|
|
}
|
|
return dumpAll;
|
|
}
|
|
void
|
|
AMDGPUPeepholeOpt::doIsConstCallConversionIfNeeded() {
|
|
if (isConstVec.empty()) {
|
|
return;
|
|
}
|
|
for (unsigned x = 0, y = isConstVec.size(); x < y; ++x) {
|
|
CallInst *CI = isConstVec[x];
|
|
Constant *CV = dyn_cast<Constant>(CI->getOperand(0));
|
|
Type *aType = Type::getInt32Ty(*mCTX);
|
|
Value *Val = (CV != NULL) ? ConstantInt::get(aType, 1)
|
|
: ConstantInt::get(aType, 0);
|
|
CI->replaceAllUsesWith(Val);
|
|
CI->eraseFromParent();
|
|
}
|
|
isConstVec.clear();
|
|
}
|
|
void
|
|
AMDGPUPeepholeOpt::doAtomicConversionIfNeeded(Function &F) {
|
|
// Don't do anything if we don't have any atomic operations.
|
|
if (atomicFuncs.empty()) {
|
|
return;
|
|
}
|
|
// Change the function name for the atomic if it is required
|
|
uint32_t size = atomicFuncs.size();
|
|
for (uint32_t x = 0; x < size; ++x) {
|
|
atomicFuncs[x].first->setOperand(
|
|
atomicFuncs[x].first->getNumOperands()-1,
|
|
atomicFuncs[x].second);
|
|
|
|
}
|
|
mChanged = true;
|
|
if (mConvertAtomics) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
bool
|
|
AMDGPUPeepholeOpt::runOnFunction(Function &MF) {
|
|
mChanged = false;
|
|
mF = &MF;
|
|
mSTM = &TM.getSubtarget<AMDGPUSubtarget>();
|
|
if (mDebug) {
|
|
MF.dump();
|
|
}
|
|
mCTX = &MF.getType()->getContext();
|
|
mConvertAtomics = true;
|
|
safeNestedForEach(MF.begin(), MF.end(), MF.begin()->begin(),
|
|
std::bind1st(std::mem_fun(&AMDGPUPeepholeOpt::instLevelOptimizations),
|
|
this));
|
|
|
|
doAtomicConversionIfNeeded(MF);
|
|
doIsConstCallConversionIfNeeded();
|
|
|
|
if (mDebug) {
|
|
MF.dump();
|
|
}
|
|
return mChanged;
|
|
}
|
|
|
|
bool
|
|
AMDGPUPeepholeOpt::optimizeCallInst(BasicBlock::iterator *bbb) {
|
|
Instruction *inst = (*bbb);
|
|
CallInst *CI = dyn_cast<CallInst>(inst);
|
|
if (!CI) {
|
|
return false;
|
|
}
|
|
if (isSigned24BitOps(CI)) {
|
|
expandSigned24BitOps(CI);
|
|
++(*bbb);
|
|
CI->eraseFromParent();
|
|
return true;
|
|
}
|
|
if (propagateSamplerInst(CI)) {
|
|
return false;
|
|
}
|
|
if (expandBFI(CI) || expandBFM(CI)) {
|
|
++(*bbb);
|
|
CI->eraseFromParent();
|
|
return true;
|
|
}
|
|
if (convertAccurateDivide(CI)) {
|
|
expandAccurateDivide(CI);
|
|
++(*bbb);
|
|
CI->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
StringRef calleeName = CI->getOperand(CI->getNumOperands()-1)->getName();
|
|
if (calleeName.startswith("__amdil_is_constant")) {
|
|
// If we do not have optimizations, then this
|
|
// cannot be properly evaluated, so we add the
|
|
// call instruction to a vector and process
|
|
// them at the end of processing after the
|
|
// samplers have been correctly handled.
|
|
if (optLevel == CodeGenOpt::None) {
|
|
isConstVec.push_back(CI);
|
|
return false;
|
|
} else {
|
|
Constant *CV = dyn_cast<Constant>(CI->getOperand(0));
|
|
Type *aType = Type::getInt32Ty(*mCTX);
|
|
Value *Val = (CV != NULL) ? ConstantInt::get(aType, 1)
|
|
: ConstantInt::get(aType, 0);
|
|
CI->replaceAllUsesWith(Val);
|
|
++(*bbb);
|
|
CI->eraseFromParent();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (calleeName.equals("__amdil_is_asic_id_i32")) {
|
|
ConstantInt *CV = dyn_cast<ConstantInt>(CI->getOperand(0));
|
|
Type *aType = Type::getInt32Ty(*mCTX);
|
|
Value *Val = CV;
|
|
if (Val) {
|
|
Val = ConstantInt::get(aType,
|
|
mSTM->device()->getDeviceFlag() & CV->getZExtValue());
|
|
} else {
|
|
Val = ConstantInt::get(aType, 0);
|
|
}
|
|
CI->replaceAllUsesWith(Val);
|
|
++(*bbb);
|
|
CI->eraseFromParent();
|
|
return true;
|
|
}
|
|
Function *F = dyn_cast<Function>(CI->getOperand(CI->getNumOperands()-1));
|
|
if (!F) {
|
|
return false;
|
|
}
|
|
if (F->getName().startswith("__atom") && !CI->getNumUses()
|
|
&& F->getName().find("_xchg") == StringRef::npos) {
|
|
std::string buffer(F->getName().str() + "_noret");
|
|
F = dyn_cast<Function>(
|
|
F->getParent()->getOrInsertFunction(buffer, F->getFunctionType()));
|
|
atomicFuncs.push_back(std::make_pair <CallInst*, Function*>(CI, F));
|
|
}
|
|
|
|
if (!mSTM->device()->isSupported(AMDGPUDeviceInfo::ArenaSegment)
|
|
&& !mSTM->device()->isSupported(AMDGPUDeviceInfo::MultiUAV)) {
|
|
return false;
|
|
}
|
|
if (!mConvertAtomics) {
|
|
return false;
|
|
}
|
|
StringRef name = F->getName();
|
|
if (name.startswith("__atom") && name.find("_g") != StringRef::npos) {
|
|
mConvertAtomics = false;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
AMDGPUPeepholeOpt::setupBitInsert(Instruction *base,
|
|
Instruction *&src,
|
|
Constant *&mask,
|
|
Constant *&shift) {
|
|
if (!base) {
|
|
if (mDebug) {
|
|
dbgs() << "Null pointer passed into function.\n";
|
|
}
|
|
return false;
|
|
}
|
|
bool andOp = false;
|
|
if (base->getOpcode() == Instruction::Shl) {
|
|
shift = dyn_cast<Constant>(base->getOperand(1));
|
|
} else if (base->getOpcode() == Instruction::And) {
|
|
mask = dyn_cast<Constant>(base->getOperand(1));
|
|
andOp = true;
|
|
} else {
|
|
if (mDebug) {
|
|
dbgs() << "Failed setup with no Shl or And instruction on base opcode!\n";
|
|
}
|
|
// If the base is neither a Shl or a And, we don't fit any of the patterns above.
|
|
return false;
|
|
}
|
|
src = dyn_cast<Instruction>(base->getOperand(0));
|
|
if (!src) {
|
|
if (mDebug) {
|
|
dbgs() << "Failed setup since the base operand is not an instruction!\n";
|
|
}
|
|
return false;
|
|
}
|
|
// If we find an 'and' operation, then we don't need to
|
|
// find the next operation as we already know the
|
|
// bits that are valid at this point.
|
|
if (andOp) {
|
|
return true;
|
|
}
|
|
if (src->getOpcode() == Instruction::Shl && !shift) {
|
|
shift = dyn_cast<Constant>(src->getOperand(1));
|
|
src = dyn_cast<Instruction>(src->getOperand(0));
|
|
} else if (src->getOpcode() == Instruction::And && !mask) {
|
|
mask = dyn_cast<Constant>(src->getOperand(1));
|
|
}
|
|
if (!mask && !shift) {
|
|
if (mDebug) {
|
|
dbgs() << "Failed setup since both mask and shift are NULL!\n";
|
|
}
|
|
// Did not find a constant mask or a shift.
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
bool
|
|
AMDGPUPeepholeOpt::optimizeBitInsert(Instruction *inst) {
|
|
if (!inst) {
|
|
return false;
|
|
}
|
|
if (!inst->isBinaryOp()) {
|
|
return false;
|
|
}
|
|
if (inst->getOpcode() != Instruction::Or) {
|
|
return false;
|
|
}
|
|
if (optLevel == CodeGenOpt::None) {
|
|
return false;
|
|
}
|
|
// We want to do an optimization on a sequence of ops that in the end equals a
|
|
// single ISA instruction.
|
|
// The base pattern for this optimization is - ((A & B) << C) | ((D & E) << F)
|
|
// Some simplified versions of this pattern are as follows:
|
|
// (A & B) | (D & E) when B & E == 0 && C == 0 && F == 0
|
|
// ((A & B) << C) | (D & E) when B ^ E == 0 && (1 << C) >= E
|
|
// (A & B) | ((D & E) << F) when B ^ E == 0 && (1 << F) >= B
|
|
// (A & B) | (D << F) when (1 << F) >= B
|
|
// (A << C) | (D & E) when (1 << C) >= E
|
|
if (mSTM->device()->getGeneration() == AMDGPUDeviceInfo::HD4XXX) {
|
|
// The HD4XXX hardware doesn't support the ubit_insert instruction.
|
|
return false;
|
|
}
|
|
Type *aType = inst->getType();
|
|
bool isVector = aType->isVectorTy();
|
|
int numEle = 1;
|
|
// This optimization only works on 32bit integers.
|
|
if (aType->getScalarType()
|
|
!= Type::getInt32Ty(inst->getContext())) {
|
|
return false;
|
|
}
|
|
if (isVector) {
|
|
const VectorType *VT = dyn_cast<VectorType>(aType);
|
|
numEle = VT->getNumElements();
|
|
// We currently cannot support more than 4 elements in a intrinsic and we
|
|
// cannot support Vec3 types.
|
|
if (numEle > 4 || numEle == 3) {
|
|
return false;
|
|
}
|
|
}
|
|
// TODO: Handle vectors.
|
|
if (isVector) {
|
|
if (mDebug) {
|
|
dbgs() << "!!! Vectors are not supported yet!\n";
|
|
}
|
|
return false;
|
|
}
|
|
Instruction *LHSSrc = NULL, *RHSSrc = NULL;
|
|
Constant *LHSMask = NULL, *RHSMask = NULL;
|
|
Constant *LHSShift = NULL, *RHSShift = NULL;
|
|
Instruction *LHS = dyn_cast<Instruction>(inst->getOperand(0));
|
|
Instruction *RHS = dyn_cast<Instruction>(inst->getOperand(1));
|
|
if (!setupBitInsert(LHS, LHSSrc, LHSMask, LHSShift)) {
|
|
if (mDebug) {
|
|
dbgs() << "Found an OR Operation that failed setup!\n";
|
|
inst->dump();
|
|
if (LHS) { LHS->dump(); }
|
|
if (LHSSrc) { LHSSrc->dump(); }
|
|
if (LHSMask) { LHSMask->dump(); }
|
|
if (LHSShift) { LHSShift->dump(); }
|
|
}
|
|
// There was an issue with the setup for BitInsert.
|
|
return false;
|
|
}
|
|
if (!setupBitInsert(RHS, RHSSrc, RHSMask, RHSShift)) {
|
|
if (mDebug) {
|
|
dbgs() << "Found an OR Operation that failed setup!\n";
|
|
inst->dump();
|
|
if (RHS) { RHS->dump(); }
|
|
if (RHSSrc) { RHSSrc->dump(); }
|
|
if (RHSMask) { RHSMask->dump(); }
|
|
if (RHSShift) { RHSShift->dump(); }
|
|
}
|
|
// There was an issue with the setup for BitInsert.
|
|
return false;
|
|
}
|
|
if (mDebug) {
|
|
dbgs() << "Found an OR operation that can possible be optimized to ubit insert!\n";
|
|
dbgs() << "Op: "; inst->dump();
|
|
dbgs() << "LHS: "; if (LHS) { LHS->dump(); } else { dbgs() << "(None)\n"; }
|
|
dbgs() << "LHS Src: "; if (LHSSrc) { LHSSrc->dump(); } else { dbgs() << "(None)\n"; }
|
|
dbgs() << "LHS Mask: "; if (LHSMask) { LHSMask->dump(); } else { dbgs() << "(None)\n"; }
|
|
dbgs() << "LHS Shift: "; if (LHSShift) { LHSShift->dump(); } else { dbgs() << "(None)\n"; }
|
|
dbgs() << "RHS: "; if (RHS) { RHS->dump(); } else { dbgs() << "(None)\n"; }
|
|
dbgs() << "RHS Src: "; if (RHSSrc) { RHSSrc->dump(); } else { dbgs() << "(None)\n"; }
|
|
dbgs() << "RHS Mask: "; if (RHSMask) { RHSMask->dump(); } else { dbgs() << "(None)\n"; }
|
|
dbgs() << "RHS Shift: "; if (RHSShift) { RHSShift->dump(); } else { dbgs() << "(None)\n"; }
|
|
}
|
|
Constant *offset = NULL;
|
|
Constant *width = NULL;
|
|
uint32_t lhsMaskVal = 0, rhsMaskVal = 0;
|
|
uint32_t lhsShiftVal = 0, rhsShiftVal = 0;
|
|
uint32_t lhsMaskWidth = 0, rhsMaskWidth = 0;
|
|
uint32_t lhsMaskOffset = 0, rhsMaskOffset = 0;
|
|
lhsMaskVal = (LHSMask
|
|
? dyn_cast<ConstantInt>(LHSMask)->getZExtValue() : 0);
|
|
rhsMaskVal = (RHSMask
|
|
? dyn_cast<ConstantInt>(RHSMask)->getZExtValue() : 0);
|
|
lhsShiftVal = (LHSShift
|
|
? dyn_cast<ConstantInt>(LHSShift)->getZExtValue() : 0);
|
|
rhsShiftVal = (RHSShift
|
|
? dyn_cast<ConstantInt>(RHSShift)->getZExtValue() : 0);
|
|
lhsMaskWidth = lhsMaskVal ? CountPopulation_32(lhsMaskVal) : 32 - lhsShiftVal;
|
|
rhsMaskWidth = rhsMaskVal ? CountPopulation_32(rhsMaskVal) : 32 - rhsShiftVal;
|
|
lhsMaskOffset = lhsMaskVal ? CountTrailingZeros_32(lhsMaskVal) : lhsShiftVal;
|
|
rhsMaskOffset = rhsMaskVal ? CountTrailingZeros_32(rhsMaskVal) : rhsShiftVal;
|
|
// TODO: Handle the case of A & B | D & ~B(i.e. inverted masks).
|
|
if ((lhsMaskVal || rhsMaskVal) && !(lhsMaskVal ^ rhsMaskVal)) {
|
|
return false;
|
|
}
|
|
if (lhsMaskOffset >= (rhsMaskWidth + rhsMaskOffset)) {
|
|
offset = ConstantInt::get(aType, lhsMaskOffset, false);
|
|
width = ConstantInt::get(aType, lhsMaskWidth, false);
|
|
RHSSrc = RHS;
|
|
if (!isMask_32(lhsMaskVal) && !isShiftedMask_32(lhsMaskVal)) {
|
|
return false;
|
|
}
|
|
if (!LHSShift) {
|
|
LHSSrc = BinaryOperator::Create(Instruction::LShr, LHSSrc, offset,
|
|
"MaskShr", LHS);
|
|
} else if (lhsShiftVal != lhsMaskOffset) {
|
|
LHSSrc = BinaryOperator::Create(Instruction::LShr, LHSSrc, offset,
|
|
"MaskShr", LHS);
|
|
}
|
|
if (mDebug) {
|
|
dbgs() << "Optimizing LHS!\n";
|
|
}
|
|
} else if (rhsMaskOffset >= (lhsMaskWidth + lhsMaskOffset)) {
|
|
offset = ConstantInt::get(aType, rhsMaskOffset, false);
|
|
width = ConstantInt::get(aType, rhsMaskWidth, false);
|
|
LHSSrc = RHSSrc;
|
|
RHSSrc = LHS;
|
|
if (!isMask_32(rhsMaskVal) && !isShiftedMask_32(rhsMaskVal)) {
|
|
return false;
|
|
}
|
|
if (!RHSShift) {
|
|
LHSSrc = BinaryOperator::Create(Instruction::LShr, LHSSrc, offset,
|
|
"MaskShr", RHS);
|
|
} else if (rhsShiftVal != rhsMaskOffset) {
|
|
LHSSrc = BinaryOperator::Create(Instruction::LShr, LHSSrc, offset,
|
|
"MaskShr", RHS);
|
|
}
|
|
if (mDebug) {
|
|
dbgs() << "Optimizing RHS!\n";
|
|
}
|
|
} else {
|
|
if (mDebug) {
|
|
dbgs() << "Failed constraint 3!\n";
|
|
}
|
|
return false;
|
|
}
|
|
if (mDebug) {
|
|
dbgs() << "Width: "; if (width) { width->dump(); } else { dbgs() << "(0)\n"; }
|
|
dbgs() << "Offset: "; if (offset) { offset->dump(); } else { dbgs() << "(0)\n"; }
|
|
dbgs() << "LHSSrc: "; if (LHSSrc) { LHSSrc->dump(); } else { dbgs() << "(0)\n"; }
|
|
dbgs() << "RHSSrc: "; if (RHSSrc) { RHSSrc->dump(); } else { dbgs() << "(0)\n"; }
|
|
}
|
|
if (!offset || !width) {
|
|
if (mDebug) {
|
|
dbgs() << "Either width or offset are NULL, failed detection!\n";
|
|
}
|
|
return false;
|
|
}
|
|
// Lets create the function signature.
|
|
std::vector<Type *> callTypes;
|
|
callTypes.push_back(aType);
|
|
callTypes.push_back(aType);
|
|
callTypes.push_back(aType);
|
|
callTypes.push_back(aType);
|
|
FunctionType *funcType = FunctionType::get(aType, callTypes, false);
|
|
std::string name = "__amdil_ubit_insert";
|
|
if (isVector) { name += "_v" + itostr(numEle) + "u32"; } else { name += "_u32"; }
|
|
Function *Func =
|
|
dyn_cast<Function>(inst->getParent()->getParent()->getParent()->
|
|
getOrInsertFunction(llvm::StringRef(name), funcType));
|
|
Value *Operands[4] = {
|
|
width,
|
|
offset,
|
|
LHSSrc,
|
|
RHSSrc
|
|
};
|
|
CallInst *CI = CallInst::Create(Func, Operands, "BitInsertOpt");
|
|
if (mDebug) {
|
|
dbgs() << "Old Inst: ";
|
|
inst->dump();
|
|
dbgs() << "New Inst: ";
|
|
CI->dump();
|
|
dbgs() << "\n\n";
|
|
}
|
|
CI->insertBefore(inst);
|
|
inst->replaceAllUsesWith(CI);
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
AMDGPUPeepholeOpt::optimizeBitExtract(Instruction *inst) {
|
|
if (!inst) {
|
|
return false;
|
|
}
|
|
if (!inst->isBinaryOp()) {
|
|
return false;
|
|
}
|
|
if (inst->getOpcode() != Instruction::And) {
|
|
return false;
|
|
}
|
|
if (optLevel == CodeGenOpt::None) {
|
|
return false;
|
|
}
|
|
// We want to do some simple optimizations on Shift right/And patterns. The
|
|
// basic optimization is to turn (A >> B) & C where A is a 32bit type, B is a
|
|
// value smaller than 32 and C is a mask. If C is a constant value, then the
|
|
// following transformation can occur. For signed integers, it turns into the
|
|
// function call dst = __amdil_ibit_extract(log2(C), B, A) For unsigned
|
|
// integers, it turns into the function call dst =
|
|
// __amdil_ubit_extract(log2(C), B, A) The function __amdil_[u|i]bit_extract
|
|
// can be found in Section 7.9 of the ATI IL spec of the stream SDK for
|
|
// Evergreen hardware.
|
|
if (mSTM->device()->getGeneration() == AMDGPUDeviceInfo::HD4XXX) {
|
|
// This does not work on HD4XXX hardware.
|
|
return false;
|
|
}
|
|
Type *aType = inst->getType();
|
|
bool isVector = aType->isVectorTy();
|
|
|
|
// XXX Support vector types
|
|
if (isVector) {
|
|
return false;
|
|
}
|
|
int numEle = 1;
|
|
// This only works on 32bit integers
|
|
if (aType->getScalarType()
|
|
!= Type::getInt32Ty(inst->getContext())) {
|
|
return false;
|
|
}
|
|
if (isVector) {
|
|
const VectorType *VT = dyn_cast<VectorType>(aType);
|
|
numEle = VT->getNumElements();
|
|
// We currently cannot support more than 4 elements in a intrinsic and we
|
|
// cannot support Vec3 types.
|
|
if (numEle > 4 || numEle == 3) {
|
|
return false;
|
|
}
|
|
}
|
|
BinaryOperator *ShiftInst = dyn_cast<BinaryOperator>(inst->getOperand(0));
|
|
// If the first operand is not a shift instruction, then we can return as it
|
|
// doesn't match this pattern.
|
|
if (!ShiftInst || !ShiftInst->isShift()) {
|
|
return false;
|
|
}
|
|
// If we are a shift left, then we need don't match this pattern.
|
|
if (ShiftInst->getOpcode() == Instruction::Shl) {
|
|
return false;
|
|
}
|
|
bool isSigned = ShiftInst->isArithmeticShift();
|
|
Constant *AndMask = dyn_cast<Constant>(inst->getOperand(1));
|
|
Constant *ShrVal = dyn_cast<Constant>(ShiftInst->getOperand(1));
|
|
// Lets make sure that the shift value and the and mask are constant integers.
|
|
if (!AndMask || !ShrVal) {
|
|
return false;
|
|
}
|
|
Constant *newMaskConst;
|
|
Constant *shiftValConst;
|
|
if (isVector) {
|
|
// Handle the vector case
|
|
std::vector<Constant *> maskVals;
|
|
std::vector<Constant *> shiftVals;
|
|
ConstantVector *AndMaskVec = dyn_cast<ConstantVector>(AndMask);
|
|
ConstantVector *ShrValVec = dyn_cast<ConstantVector>(ShrVal);
|
|
Type *scalarType = AndMaskVec->getType()->getScalarType();
|
|
assert(AndMaskVec->getNumOperands() ==
|
|
ShrValVec->getNumOperands() && "cannot have a "
|
|
"combination where the number of elements to a "
|
|
"shift and an and are different!");
|
|
for (size_t x = 0, y = AndMaskVec->getNumOperands(); x < y; ++x) {
|
|
ConstantInt *AndCI = dyn_cast<ConstantInt>(AndMaskVec->getOperand(x));
|
|
ConstantInt *ShiftIC = dyn_cast<ConstantInt>(ShrValVec->getOperand(x));
|
|
if (!AndCI || !ShiftIC) {
|
|
return false;
|
|
}
|
|
uint32_t maskVal = (uint32_t)AndCI->getZExtValue();
|
|
if (!isMask_32(maskVal)) {
|
|
return false;
|
|
}
|
|
maskVal = (uint32_t)CountTrailingOnes_32(maskVal);
|
|
uint32_t shiftVal = (uint32_t)ShiftIC->getZExtValue();
|
|
// If the mask or shiftval is greater than the bitcount, then break out.
|
|
if (maskVal >= 32 || shiftVal >= 32) {
|
|
return false;
|
|
}
|
|
// If the mask val is greater than the the number of original bits left
|
|
// then this optimization is invalid.
|
|
if (maskVal > (32 - shiftVal)) {
|
|
return false;
|
|
}
|
|
maskVals.push_back(ConstantInt::get(scalarType, maskVal, isSigned));
|
|
shiftVals.push_back(ConstantInt::get(scalarType, shiftVal, isSigned));
|
|
}
|
|
newMaskConst = ConstantVector::get(maskVals);
|
|
shiftValConst = ConstantVector::get(shiftVals);
|
|
} else {
|
|
// Handle the scalar case
|
|
uint32_t maskVal = (uint32_t)dyn_cast<ConstantInt>(AndMask)->getZExtValue();
|
|
// This must be a mask value where all lower bits are set to 1 and then any
|
|
// bit higher is set to 0.
|
|
if (!isMask_32(maskVal)) {
|
|
return false;
|
|
}
|
|
maskVal = (uint32_t)CountTrailingOnes_32(maskVal);
|
|
// Count the number of bits set in the mask, this is the width of the
|
|
// resulting bit set that is extracted from the source value.
|
|
uint32_t shiftVal = (uint32_t)dyn_cast<ConstantInt>(ShrVal)->getZExtValue();
|
|
// If the mask or shift val is greater than the bitcount, then break out.
|
|
if (maskVal >= 32 || shiftVal >= 32) {
|
|
return false;
|
|
}
|
|
// If the mask val is greater than the the number of original bits left then
|
|
// this optimization is invalid.
|
|
if (maskVal > (32 - shiftVal)) {
|
|
return false;
|
|
}
|
|
newMaskConst = ConstantInt::get(aType, maskVal, isSigned);
|
|
shiftValConst = ConstantInt::get(aType, shiftVal, isSigned);
|
|
}
|
|
// Lets create the function signature.
|
|
std::vector<Type *> callTypes;
|
|
callTypes.push_back(aType);
|
|
callTypes.push_back(aType);
|
|
callTypes.push_back(aType);
|
|
FunctionType *funcType = FunctionType::get(aType, callTypes, false);
|
|
std::string name = "llvm.AMDGPU.bit.extract.u32";
|
|
if (isVector) {
|
|
name += ".v" + itostr(numEle) + "i32";
|
|
} else {
|
|
name += ".";
|
|
}
|
|
// Lets create the function.
|
|
Function *Func =
|
|
dyn_cast<Function>(inst->getParent()->getParent()->getParent()->
|
|
getOrInsertFunction(llvm::StringRef(name), funcType));
|
|
Value *Operands[3] = {
|
|
ShiftInst->getOperand(0),
|
|
shiftValConst,
|
|
newMaskConst
|
|
};
|
|
// Lets create the Call with the operands
|
|
CallInst *CI = CallInst::Create(Func, Operands, "ByteExtractOpt");
|
|
CI->setDoesNotAccessMemory();
|
|
CI->insertBefore(inst);
|
|
inst->replaceAllUsesWith(CI);
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
AMDGPUPeepholeOpt::expandBFI(CallInst *CI) {
|
|
if (!CI) {
|
|
return false;
|
|
}
|
|
Value *LHS = CI->getOperand(CI->getNumOperands() - 1);
|
|
if (!LHS->getName().startswith("__amdil_bfi")) {
|
|
return false;
|
|
}
|
|
Type* type = CI->getOperand(0)->getType();
|
|
Constant *negOneConst = NULL;
|
|
if (type->isVectorTy()) {
|
|
std::vector<Constant *> negOneVals;
|
|
negOneConst = ConstantInt::get(CI->getContext(),
|
|
APInt(32, StringRef("-1"), 10));
|
|
for (size_t x = 0,
|
|
y = dyn_cast<VectorType>(type)->getNumElements(); x < y; ++x) {
|
|
negOneVals.push_back(negOneConst);
|
|
}
|
|
negOneConst = ConstantVector::get(negOneVals);
|
|
} else {
|
|
negOneConst = ConstantInt::get(CI->getContext(),
|
|
APInt(32, StringRef("-1"), 10));
|
|
}
|
|
// __amdil_bfi => (A & B) | (~A & C)
|
|
BinaryOperator *lhs =
|
|
BinaryOperator::Create(Instruction::And, CI->getOperand(0),
|
|
CI->getOperand(1), "bfi_and", CI);
|
|
BinaryOperator *rhs =
|
|
BinaryOperator::Create(Instruction::Xor, CI->getOperand(0), negOneConst,
|
|
"bfi_not", CI);
|
|
rhs = BinaryOperator::Create(Instruction::And, rhs, CI->getOperand(2),
|
|
"bfi_and", CI);
|
|
lhs = BinaryOperator::Create(Instruction::Or, lhs, rhs, "bfi_or", CI);
|
|
CI->replaceAllUsesWith(lhs);
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
AMDGPUPeepholeOpt::expandBFM(CallInst *CI) {
|
|
if (!CI) {
|
|
return false;
|
|
}
|
|
Value *LHS = CI->getOperand(CI->getNumOperands() - 1);
|
|
if (!LHS->getName().startswith("__amdil_bfm")) {
|
|
return false;
|
|
}
|
|
// __amdil_bfm => ((1 << (src0 & 0x1F)) - 1) << (src1 & 0x1f)
|
|
Constant *newMaskConst = NULL;
|
|
Constant *newShiftConst = NULL;
|
|
Type* type = CI->getOperand(0)->getType();
|
|
if (type->isVectorTy()) {
|
|
std::vector<Constant*> newMaskVals, newShiftVals;
|
|
newMaskConst = ConstantInt::get(Type::getInt32Ty(*mCTX), 0x1F);
|
|
newShiftConst = ConstantInt::get(Type::getInt32Ty(*mCTX), 1);
|
|
for (size_t x = 0,
|
|
y = dyn_cast<VectorType>(type)->getNumElements(); x < y; ++x) {
|
|
newMaskVals.push_back(newMaskConst);
|
|
newShiftVals.push_back(newShiftConst);
|
|
}
|
|
newMaskConst = ConstantVector::get(newMaskVals);
|
|
newShiftConst = ConstantVector::get(newShiftVals);
|
|
} else {
|
|
newMaskConst = ConstantInt::get(Type::getInt32Ty(*mCTX), 0x1F);
|
|
newShiftConst = ConstantInt::get(Type::getInt32Ty(*mCTX), 1);
|
|
}
|
|
BinaryOperator *lhs =
|
|
BinaryOperator::Create(Instruction::And, CI->getOperand(0),
|
|
newMaskConst, "bfm_mask", CI);
|
|
lhs = BinaryOperator::Create(Instruction::Shl, newShiftConst,
|
|
lhs, "bfm_shl", CI);
|
|
lhs = BinaryOperator::Create(Instruction::Sub, lhs,
|
|
newShiftConst, "bfm_sub", CI);
|
|
BinaryOperator *rhs =
|
|
BinaryOperator::Create(Instruction::And, CI->getOperand(1),
|
|
newMaskConst, "bfm_mask", CI);
|
|
lhs = BinaryOperator::Create(Instruction::Shl, lhs, rhs, "bfm_shl", CI);
|
|
CI->replaceAllUsesWith(lhs);
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
AMDGPUPeepholeOpt::instLevelOptimizations(BasicBlock::iterator *bbb) {
|
|
Instruction *inst = (*bbb);
|
|
if (optimizeCallInst(bbb)) {
|
|
return true;
|
|
}
|
|
if (optimizeBitExtract(inst)) {
|
|
return false;
|
|
}
|
|
if (optimizeBitInsert(inst)) {
|
|
return false;
|
|
}
|
|
if (correctMisalignedMemOp(inst)) {
|
|
return false;
|
|
}
|
|
return false;
|
|
}
|
|
bool
|
|
AMDGPUPeepholeOpt::correctMisalignedMemOp(Instruction *inst) {
|
|
LoadInst *linst = dyn_cast<LoadInst>(inst);
|
|
StoreInst *sinst = dyn_cast<StoreInst>(inst);
|
|
unsigned alignment;
|
|
Type* Ty = inst->getType();
|
|
if (linst) {
|
|
alignment = linst->getAlignment();
|
|
Ty = inst->getType();
|
|
} else if (sinst) {
|
|
alignment = sinst->getAlignment();
|
|
Ty = sinst->getValueOperand()->getType();
|
|
} else {
|
|
return false;
|
|
}
|
|
unsigned size = getTypeSize(Ty);
|
|
if (size == alignment || size < alignment) {
|
|
return false;
|
|
}
|
|
if (!Ty->isStructTy()) {
|
|
return false;
|
|
}
|
|
if (alignment < 4) {
|
|
if (linst) {
|
|
linst->setAlignment(0);
|
|
return true;
|
|
} else if (sinst) {
|
|
sinst->setAlignment(0);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
bool
|
|
AMDGPUPeepholeOpt::isSigned24BitOps(CallInst *CI) {
|
|
if (!CI) {
|
|
return false;
|
|
}
|
|
Value *LHS = CI->getOperand(CI->getNumOperands() - 1);
|
|
std::string namePrefix = LHS->getName().substr(0, 14);
|
|
if (namePrefix != "__amdil_imad24" && namePrefix != "__amdil_imul24"
|
|
&& namePrefix != "__amdil__imul24_high") {
|
|
return false;
|
|
}
|
|
if (mSTM->device()->usesHardware(AMDGPUDeviceInfo::Signed24BitOps)) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void
|
|
AMDGPUPeepholeOpt::expandSigned24BitOps(CallInst *CI) {
|
|
assert(isSigned24BitOps(CI) && "Must be a "
|
|
"signed 24 bit operation to call this function!");
|
|
Value *LHS = CI->getOperand(CI->getNumOperands()-1);
|
|
// On 7XX and 8XX we do not have signed 24bit, so we need to
|
|
// expand it to the following:
|
|
// imul24 turns into 32bit imul
|
|
// imad24 turns into 32bit imad
|
|
// imul24_high turns into 32bit imulhigh
|
|
if (LHS->getName().substr(0, 14) == "__amdil_imad24") {
|
|
Type *aType = CI->getOperand(0)->getType();
|
|
bool isVector = aType->isVectorTy();
|
|
int numEle = isVector ? dyn_cast<VectorType>(aType)->getNumElements() : 1;
|
|
std::vector<Type*> callTypes;
|
|
callTypes.push_back(CI->getOperand(0)->getType());
|
|
callTypes.push_back(CI->getOperand(1)->getType());
|
|
callTypes.push_back(CI->getOperand(2)->getType());
|
|
FunctionType *funcType =
|
|
FunctionType::get(CI->getOperand(0)->getType(), callTypes, false);
|
|
std::string name = "__amdil_imad";
|
|
if (isVector) {
|
|
name += "_v" + itostr(numEle) + "i32";
|
|
} else {
|
|
name += "_i32";
|
|
}
|
|
Function *Func = dyn_cast<Function>(
|
|
CI->getParent()->getParent()->getParent()->
|
|
getOrInsertFunction(llvm::StringRef(name), funcType));
|
|
Value *Operands[3] = {
|
|
CI->getOperand(0),
|
|
CI->getOperand(1),
|
|
CI->getOperand(2)
|
|
};
|
|
CallInst *nCI = CallInst::Create(Func, Operands, "imad24");
|
|
nCI->insertBefore(CI);
|
|
CI->replaceAllUsesWith(nCI);
|
|
} else if (LHS->getName().substr(0, 14) == "__amdil_imul24") {
|
|
BinaryOperator *mulOp =
|
|
BinaryOperator::Create(Instruction::Mul, CI->getOperand(0),
|
|
CI->getOperand(1), "imul24", CI);
|
|
CI->replaceAllUsesWith(mulOp);
|
|
} else if (LHS->getName().substr(0, 19) == "__amdil_imul24_high") {
|
|
Type *aType = CI->getOperand(0)->getType();
|
|
|
|
bool isVector = aType->isVectorTy();
|
|
int numEle = isVector ? dyn_cast<VectorType>(aType)->getNumElements() : 1;
|
|
std::vector<Type*> callTypes;
|
|
callTypes.push_back(CI->getOperand(0)->getType());
|
|
callTypes.push_back(CI->getOperand(1)->getType());
|
|
FunctionType *funcType =
|
|
FunctionType::get(CI->getOperand(0)->getType(), callTypes, false);
|
|
std::string name = "__amdil_imul_high";
|
|
if (isVector) {
|
|
name += "_v" + itostr(numEle) + "i32";
|
|
} else {
|
|
name += "_i32";
|
|
}
|
|
Function *Func = dyn_cast<Function>(
|
|
CI->getParent()->getParent()->getParent()->
|
|
getOrInsertFunction(llvm::StringRef(name), funcType));
|
|
Value *Operands[2] = {
|
|
CI->getOperand(0),
|
|
CI->getOperand(1)
|
|
};
|
|
CallInst *nCI = CallInst::Create(Func, Operands, "imul24_high");
|
|
nCI->insertBefore(CI);
|
|
CI->replaceAllUsesWith(nCI);
|
|
}
|
|
}
|
|
|
|
bool
|
|
AMDGPUPeepholeOpt::isRWGLocalOpt(CallInst *CI) {
|
|
return (CI != NULL
|
|
&& CI->getOperand(CI->getNumOperands() - 1)->getName()
|
|
== "__amdil_get_local_size_int");
|
|
}
|
|
|
|
bool
|
|
AMDGPUPeepholeOpt::convertAccurateDivide(CallInst *CI) {
|
|
if (!CI) {
|
|
return false;
|
|
}
|
|
if (mSTM->device()->getGeneration() == AMDGPUDeviceInfo::HD6XXX
|
|
&& (mSTM->getDeviceName() == "cayman")) {
|
|
return false;
|
|
}
|
|
return CI->getOperand(CI->getNumOperands() - 1)->getName().substr(0, 20)
|
|
== "__amdil_improved_div";
|
|
}
|
|
|
|
void
|
|
AMDGPUPeepholeOpt::expandAccurateDivide(CallInst *CI) {
|
|
assert(convertAccurateDivide(CI)
|
|
&& "expanding accurate divide can only happen if it is expandable!");
|
|
BinaryOperator *divOp =
|
|
BinaryOperator::Create(Instruction::FDiv, CI->getOperand(0),
|
|
CI->getOperand(1), "fdiv32", CI);
|
|
CI->replaceAllUsesWith(divOp);
|
|
}
|
|
|
|
bool
|
|
AMDGPUPeepholeOpt::propagateSamplerInst(CallInst *CI) {
|
|
if (optLevel != CodeGenOpt::None) {
|
|
return false;
|
|
}
|
|
|
|
if (!CI) {
|
|
return false;
|
|
}
|
|
|
|
unsigned funcNameIdx = 0;
|
|
funcNameIdx = CI->getNumOperands() - 1;
|
|
StringRef calleeName = CI->getOperand(funcNameIdx)->getName();
|
|
if (calleeName != "__amdil_image2d_read_norm"
|
|
&& calleeName != "__amdil_image2d_read_unnorm"
|
|
&& calleeName != "__amdil_image3d_read_norm"
|
|
&& calleeName != "__amdil_image3d_read_unnorm") {
|
|
return false;
|
|
}
|
|
|
|
unsigned samplerIdx = 2;
|
|
samplerIdx = 1;
|
|
Value *sampler = CI->getOperand(samplerIdx);
|
|
LoadInst *lInst = dyn_cast<LoadInst>(sampler);
|
|
if (!lInst) {
|
|
return false;
|
|
}
|
|
|
|
if (lInst->getPointerAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) {
|
|
return false;
|
|
}
|
|
|
|
GlobalVariable *gv = dyn_cast<GlobalVariable>(lInst->getPointerOperand());
|
|
// If we are loading from what is not a global value, then we
|
|
// fail and return.
|
|
if (!gv) {
|
|
return false;
|
|
}
|
|
|
|
// If we don't have an initializer or we have an initializer and
|
|
// the initializer is not a 32bit integer, we fail.
|
|
if (!gv->hasInitializer()
|
|
|| !gv->getInitializer()->getType()->isIntegerTy(32)) {
|
|
return false;
|
|
}
|
|
|
|
// Now that we have the global variable initializer, lets replace
|
|
// all uses of the load instruction with the samplerVal and
|
|
// reparse the __amdil_is_constant() function.
|
|
Constant *samplerVal = gv->getInitializer();
|
|
lInst->replaceAllUsesWith(samplerVal);
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
AMDGPUPeepholeOpt::doInitialization(Module &M) {
|
|
return false;
|
|
}
|
|
|
|
bool
|
|
AMDGPUPeepholeOpt::doFinalization(Module &M) {
|
|
return false;
|
|
}
|
|
|
|
void
|
|
AMDGPUPeepholeOpt::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired<MachineFunctionAnalysis>();
|
|
FunctionPass::getAnalysisUsage(AU);
|
|
AU.setPreservesAll();
|
|
}
|
|
|
|
size_t AMDGPUPeepholeOpt::getTypeSize(Type * const T, bool dereferencePtr) {
|
|
size_t size = 0;
|
|
if (!T) {
|
|
return size;
|
|
}
|
|
switch (T->getTypeID()) {
|
|
case Type::X86_FP80TyID:
|
|
case Type::FP128TyID:
|
|
case Type::PPC_FP128TyID:
|
|
case Type::LabelTyID:
|
|
assert(0 && "These types are not supported by this backend");
|
|
default:
|
|
case Type::FloatTyID:
|
|
case Type::DoubleTyID:
|
|
size = T->getPrimitiveSizeInBits() >> 3;
|
|
break;
|
|
case Type::PointerTyID:
|
|
size = getTypeSize(dyn_cast<PointerType>(T), dereferencePtr);
|
|
break;
|
|
case Type::IntegerTyID:
|
|
size = getTypeSize(dyn_cast<IntegerType>(T), dereferencePtr);
|
|
break;
|
|
case Type::StructTyID:
|
|
size = getTypeSize(dyn_cast<StructType>(T), dereferencePtr);
|
|
break;
|
|
case Type::ArrayTyID:
|
|
size = getTypeSize(dyn_cast<ArrayType>(T), dereferencePtr);
|
|
break;
|
|
case Type::FunctionTyID:
|
|
size = getTypeSize(dyn_cast<FunctionType>(T), dereferencePtr);
|
|
break;
|
|
case Type::VectorTyID:
|
|
size = getTypeSize(dyn_cast<VectorType>(T), dereferencePtr);
|
|
break;
|
|
};
|
|
return size;
|
|
}
|
|
|
|
size_t AMDGPUPeepholeOpt::getTypeSize(StructType * const ST,
|
|
bool dereferencePtr) {
|
|
size_t size = 0;
|
|
if (!ST) {
|
|
return size;
|
|
}
|
|
Type *curType;
|
|
StructType::element_iterator eib;
|
|
StructType::element_iterator eie;
|
|
for (eib = ST->element_begin(), eie = ST->element_end(); eib != eie; ++eib) {
|
|
curType = *eib;
|
|
size += getTypeSize(curType, dereferencePtr);
|
|
}
|
|
return size;
|
|
}
|
|
|
|
size_t AMDGPUPeepholeOpt::getTypeSize(IntegerType * const IT,
|
|
bool dereferencePtr) {
|
|
return IT ? (IT->getBitWidth() >> 3) : 0;
|
|
}
|
|
|
|
size_t AMDGPUPeepholeOpt::getTypeSize(FunctionType * const FT,
|
|
bool dereferencePtr) {
|
|
assert(0 && "Should not be able to calculate the size of an function type");
|
|
return 0;
|
|
}
|
|
|
|
size_t AMDGPUPeepholeOpt::getTypeSize(ArrayType * const AT,
|
|
bool dereferencePtr) {
|
|
return (size_t)(AT ? (getTypeSize(AT->getElementType(),
|
|
dereferencePtr) * AT->getNumElements())
|
|
: 0);
|
|
}
|
|
|
|
size_t AMDGPUPeepholeOpt::getTypeSize(VectorType * const VT,
|
|
bool dereferencePtr) {
|
|
return VT ? (VT->getBitWidth() >> 3) : 0;
|
|
}
|
|
|
|
size_t AMDGPUPeepholeOpt::getTypeSize(PointerType * const PT,
|
|
bool dereferencePtr) {
|
|
if (!PT) {
|
|
return 0;
|
|
}
|
|
Type *CT = PT->getElementType();
|
|
if (CT->getTypeID() == Type::StructTyID &&
|
|
PT->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
|
|
return getTypeSize(dyn_cast<StructType>(CT));
|
|
} else if (dereferencePtr) {
|
|
size_t size = 0;
|
|
for (size_t x = 0, y = PT->getNumContainedTypes(); x < y; ++x) {
|
|
size += getTypeSize(PT->getContainedType(x), dereferencePtr);
|
|
}
|
|
return size;
|
|
} else {
|
|
return 4;
|
|
}
|
|
}
|
|
|
|
size_t AMDGPUPeepholeOpt::getTypeSize(OpaqueType * const OT,
|
|
bool dereferencePtr) {
|
|
//assert(0 && "Should not be able to calculate the size of an opaque type");
|
|
return 4;
|
|
}
|