mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@101265 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			434 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			434 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- InlineCost.cpp - Cost analysis for inliner -------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file implements inline cost analysis.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/InlineCost.h"
 | |
| #include "llvm/Support/CallSite.h"
 | |
| #include "llvm/CallingConv.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| using namespace llvm;
 | |
| 
 | |
| // CountCodeReductionForConstant - Figure out an approximation for how many
 | |
| // instructions will be constant folded if the specified value is constant.
 | |
| //
 | |
| unsigned InlineCostAnalyzer::FunctionInfo::
 | |
| CountCodeReductionForConstant(Value *V) {
 | |
|   unsigned Reduction = 0;
 | |
|   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
 | |
|     User *U = *UI;
 | |
|     if (isa<BranchInst>(U) || isa<SwitchInst>(U)) {
 | |
|       // We will be able to eliminate all but one of the successors.
 | |
|       const TerminatorInst &TI = cast<TerminatorInst>(*U);
 | |
|       const unsigned NumSucc = TI.getNumSuccessors();
 | |
|       unsigned Instrs = 0;
 | |
|       for (unsigned I = 0; I != NumSucc; ++I)
 | |
|         Instrs += Metrics.NumBBInsts[TI.getSuccessor(I)];
 | |
|       // We don't know which blocks will be eliminated, so use the average size.
 | |
|       Reduction += InlineConstants::InstrCost*Instrs*(NumSucc-1)/NumSucc;
 | |
|     } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
 | |
|       // Turning an indirect call into a direct call is a BIG win
 | |
|       if (CI->getCalledValue() == V)
 | |
|         Reduction += InlineConstants::IndirectCallBonus;
 | |
|     } else if (InvokeInst *II = dyn_cast<InvokeInst>(U)) {
 | |
|       // Turning an indirect call into a direct call is a BIG win
 | |
|       if (II->getCalledValue() == V)
 | |
|         Reduction += InlineConstants::IndirectCallBonus;
 | |
|     } else {
 | |
|       // Figure out if this instruction will be removed due to simple constant
 | |
|       // propagation.
 | |
|       Instruction &Inst = cast<Instruction>(*U);
 | |
| 
 | |
|       // We can't constant propagate instructions which have effects or
 | |
|       // read memory.
 | |
|       //
 | |
|       // FIXME: It would be nice to capture the fact that a load from a
 | |
|       // pointer-to-constant-global is actually a *really* good thing to zap.
 | |
|       // Unfortunately, we don't know the pointer that may get propagated here,
 | |
|       // so we can't make this decision.
 | |
|       if (Inst.mayReadFromMemory() || Inst.mayHaveSideEffects() ||
 | |
|           isa<AllocaInst>(Inst))
 | |
|         continue;
 | |
| 
 | |
|       bool AllOperandsConstant = true;
 | |
|       for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i)
 | |
|         if (!isa<Constant>(Inst.getOperand(i)) && Inst.getOperand(i) != V) {
 | |
|           AllOperandsConstant = false;
 | |
|           break;
 | |
|         }
 | |
| 
 | |
|       if (AllOperandsConstant) {
 | |
|         // We will get to remove this instruction...
 | |
|         Reduction += InlineConstants::InstrCost;
 | |
| 
 | |
|         // And any other instructions that use it which become constants
 | |
|         // themselves.
 | |
|         Reduction += CountCodeReductionForConstant(&Inst);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   return Reduction;
 | |
| }
 | |
| 
 | |
| // CountCodeReductionForAlloca - Figure out an approximation of how much smaller
 | |
| // the function will be if it is inlined into a context where an argument
 | |
| // becomes an alloca.
 | |
| //
 | |
| unsigned InlineCostAnalyzer::FunctionInfo::
 | |
|          CountCodeReductionForAlloca(Value *V) {
 | |
|   if (!V->getType()->isPointerTy()) return 0;  // Not a pointer
 | |
|   unsigned Reduction = 0;
 | |
|   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
 | |
|     Instruction *I = cast<Instruction>(*UI);
 | |
|     if (isa<LoadInst>(I) || isa<StoreInst>(I))
 | |
|       Reduction += InlineConstants::InstrCost;
 | |
|     else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
 | |
|       // If the GEP has variable indices, we won't be able to do much with it.
 | |
|       if (GEP->hasAllConstantIndices())
 | |
|         Reduction += CountCodeReductionForAlloca(GEP);
 | |
|     } else if (BitCastInst *BCI = dyn_cast<BitCastInst>(I)) {
 | |
|       // Track pointer through bitcasts.
 | |
|       Reduction += CountCodeReductionForAlloca(BCI);
 | |
|     } else {
 | |
|       // If there is some other strange instruction, we're not going to be able
 | |
|       // to do much if we inline this.
 | |
|       return 0;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Reduction;
 | |
| }
 | |
| 
 | |
| // callIsSmall - If a call is likely to lower to a single target instruction, or
 | |
| // is otherwise deemed small return true.
 | |
| // TODO: Perhaps calls like memcpy, strcpy, etc?
 | |
| static bool callIsSmall(const Function *F) {
 | |
|   if (!F) return false;
 | |
|   
 | |
|   if (F->hasLocalLinkage()) return false;
 | |
|   
 | |
|   if (!F->hasName()) return false;
 | |
|   
 | |
|   StringRef Name = F->getName();
 | |
|   
 | |
|   // These will all likely lower to a single selection DAG node.
 | |
|   if (Name == "copysign" || Name == "copysignf" || Name == "copysignl" ||
 | |
|       Name == "fabs" || Name == "fabsf" || Name == "fabsl" ||
 | |
|       Name == "sin" || Name == "sinf" || Name == "sinl" ||
 | |
|       Name == "cos" || Name == "cosf" || Name == "cosl" ||
 | |
|       Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl" )
 | |
|     return true;
 | |
|   
 | |
|   // These are all likely to be optimized into something smaller.
 | |
|   if (Name == "pow" || Name == "powf" || Name == "powl" ||
 | |
|       Name == "exp2" || Name == "exp2l" || Name == "exp2f" ||
 | |
|       Name == "floor" || Name == "floorf" || Name == "ceil" ||
 | |
|       Name == "round" || Name == "ffs" || Name == "ffsl" ||
 | |
|       Name == "abs" || Name == "labs" || Name == "llabs")
 | |
|     return true;
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// analyzeBasicBlock - Fill in the current structure with information gleaned
 | |
| /// from the specified block.
 | |
| void CodeMetrics::analyzeBasicBlock(const BasicBlock *BB) {
 | |
|   ++NumBlocks;
 | |
|   unsigned NumInstsBeforeThisBB = NumInsts;
 | |
|   for (BasicBlock::const_iterator II = BB->begin(), E = BB->end();
 | |
|        II != E; ++II) {
 | |
|     if (isa<PHINode>(II)) continue;           // PHI nodes don't count.
 | |
| 
 | |
|     // Special handling for calls.
 | |
|     if (isa<CallInst>(II) || isa<InvokeInst>(II)) {
 | |
|       if (isa<DbgInfoIntrinsic>(II))
 | |
|         continue;  // Debug intrinsics don't count as size.
 | |
|       
 | |
|       CallSite CS = CallSite::get(const_cast<Instruction*>(&*II));
 | |
|       
 | |
|       // If this function contains a call to setjmp or _setjmp, never inline
 | |
|       // it.  This is a hack because we depend on the user marking their local
 | |
|       // variables as volatile if they are live across a setjmp call, and they
 | |
|       // probably won't do this in callers.
 | |
|       if (Function *F = CS.getCalledFunction())
 | |
|         if (F->isDeclaration() && 
 | |
|             (F->getName() == "setjmp" || F->getName() == "_setjmp"))
 | |
|           NeverInline = true;
 | |
| 
 | |
|       if (!isa<IntrinsicInst>(II) && !callIsSmall(CS.getCalledFunction())) {
 | |
|         // Each argument to a call takes on average one instruction to set up.
 | |
|         NumInsts += CS.arg_size();
 | |
|         ++NumCalls;
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
 | |
|       if (!AI->isStaticAlloca())
 | |
|         this->usesDynamicAlloca = true;
 | |
|     }
 | |
| 
 | |
|     if (isa<ExtractElementInst>(II) || II->getType()->isVectorTy())
 | |
|       ++NumVectorInsts; 
 | |
|     
 | |
|     if (const CastInst *CI = dyn_cast<CastInst>(II)) {
 | |
|       // Noop casts, including ptr <-> int,  don't count.
 | |
|       if (CI->isLosslessCast() || isa<IntToPtrInst>(CI) || 
 | |
|           isa<PtrToIntInst>(CI))
 | |
|         continue;
 | |
|       // Result of a cmp instruction is often extended (to be used by other
 | |
|       // cmp instructions, logical or return instructions). These are usually
 | |
|       // nop on most sane targets.
 | |
|       if (isa<CmpInst>(CI->getOperand(0)))
 | |
|         continue;
 | |
|     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(II)){
 | |
|       // If a GEP has all constant indices, it will probably be folded with
 | |
|       // a load/store.
 | |
|       if (GEPI->hasAllConstantIndices())
 | |
|         continue;
 | |
|     }
 | |
| 
 | |
|     ++NumInsts;
 | |
|   }
 | |
|   
 | |
|   if (isa<ReturnInst>(BB->getTerminator()))
 | |
|     ++NumRets;
 | |
|   
 | |
|   // We never want to inline functions that contain an indirectbr.  This is
 | |
|   // incorrect because all the blockaddress's (in static global initializers
 | |
|   // for example) would be referring to the original function, and this indirect
 | |
|   // jump would jump from the inlined copy of the function into the original
 | |
|   // function which is extremely undefined behavior.
 | |
|   if (isa<IndirectBrInst>(BB->getTerminator()))
 | |
|     NeverInline = true;
 | |
| 
 | |
|   // Remember NumInsts for this BB.
 | |
|   NumBBInsts[BB] = NumInsts - NumInstsBeforeThisBB;
 | |
| }
 | |
| 
 | |
| /// analyzeFunction - Fill in the current structure with information gleaned
 | |
| /// from the specified function.
 | |
| void CodeMetrics::analyzeFunction(Function *F) {
 | |
|   // Look at the size of the callee.
 | |
|   for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
 | |
|     analyzeBasicBlock(&*BB);
 | |
| }
 | |
| 
 | |
| /// analyzeFunction - Fill in the current structure with information gleaned
 | |
| /// from the specified function.
 | |
| void InlineCostAnalyzer::FunctionInfo::analyzeFunction(Function *F) {
 | |
|   Metrics.analyzeFunction(F);
 | |
| 
 | |
|   // A function with exactly one return has it removed during the inlining
 | |
|   // process (see InlineFunction), so don't count it.
 | |
|   // FIXME: This knowledge should really be encoded outside of FunctionInfo.
 | |
|   if (Metrics.NumRets==1)
 | |
|     --Metrics.NumInsts;
 | |
| 
 | |
|   // Don't bother calculating argument weights if we are never going to inline
 | |
|   // the function anyway.
 | |
|   if (Metrics.NeverInline)
 | |
|     return;
 | |
| 
 | |
|   // Check out all of the arguments to the function, figuring out how much
 | |
|   // code can be eliminated if one of the arguments is a constant.
 | |
|   ArgumentWeights.reserve(F->arg_size());
 | |
|   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
 | |
|     ArgumentWeights.push_back(ArgInfo(CountCodeReductionForConstant(I),
 | |
|                                       CountCodeReductionForAlloca(I)));
 | |
| }
 | |
| 
 | |
| // getInlineCost - The heuristic used to determine if we should inline the
 | |
| // function call or not.
 | |
| //
 | |
| InlineCost InlineCostAnalyzer::getInlineCost(CallSite CS,
 | |
|                                SmallPtrSet<const Function *, 16> &NeverInline) {
 | |
|   Instruction *TheCall = CS.getInstruction();
 | |
|   Function *Callee = CS.getCalledFunction();
 | |
|   Function *Caller = TheCall->getParent()->getParent();
 | |
| 
 | |
|   // Don't inline functions which can be redefined at link-time to mean
 | |
|   // something else.  Don't inline functions marked noinline or call sites
 | |
|   // marked noinline.
 | |
|   if (Callee->mayBeOverridden() ||
 | |
|       Callee->hasFnAttr(Attribute::NoInline) || NeverInline.count(Callee) ||
 | |
|       CS.isNoInline())
 | |
|     return llvm::InlineCost::getNever();
 | |
| 
 | |
|   // InlineCost - This value measures how good of an inline candidate this call
 | |
|   // site is to inline.  A lower inline cost make is more likely for the call to
 | |
|   // be inlined.  This value may go negative.
 | |
|   //
 | |
|   int InlineCost = 0;
 | |
|   
 | |
|   // If there is only one call of the function, and it has internal linkage,
 | |
|   // make it almost guaranteed to be inlined.
 | |
|   //
 | |
|   if (Callee->hasLocalLinkage() && Callee->hasOneUse())
 | |
|     InlineCost += InlineConstants::LastCallToStaticBonus;
 | |
|   
 | |
|   // If this function uses the coldcc calling convention, prefer not to inline
 | |
|   // it.
 | |
|   if (Callee->getCallingConv() == CallingConv::Cold)
 | |
|     InlineCost += InlineConstants::ColdccPenalty;
 | |
|   
 | |
|   // If the instruction after the call, or if the normal destination of the
 | |
|   // invoke is an unreachable instruction, the function is noreturn.  As such,
 | |
|   // there is little point in inlining this.
 | |
|   if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
 | |
|     if (isa<UnreachableInst>(II->getNormalDest()->begin()))
 | |
|       InlineCost += InlineConstants::NoreturnPenalty;
 | |
|   } else if (isa<UnreachableInst>(++BasicBlock::iterator(TheCall)))
 | |
|     InlineCost += InlineConstants::NoreturnPenalty;
 | |
|   
 | |
|   // Get information about the callee...
 | |
|   FunctionInfo &CalleeFI = CachedFunctionInfo[Callee];
 | |
|   
 | |
|   // If we haven't calculated this information yet, do so now.
 | |
|   if (CalleeFI.Metrics.NumBlocks == 0)
 | |
|     CalleeFI.analyzeFunction(Callee);
 | |
| 
 | |
|   // If we should never inline this, return a huge cost.
 | |
|   if (CalleeFI.Metrics.NeverInline)
 | |
|     return InlineCost::getNever();
 | |
| 
 | |
|   // FIXME: It would be nice to kill off CalleeFI.NeverInline. Then we
 | |
|   // could move this up and avoid computing the FunctionInfo for
 | |
|   // things we are going to just return always inline for. This
 | |
|   // requires handling setjmp somewhere else, however.
 | |
|   if (!Callee->isDeclaration() && Callee->hasFnAttr(Attribute::AlwaysInline))
 | |
|     return InlineCost::getAlways();
 | |
|     
 | |
|   if (CalleeFI.Metrics.usesDynamicAlloca) {
 | |
|     // Get infomation about the caller...
 | |
|     FunctionInfo &CallerFI = CachedFunctionInfo[Caller];
 | |
| 
 | |
|     // If we haven't calculated this information yet, do so now.
 | |
|     if (CallerFI.Metrics.NumBlocks == 0)
 | |
|       CallerFI.analyzeFunction(Caller);
 | |
| 
 | |
|     // Don't inline a callee with dynamic alloca into a caller without them.
 | |
|     // Functions containing dynamic alloca's are inefficient in various ways;
 | |
|     // don't create more inefficiency.
 | |
|     if (!CallerFI.Metrics.usesDynamicAlloca)
 | |
|       return InlineCost::getNever();
 | |
|   }
 | |
| 
 | |
|   // Add to the inline quality for properties that make the call valuable to
 | |
|   // inline.  This includes factors that indicate that the result of inlining
 | |
|   // the function will be optimizable.  Currently this just looks at arguments
 | |
|   // passed into the function.
 | |
|   //
 | |
|   unsigned ArgNo = 0;
 | |
|   for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
 | |
|        I != E; ++I, ++ArgNo) {
 | |
|     // Each argument passed in has a cost at both the caller and the callee
 | |
|     // sides.  Measurements show that each argument costs about the same as an
 | |
|     // instruction.
 | |
|     InlineCost -= InlineConstants::InstrCost;
 | |
| 
 | |
|     // If an alloca is passed in, inlining this function is likely to allow
 | |
|     // significant future optimization possibilities (like scalar promotion, and
 | |
|     // scalarization), so encourage the inlining of the function.
 | |
|     //
 | |
|     if (isa<AllocaInst>(I)) {
 | |
|       if (ArgNo < CalleeFI.ArgumentWeights.size())
 | |
|         InlineCost -= CalleeFI.ArgumentWeights[ArgNo].AllocaWeight;
 | |
| 
 | |
|       // If this is a constant being passed into the function, use the argument
 | |
|       // weights calculated for the callee to determine how much will be folded
 | |
|       // away with this information.
 | |
|     } else if (isa<Constant>(I)) {
 | |
|       if (ArgNo < CalleeFI.ArgumentWeights.size())
 | |
|         InlineCost -= CalleeFI.ArgumentWeights[ArgNo].ConstantWeight;
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Now that we have considered all of the factors that make the call site more
 | |
|   // likely to be inlined, look at factors that make us not want to inline it.
 | |
| 
 | |
|   // Calls usually take a long time, so they make the inlining gain smaller.
 | |
|   InlineCost += CalleeFI.Metrics.NumCalls * InlineConstants::CallPenalty;
 | |
| 
 | |
|   // Look at the size of the callee. Each instruction counts as 5.
 | |
|   InlineCost += CalleeFI.Metrics.NumInsts*InlineConstants::InstrCost;
 | |
| 
 | |
|   return llvm::InlineCost::get(InlineCost);
 | |
| }
 | |
| 
 | |
| // getInlineFudgeFactor - Return a > 1.0 factor if the inliner should use a
 | |
| // higher threshold to determine if the function call should be inlined.
 | |
| float InlineCostAnalyzer::getInlineFudgeFactor(CallSite CS) {
 | |
|   Function *Callee = CS.getCalledFunction();
 | |
|   
 | |
|   // Get information about the callee...
 | |
|   FunctionInfo &CalleeFI = CachedFunctionInfo[Callee];
 | |
|   
 | |
|   // If we haven't calculated this information yet, do so now.
 | |
|   if (CalleeFI.Metrics.NumBlocks == 0)
 | |
|     CalleeFI.analyzeFunction(Callee);
 | |
| 
 | |
|   float Factor = 1.0f;
 | |
|   // Single BB functions are often written to be inlined.
 | |
|   if (CalleeFI.Metrics.NumBlocks == 1)
 | |
|     Factor += 0.5f;
 | |
| 
 | |
|   // Be more aggressive if the function contains a good chunk (if it mades up
 | |
|   // at least 10% of the instructions) of vector instructions.
 | |
|   if (CalleeFI.Metrics.NumVectorInsts > CalleeFI.Metrics.NumInsts/2)
 | |
|     Factor += 2.0f;
 | |
|   else if (CalleeFI.Metrics.NumVectorInsts > CalleeFI.Metrics.NumInsts/10)
 | |
|     Factor += 1.5f;
 | |
|   return Factor;
 | |
| }
 | |
| 
 | |
| /// growCachedCostInfo - update the cached cost info for Caller after Callee has
 | |
| /// been inlined.
 | |
| void
 | |
| InlineCostAnalyzer::growCachedCostInfo(Function* Caller, Function* Callee) {
 | |
|   FunctionInfo &CallerFI = CachedFunctionInfo[Caller];
 | |
| 
 | |
|   // For small functions we prefer to recalculate the cost for better accuracy.
 | |
|   if (CallerFI.Metrics.NumBlocks < 10 || CallerFI.Metrics.NumInsts < 1000) {
 | |
|     resetCachedCostInfo(Caller);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // For large functions, we can save a lot of computation time by skipping
 | |
|   // recalculations.
 | |
|   if (CallerFI.Metrics.NumCalls > 0)
 | |
|     --CallerFI.Metrics.NumCalls;
 | |
| 
 | |
|   if (Callee) {
 | |
|     FunctionInfo &CalleeFI = CachedFunctionInfo[Callee];
 | |
|     if (!CalleeFI.Metrics.NumBlocks) {
 | |
|       resetCachedCostInfo(Caller);
 | |
|       return;
 | |
|     }
 | |
|     CallerFI.Metrics.NeverInline |= CalleeFI.Metrics.NeverInline;
 | |
|     CallerFI.Metrics.usesDynamicAlloca |= CalleeFI.Metrics.usesDynamicAlloca;
 | |
| 
 | |
|     CallerFI.Metrics.NumInsts += CalleeFI.Metrics.NumInsts;
 | |
|     CallerFI.Metrics.NumBlocks += CalleeFI.Metrics.NumBlocks;
 | |
|     CallerFI.Metrics.NumCalls += CalleeFI.Metrics.NumCalls;
 | |
|     CallerFI.Metrics.NumVectorInsts += CalleeFI.Metrics.NumVectorInsts;
 | |
|     CallerFI.Metrics.NumRets += CalleeFI.Metrics.NumRets;
 | |
| 
 | |
|     // analyzeBasicBlock counts each function argument as an inst.
 | |
|     if (CallerFI.Metrics.NumInsts >= Callee->arg_size())
 | |
|       CallerFI.Metrics.NumInsts -= Callee->arg_size();
 | |
|     else
 | |
|       CallerFI.Metrics.NumInsts = 0;
 | |
|   }
 | |
|   // We are not updating the argumentweights. We have already determined that
 | |
|   // Caller is a fairly large function, so we accept the loss of precision.
 | |
| }
 |