mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@98416 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1568 lines
		
	
	
		
			61 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1568 lines
		
	
	
		
			61 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===- ValueTracking.cpp - Walk computations to compute properties --------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file is distributed under the University of Illinois Open Source
 | |
| // License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains routines that help analyze properties that chains of
 | |
| // computations have.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "llvm/Analysis/ValueTracking.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/GlobalAlias.h"
 | |
| #include "llvm/IntrinsicInst.h"
 | |
| #include "llvm/LLVMContext.h"
 | |
| #include "llvm/Operator.h"
 | |
| #include "llvm/Target/TargetData.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/Support/MathExtras.h"
 | |
| #include "llvm/ADT/SmallPtrSet.h"
 | |
| #include <cstring>
 | |
| using namespace llvm;
 | |
| 
 | |
| /// ComputeMaskedBits - Determine which of the bits specified in Mask are
 | |
| /// known to be either zero or one and return them in the KnownZero/KnownOne
 | |
| /// bit sets.  This code only analyzes bits in Mask, in order to short-circuit
 | |
| /// processing.
 | |
| /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
 | |
| /// we cannot optimize based on the assumption that it is zero without changing
 | |
| /// it to be an explicit zero.  If we don't change it to zero, other code could
 | |
| /// optimized based on the contradictory assumption that it is non-zero.
 | |
| /// Because instcombine aggressively folds operations with undef args anyway,
 | |
| /// this won't lose us code quality.
 | |
| ///
 | |
| /// This function is defined on values with integer type, values with pointer
 | |
| /// type (but only if TD is non-null), and vectors of integers.  In the case
 | |
| /// where V is a vector, the mask, known zero, and known one values are the
 | |
| /// same width as the vector element, and the bit is set only if it is true
 | |
| /// for all of the elements in the vector.
 | |
| void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
 | |
|                              APInt &KnownZero, APInt &KnownOne,
 | |
|                              const TargetData *TD, unsigned Depth) {
 | |
|   const unsigned MaxDepth = 6;
 | |
|   assert(V && "No Value?");
 | |
|   assert(Depth <= MaxDepth && "Limit Search Depth");
 | |
|   unsigned BitWidth = Mask.getBitWidth();
 | |
|   assert((V->getType()->isIntOrIntVectorTy() || V->getType()->isPointerTy())
 | |
|          && "Not integer or pointer type!");
 | |
|   assert((!TD ||
 | |
|           TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
 | |
|          (!V->getType()->isIntOrIntVectorTy() ||
 | |
|           V->getType()->getScalarSizeInBits() == BitWidth) &&
 | |
|          KnownZero.getBitWidth() == BitWidth && 
 | |
|          KnownOne.getBitWidth() == BitWidth &&
 | |
|          "V, Mask, KnownOne and KnownZero should have same BitWidth");
 | |
| 
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
 | |
|     // We know all of the bits for a constant!
 | |
|     KnownOne = CI->getValue() & Mask;
 | |
|     KnownZero = ~KnownOne & Mask;
 | |
|     return;
 | |
|   }
 | |
|   // Null and aggregate-zero are all-zeros.
 | |
|   if (isa<ConstantPointerNull>(V) ||
 | |
|       isa<ConstantAggregateZero>(V)) {
 | |
|     KnownOne.clear();
 | |
|     KnownZero = Mask;
 | |
|     return;
 | |
|   }
 | |
|   // Handle a constant vector by taking the intersection of the known bits of
 | |
|   // each element.
 | |
|   if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
 | |
|     KnownZero.set(); KnownOne.set();
 | |
|     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
 | |
|       APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
 | |
|       ComputeMaskedBits(CV->getOperand(i), Mask, KnownZero2, KnownOne2,
 | |
|                         TD, Depth);
 | |
|       KnownZero &= KnownZero2;
 | |
|       KnownOne &= KnownOne2;
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   // The address of an aligned GlobalValue has trailing zeros.
 | |
|   if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
 | |
|     unsigned Align = GV->getAlignment();
 | |
|     if (Align == 0 && TD && GV->getType()->getElementType()->isSized()) {
 | |
|       const Type *ObjectType = GV->getType()->getElementType();
 | |
|       // If the object is defined in the current Module, we'll be giving
 | |
|       // it the preferred alignment. Otherwise, we have to assume that it
 | |
|       // may only have the minimum ABI alignment.
 | |
|       if (!GV->isDeclaration() && !GV->mayBeOverridden())
 | |
|         Align = TD->getPrefTypeAlignment(ObjectType);
 | |
|       else
 | |
|         Align = TD->getABITypeAlignment(ObjectType);
 | |
|     }
 | |
|     if (Align > 0)
 | |
|       KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
 | |
|                                               CountTrailingZeros_32(Align));
 | |
|     else
 | |
|       KnownZero.clear();
 | |
|     KnownOne.clear();
 | |
|     return;
 | |
|   }
 | |
|   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
 | |
|   // the bits of its aliasee.
 | |
|   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
 | |
|     if (GA->mayBeOverridden()) {
 | |
|       KnownZero.clear(); KnownOne.clear();
 | |
|     } else {
 | |
|       ComputeMaskedBits(GA->getAliasee(), Mask, KnownZero, KnownOne,
 | |
|                         TD, Depth+1);
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   KnownZero.clear(); KnownOne.clear();   // Start out not knowing anything.
 | |
| 
 | |
|   if (Depth == MaxDepth || Mask == 0)
 | |
|     return;  // Limit search depth.
 | |
| 
 | |
|   Operator *I = dyn_cast<Operator>(V);
 | |
|   if (!I) return;
 | |
| 
 | |
|   APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
 | |
|   switch (I->getOpcode()) {
 | |
|   default: break;
 | |
|   case Instruction::And: {
 | |
|     // If either the LHS or the RHS are Zero, the result is zero.
 | |
|     ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
 | |
|     APInt Mask2(Mask & ~KnownZero);
 | |
|     ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
 | |
|                       Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // Output known-1 bits are only known if set in both the LHS & RHS.
 | |
|     KnownOne &= KnownOne2;
 | |
|     // Output known-0 are known to be clear if zero in either the LHS | RHS.
 | |
|     KnownZero |= KnownZero2;
 | |
|     return;
 | |
|   }
 | |
|   case Instruction::Or: {
 | |
|     ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
 | |
|     APInt Mask2(Mask & ~KnownOne);
 | |
|     ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
 | |
|                       Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // Output known-0 bits are only known if clear in both the LHS & RHS.
 | |
|     KnownZero &= KnownZero2;
 | |
|     // Output known-1 are known to be set if set in either the LHS | RHS.
 | |
|     KnownOne |= KnownOne2;
 | |
|     return;
 | |
|   }
 | |
|   case Instruction::Xor: {
 | |
|     ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
 | |
|     ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD,
 | |
|                       Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // Output known-0 bits are known if clear or set in both the LHS & RHS.
 | |
|     APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
 | |
|     // Output known-1 are known to be set if set in only one of the LHS, RHS.
 | |
|     KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
 | |
|     KnownZero = KnownZeroOut;
 | |
|     return;
 | |
|   }
 | |
|   case Instruction::Mul: {
 | |
|     APInt Mask2 = APInt::getAllOnesValue(BitWidth);
 | |
|     ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1);
 | |
|     ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
 | |
|                       Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     
 | |
|     // If low bits are zero in either operand, output low known-0 bits.
 | |
|     // Also compute a conserative estimate for high known-0 bits.
 | |
|     // More trickiness is possible, but this is sufficient for the
 | |
|     // interesting case of alignment computation.
 | |
|     KnownOne.clear();
 | |
|     unsigned TrailZ = KnownZero.countTrailingOnes() +
 | |
|                       KnownZero2.countTrailingOnes();
 | |
|     unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
 | |
|                                KnownZero2.countLeadingOnes(),
 | |
|                                BitWidth) - BitWidth;
 | |
| 
 | |
|     TrailZ = std::min(TrailZ, BitWidth);
 | |
|     LeadZ = std::min(LeadZ, BitWidth);
 | |
|     KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
 | |
|                 APInt::getHighBitsSet(BitWidth, LeadZ);
 | |
|     KnownZero &= Mask;
 | |
|     return;
 | |
|   }
 | |
|   case Instruction::UDiv: {
 | |
|     // For the purposes of computing leading zeros we can conservatively
 | |
|     // treat a udiv as a logical right shift by the power of 2 known to
 | |
|     // be less than the denominator.
 | |
|     APInt AllOnes = APInt::getAllOnesValue(BitWidth);
 | |
|     ComputeMaskedBits(I->getOperand(0),
 | |
|                       AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
 | |
|     unsigned LeadZ = KnownZero2.countLeadingOnes();
 | |
| 
 | |
|     KnownOne2.clear();
 | |
|     KnownZero2.clear();
 | |
|     ComputeMaskedBits(I->getOperand(1),
 | |
|                       AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
 | |
|     unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
 | |
|     if (RHSUnknownLeadingOnes != BitWidth)
 | |
|       LeadZ = std::min(BitWidth,
 | |
|                        LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
 | |
| 
 | |
|     KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
 | |
|     return;
 | |
|   }
 | |
|   case Instruction::Select:
 | |
|     ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1);
 | |
|     ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD,
 | |
|                       Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
| 
 | |
|     // Only known if known in both the LHS and RHS.
 | |
|     KnownOne &= KnownOne2;
 | |
|     KnownZero &= KnownZero2;
 | |
|     return;
 | |
|   case Instruction::FPTrunc:
 | |
|   case Instruction::FPExt:
 | |
|   case Instruction::FPToUI:
 | |
|   case Instruction::FPToSI:
 | |
|   case Instruction::SIToFP:
 | |
|   case Instruction::UIToFP:
 | |
|     return; // Can't work with floating point.
 | |
|   case Instruction::PtrToInt:
 | |
|   case Instruction::IntToPtr:
 | |
|     // We can't handle these if we don't know the pointer size.
 | |
|     if (!TD) return;
 | |
|     // FALL THROUGH and handle them the same as zext/trunc.
 | |
|   case Instruction::ZExt:
 | |
|   case Instruction::Trunc: {
 | |
|     const Type *SrcTy = I->getOperand(0)->getType();
 | |
|     
 | |
|     unsigned SrcBitWidth;
 | |
|     // Note that we handle pointer operands here because of inttoptr/ptrtoint
 | |
|     // which fall through here.
 | |
|     if (SrcTy->isPointerTy())
 | |
|       SrcBitWidth = TD->getTypeSizeInBits(SrcTy);
 | |
|     else
 | |
|       SrcBitWidth = SrcTy->getScalarSizeInBits();
 | |
|     
 | |
|     APInt MaskIn(Mask);
 | |
|     MaskIn.zextOrTrunc(SrcBitWidth);
 | |
|     KnownZero.zextOrTrunc(SrcBitWidth);
 | |
|     KnownOne.zextOrTrunc(SrcBitWidth);
 | |
|     ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
 | |
|                       Depth+1);
 | |
|     KnownZero.zextOrTrunc(BitWidth);
 | |
|     KnownOne.zextOrTrunc(BitWidth);
 | |
|     // Any top bits are known to be zero.
 | |
|     if (BitWidth > SrcBitWidth)
 | |
|       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
 | |
|     return;
 | |
|   }
 | |
|   case Instruction::BitCast: {
 | |
|     const Type *SrcTy = I->getOperand(0)->getType();
 | |
|     if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
 | |
|         // TODO: For now, not handling conversions like:
 | |
|         // (bitcast i64 %x to <2 x i32>)
 | |
|         !I->getType()->isVectorTy()) {
 | |
|       ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD,
 | |
|                         Depth+1);
 | |
|       return;
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::SExt: {
 | |
|     // Compute the bits in the result that are not present in the input.
 | |
|     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
 | |
|       
 | |
|     APInt MaskIn(Mask); 
 | |
|     MaskIn.trunc(SrcBitWidth);
 | |
|     KnownZero.trunc(SrcBitWidth);
 | |
|     KnownOne.trunc(SrcBitWidth);
 | |
|     ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
 | |
|                       Depth+1);
 | |
|     assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|     KnownZero.zext(BitWidth);
 | |
|     KnownOne.zext(BitWidth);
 | |
| 
 | |
|     // If the sign bit of the input is known set or clear, then we know the
 | |
|     // top bits of the result.
 | |
|     if (KnownZero[SrcBitWidth-1])             // Input sign bit known zero
 | |
|       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
 | |
|     else if (KnownOne[SrcBitWidth-1])           // Input sign bit known set
 | |
|       KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
 | |
|     return;
 | |
|   }
 | |
|   case Instruction::Shl:
 | |
|     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
 | |
|     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | |
|       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
 | |
|       APInt Mask2(Mask.lshr(ShiftAmt));
 | |
|       ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
 | |
|                         Depth+1);
 | |
|       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|       KnownZero <<= ShiftAmt;
 | |
|       KnownOne  <<= ShiftAmt;
 | |
|       KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
 | |
|       return;
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::LShr:
 | |
|     // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
 | |
|     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | |
|       // Compute the new bits that are at the top now.
 | |
|       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
 | |
|       
 | |
|       // Unsigned shift right.
 | |
|       APInt Mask2(Mask.shl(ShiftAmt));
 | |
|       ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD,
 | |
|                         Depth+1);
 | |
|       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|       KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
 | |
|       KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
 | |
|       // high bits known zero.
 | |
|       KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
 | |
|       return;
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::AShr:
 | |
|     // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
 | |
|     if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | |
|       // Compute the new bits that are at the top now.
 | |
|       uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
 | |
|       
 | |
|       // Signed shift right.
 | |
|       APInt Mask2(Mask.shl(ShiftAmt));
 | |
|       ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
 | |
|                         Depth+1);
 | |
|       assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|       KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
 | |
|       KnownOne  = APIntOps::lshr(KnownOne, ShiftAmt);
 | |
|         
 | |
|       APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
 | |
|       if (KnownZero[BitWidth-ShiftAmt-1])    // New bits are known zero.
 | |
|         KnownZero |= HighBits;
 | |
|       else if (KnownOne[BitWidth-ShiftAmt-1])  // New bits are known one.
 | |
|         KnownOne |= HighBits;
 | |
|       return;
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::Sub: {
 | |
|     if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) {
 | |
|       // We know that the top bits of C-X are clear if X contains less bits
 | |
|       // than C (i.e. no wrap-around can happen).  For example, 20-X is
 | |
|       // positive if we can prove that X is >= 0 and < 16.
 | |
|       if (!CLHS->getValue().isNegative()) {
 | |
|         unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
 | |
|         // NLZ can't be BitWidth with no sign bit
 | |
|         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
 | |
|         ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2,
 | |
|                           TD, Depth+1);
 | |
|     
 | |
|         // If all of the MaskV bits are known to be zero, then we know the
 | |
|         // output top bits are zero, because we now know that the output is
 | |
|         // from [0-C].
 | |
|         if ((KnownZero2 & MaskV) == MaskV) {
 | |
|           unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
 | |
|           // Top bits known zero.
 | |
|           KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
 | |
|         }
 | |
|       }        
 | |
|     }
 | |
|   }
 | |
|   // fall through
 | |
|   case Instruction::Add: {
 | |
|     // If one of the operands has trailing zeros, then the bits that the
 | |
|     // other operand has in those bit positions will be preserved in the
 | |
|     // result. For an add, this works with either operand. For a subtract,
 | |
|     // this only works if the known zeros are in the right operand.
 | |
|     APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
 | |
|     APInt Mask2 = APInt::getLowBitsSet(BitWidth,
 | |
|                                        BitWidth - Mask.countLeadingZeros());
 | |
|     ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD,
 | |
|                       Depth+1);
 | |
|     assert((LHSKnownZero & LHSKnownOne) == 0 &&
 | |
|            "Bits known to be one AND zero?");
 | |
|     unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
 | |
| 
 | |
|     ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, TD, 
 | |
|                       Depth+1);
 | |
|     assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 
 | |
|     unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
 | |
| 
 | |
|     // Determine which operand has more trailing zeros, and use that
 | |
|     // many bits from the other operand.
 | |
|     if (LHSKnownZeroOut > RHSKnownZeroOut) {
 | |
|       if (I->getOpcode() == Instruction::Add) {
 | |
|         APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
 | |
|         KnownZero |= KnownZero2 & Mask;
 | |
|         KnownOne  |= KnownOne2 & Mask;
 | |
|       } else {
 | |
|         // If the known zeros are in the left operand for a subtract,
 | |
|         // fall back to the minimum known zeros in both operands.
 | |
|         KnownZero |= APInt::getLowBitsSet(BitWidth,
 | |
|                                           std::min(LHSKnownZeroOut,
 | |
|                                                    RHSKnownZeroOut));
 | |
|       }
 | |
|     } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
 | |
|       APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
 | |
|       KnownZero |= LHSKnownZero & Mask;
 | |
|       KnownOne  |= LHSKnownOne & Mask;
 | |
|     }
 | |
|     return;
 | |
|   }
 | |
|   case Instruction::SRem:
 | |
|     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | |
|       APInt RA = Rem->getValue().abs();
 | |
|       if (RA.isPowerOf2()) {
 | |
|         APInt LowBits = RA - 1;
 | |
|         APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
 | |
|         ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, 
 | |
|                           Depth+1);
 | |
| 
 | |
|         // The low bits of the first operand are unchanged by the srem.
 | |
|         KnownZero = KnownZero2 & LowBits;
 | |
|         KnownOne = KnownOne2 & LowBits;
 | |
| 
 | |
|         // If the first operand is non-negative or has all low bits zero, then
 | |
|         // the upper bits are all zero.
 | |
|         if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
 | |
|           KnownZero |= ~LowBits;
 | |
| 
 | |
|         // If the first operand is negative and not all low bits are zero, then
 | |
|         // the upper bits are all one.
 | |
|         if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
 | |
|           KnownOne |= ~LowBits;
 | |
| 
 | |
|         KnownZero &= Mask;
 | |
|         KnownOne &= Mask;
 | |
| 
 | |
|         assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::URem: {
 | |
|     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | |
|       APInt RA = Rem->getValue();
 | |
|       if (RA.isPowerOf2()) {
 | |
|         APInt LowBits = (RA - 1);
 | |
|         APInt Mask2 = LowBits & Mask;
 | |
|         KnownZero |= ~LowBits & Mask;
 | |
|         ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
 | |
|                           Depth+1);
 | |
|         assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Since the result is less than or equal to either operand, any leading
 | |
|     // zero bits in either operand must also exist in the result.
 | |
|     APInt AllOnes = APInt::getAllOnesValue(BitWidth);
 | |
|     ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne,
 | |
|                       TD, Depth+1);
 | |
|     ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2,
 | |
|                       TD, Depth+1);
 | |
| 
 | |
|     unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
 | |
|                                 KnownZero2.countLeadingOnes());
 | |
|     KnownOne.clear();
 | |
|     KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   case Instruction::Alloca: {
 | |
|     AllocaInst *AI = cast<AllocaInst>(V);
 | |
|     unsigned Align = AI->getAlignment();
 | |
|     if (Align == 0 && TD)
 | |
|       Align = TD->getABITypeAlignment(AI->getType()->getElementType());
 | |
|     
 | |
|     if (Align > 0)
 | |
|       KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
 | |
|                                               CountTrailingZeros_32(Align));
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::GetElementPtr: {
 | |
|     // Analyze all of the subscripts of this getelementptr instruction
 | |
|     // to determine if we can prove known low zero bits.
 | |
|     APInt LocalMask = APInt::getAllOnesValue(BitWidth);
 | |
|     APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
 | |
|     ComputeMaskedBits(I->getOperand(0), LocalMask,
 | |
|                       LocalKnownZero, LocalKnownOne, TD, Depth+1);
 | |
|     unsigned TrailZ = LocalKnownZero.countTrailingOnes();
 | |
| 
 | |
|     gep_type_iterator GTI = gep_type_begin(I);
 | |
|     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
 | |
|       Value *Index = I->getOperand(i);
 | |
|       if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
 | |
|         // Handle struct member offset arithmetic.
 | |
|         if (!TD) return;
 | |
|         const StructLayout *SL = TD->getStructLayout(STy);
 | |
|         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
 | |
|         uint64_t Offset = SL->getElementOffset(Idx);
 | |
|         TrailZ = std::min(TrailZ,
 | |
|                           CountTrailingZeros_64(Offset));
 | |
|       } else {
 | |
|         // Handle array index arithmetic.
 | |
|         const Type *IndexedTy = GTI.getIndexedType();
 | |
|         if (!IndexedTy->isSized()) return;
 | |
|         unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
 | |
|         uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
 | |
|         LocalMask = APInt::getAllOnesValue(GEPOpiBits);
 | |
|         LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
 | |
|         ComputeMaskedBits(Index, LocalMask,
 | |
|                           LocalKnownZero, LocalKnownOne, TD, Depth+1);
 | |
|         TrailZ = std::min(TrailZ,
 | |
|                           unsigned(CountTrailingZeros_64(TypeSize) +
 | |
|                                    LocalKnownZero.countTrailingOnes()));
 | |
|       }
 | |
|     }
 | |
|     
 | |
|     KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask;
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::PHI: {
 | |
|     PHINode *P = cast<PHINode>(I);
 | |
|     // Handle the case of a simple two-predecessor recurrence PHI.
 | |
|     // There's a lot more that could theoretically be done here, but
 | |
|     // this is sufficient to catch some interesting cases.
 | |
|     if (P->getNumIncomingValues() == 2) {
 | |
|       for (unsigned i = 0; i != 2; ++i) {
 | |
|         Value *L = P->getIncomingValue(i);
 | |
|         Value *R = P->getIncomingValue(!i);
 | |
|         Operator *LU = dyn_cast<Operator>(L);
 | |
|         if (!LU)
 | |
|           continue;
 | |
|         unsigned Opcode = LU->getOpcode();
 | |
|         // Check for operations that have the property that if
 | |
|         // both their operands have low zero bits, the result
 | |
|         // will have low zero bits.
 | |
|         if (Opcode == Instruction::Add ||
 | |
|             Opcode == Instruction::Sub ||
 | |
|             Opcode == Instruction::And ||
 | |
|             Opcode == Instruction::Or ||
 | |
|             Opcode == Instruction::Mul) {
 | |
|           Value *LL = LU->getOperand(0);
 | |
|           Value *LR = LU->getOperand(1);
 | |
|           // Find a recurrence.
 | |
|           if (LL == I)
 | |
|             L = LR;
 | |
|           else if (LR == I)
 | |
|             L = LL;
 | |
|           else
 | |
|             break;
 | |
|           // Ok, we have a PHI of the form L op= R. Check for low
 | |
|           // zero bits.
 | |
|           APInt Mask2 = APInt::getAllOnesValue(BitWidth);
 | |
|           ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1);
 | |
|           Mask2 = APInt::getLowBitsSet(BitWidth,
 | |
|                                        KnownZero2.countTrailingOnes());
 | |
| 
 | |
|           // We need to take the minimum number of known bits
 | |
|           APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
 | |
|           ComputeMaskedBits(L, Mask2, KnownZero3, KnownOne3, TD, Depth+1);
 | |
| 
 | |
|           KnownZero = Mask &
 | |
|                       APInt::getLowBitsSet(BitWidth,
 | |
|                                            std::min(KnownZero2.countTrailingOnes(),
 | |
|                                                     KnownZero3.countTrailingOnes()));
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Otherwise take the unions of the known bit sets of the operands,
 | |
|     // taking conservative care to avoid excessive recursion.
 | |
|     if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
 | |
|       KnownZero = APInt::getAllOnesValue(BitWidth);
 | |
|       KnownOne = APInt::getAllOnesValue(BitWidth);
 | |
|       for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
 | |
|         // Skip direct self references.
 | |
|         if (P->getIncomingValue(i) == P) continue;
 | |
| 
 | |
|         KnownZero2 = APInt(BitWidth, 0);
 | |
|         KnownOne2 = APInt(BitWidth, 0);
 | |
|         // Recurse, but cap the recursion to one level, because we don't
 | |
|         // want to waste time spinning around in loops.
 | |
|         ComputeMaskedBits(P->getIncomingValue(i), KnownZero | KnownOne,
 | |
|                           KnownZero2, KnownOne2, TD, MaxDepth-1);
 | |
|         KnownZero &= KnownZero2;
 | |
|         KnownOne &= KnownOne2;
 | |
|         // If all bits have been ruled out, there's no need to check
 | |
|         // more operands.
 | |
|         if (!KnownZero && !KnownOne)
 | |
|           break;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
|   case Instruction::Call:
 | |
|     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
 | |
|       switch (II->getIntrinsicID()) {
 | |
|       default: break;
 | |
|       case Intrinsic::ctpop:
 | |
|       case Intrinsic::ctlz:
 | |
|       case Intrinsic::cttz: {
 | |
|         unsigned LowBits = Log2_32(BitWidth)+1;
 | |
|         KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
 | |
|         break;
 | |
|       }
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero.  We use
 | |
| /// this predicate to simplify operations downstream.  Mask is known to be zero
 | |
| /// for bits that V cannot have.
 | |
| ///
 | |
| /// This function is defined on values with integer type, values with pointer
 | |
| /// type (but only if TD is non-null), and vectors of integers.  In the case
 | |
| /// where V is a vector, the mask, known zero, and known one values are the
 | |
| /// same width as the vector element, and the bit is set only if it is true
 | |
| /// for all of the elements in the vector.
 | |
| bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
 | |
|                              const TargetData *TD, unsigned Depth) {
 | |
|   APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
 | |
|   ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
 | |
|   assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 
 | |
|   return (KnownZero & Mask) == Mask;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| /// ComputeNumSignBits - Return the number of times the sign bit of the
 | |
| /// register is replicated into the other bits.  We know that at least 1 bit
 | |
| /// is always equal to the sign bit (itself), but other cases can give us
 | |
| /// information.  For example, immediately after an "ashr X, 2", we know that
 | |
| /// the top 3 bits are all equal to each other, so we return 3.
 | |
| ///
 | |
| /// 'Op' must have a scalar integer type.
 | |
| ///
 | |
| unsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD,
 | |
|                                   unsigned Depth) {
 | |
|   assert((TD || V->getType()->isIntOrIntVectorTy()) &&
 | |
|          "ComputeNumSignBits requires a TargetData object to operate "
 | |
|          "on non-integer values!");
 | |
|   const Type *Ty = V->getType();
 | |
|   unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
 | |
|                          Ty->getScalarSizeInBits();
 | |
|   unsigned Tmp, Tmp2;
 | |
|   unsigned FirstAnswer = 1;
 | |
| 
 | |
|   // Note that ConstantInt is handled by the general ComputeMaskedBits case
 | |
|   // below.
 | |
| 
 | |
|   if (Depth == 6)
 | |
|     return 1;  // Limit search depth.
 | |
|   
 | |
|   Operator *U = dyn_cast<Operator>(V);
 | |
|   switch (Operator::getOpcode(V)) {
 | |
|   default: break;
 | |
|   case Instruction::SExt:
 | |
|     Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
 | |
|     return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
 | |
|     
 | |
|   case Instruction::AShr:
 | |
|     Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
 | |
|     // ashr X, C   -> adds C sign bits.
 | |
|     if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
 | |
|       Tmp += C->getZExtValue();
 | |
|       if (Tmp > TyBits) Tmp = TyBits;
 | |
|     }
 | |
|     return Tmp;
 | |
|   case Instruction::Shl:
 | |
|     if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
 | |
|       // shl destroys sign bits.
 | |
|       Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
 | |
|       if (C->getZExtValue() >= TyBits ||      // Bad shift.
 | |
|           C->getZExtValue() >= Tmp) break;    // Shifted all sign bits out.
 | |
|       return Tmp - C->getZExtValue();
 | |
|     }
 | |
|     break;
 | |
|   case Instruction::And:
 | |
|   case Instruction::Or:
 | |
|   case Instruction::Xor:    // NOT is handled here.
 | |
|     // Logical binary ops preserve the number of sign bits at the worst.
 | |
|     Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
 | |
|     if (Tmp != 1) {
 | |
|       Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
 | |
|       FirstAnswer = std::min(Tmp, Tmp2);
 | |
|       // We computed what we know about the sign bits as our first
 | |
|       // answer. Now proceed to the generic code that uses
 | |
|       // ComputeMaskedBits, and pick whichever answer is better.
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|   case Instruction::Select:
 | |
|     Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
 | |
|     if (Tmp == 1) return 1;  // Early out.
 | |
|     Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
 | |
|     return std::min(Tmp, Tmp2);
 | |
|     
 | |
|   case Instruction::Add:
 | |
|     // Add can have at most one carry bit.  Thus we know that the output
 | |
|     // is, at worst, one more bit than the inputs.
 | |
|     Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
 | |
|     if (Tmp == 1) return 1;  // Early out.
 | |
|       
 | |
|     // Special case decrementing a value (ADD X, -1):
 | |
|     if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
 | |
|       if (CRHS->isAllOnesValue()) {
 | |
|         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
 | |
|         APInt Mask = APInt::getAllOnesValue(TyBits);
 | |
|         ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD,
 | |
|                           Depth+1);
 | |
|         
 | |
|         // If the input is known to be 0 or 1, the output is 0/-1, which is all
 | |
|         // sign bits set.
 | |
|         if ((KnownZero | APInt(TyBits, 1)) == Mask)
 | |
|           return TyBits;
 | |
|         
 | |
|         // If we are subtracting one from a positive number, there is no carry
 | |
|         // out of the result.
 | |
|         if (KnownZero.isNegative())
 | |
|           return Tmp;
 | |
|       }
 | |
|       
 | |
|     Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
 | |
|     if (Tmp2 == 1) return 1;
 | |
|     return std::min(Tmp, Tmp2)-1;
 | |
|     
 | |
|   case Instruction::Sub:
 | |
|     Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
 | |
|     if (Tmp2 == 1) return 1;
 | |
|       
 | |
|     // Handle NEG.
 | |
|     if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
 | |
|       if (CLHS->isNullValue()) {
 | |
|         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
 | |
|         APInt Mask = APInt::getAllOnesValue(TyBits);
 | |
|         ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne, 
 | |
|                           TD, Depth+1);
 | |
|         // If the input is known to be 0 or 1, the output is 0/-1, which is all
 | |
|         // sign bits set.
 | |
|         if ((KnownZero | APInt(TyBits, 1)) == Mask)
 | |
|           return TyBits;
 | |
|         
 | |
|         // If the input is known to be positive (the sign bit is known clear),
 | |
|         // the output of the NEG has the same number of sign bits as the input.
 | |
|         if (KnownZero.isNegative())
 | |
|           return Tmp2;
 | |
|         
 | |
|         // Otherwise, we treat this like a SUB.
 | |
|       }
 | |
|     
 | |
|     // Sub can have at most one carry bit.  Thus we know that the output
 | |
|     // is, at worst, one more bit than the inputs.
 | |
|     Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
 | |
|     if (Tmp == 1) return 1;  // Early out.
 | |
|     return std::min(Tmp, Tmp2)-1;
 | |
|       
 | |
|   case Instruction::PHI: {
 | |
|     PHINode *PN = cast<PHINode>(U);
 | |
|     // Don't analyze large in-degree PHIs.
 | |
|     if (PN->getNumIncomingValues() > 4) break;
 | |
|     
 | |
|     // Take the minimum of all incoming values.  This can't infinitely loop
 | |
|     // because of our depth threshold.
 | |
|     Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1);
 | |
|     for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|       if (Tmp == 1) return Tmp;
 | |
|       Tmp = std::min(Tmp,
 | |
|                      ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1));
 | |
|     }
 | |
|     return Tmp;
 | |
|   }
 | |
| 
 | |
|   case Instruction::Trunc:
 | |
|     // FIXME: it's tricky to do anything useful for this, but it is an important
 | |
|     // case for targets like X86.
 | |
|     break;
 | |
|   }
 | |
|   
 | |
|   // Finally, if we can prove that the top bits of the result are 0's or 1's,
 | |
|   // use this information.
 | |
|   APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
 | |
|   APInt Mask = APInt::getAllOnesValue(TyBits);
 | |
|   ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
 | |
|   
 | |
|   if (KnownZero.isNegative()) {        // sign bit is 0
 | |
|     Mask = KnownZero;
 | |
|   } else if (KnownOne.isNegative()) {  // sign bit is 1;
 | |
|     Mask = KnownOne;
 | |
|   } else {
 | |
|     // Nothing known.
 | |
|     return FirstAnswer;
 | |
|   }
 | |
|   
 | |
|   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
 | |
|   // the number of identical bits in the top of the input value.
 | |
|   Mask = ~Mask;
 | |
|   Mask <<= Mask.getBitWidth()-TyBits;
 | |
|   // Return # leading zeros.  We use 'min' here in case Val was zero before
 | |
|   // shifting.  We don't want to return '64' as for an i32 "0".
 | |
|   return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
 | |
| }
 | |
| 
 | |
| /// ComputeMultiple - This function computes the integer multiple of Base that
 | |
| /// equals V.  If successful, it returns true and returns the multiple in
 | |
| /// Multiple.  If unsuccessful, it returns false. It looks
 | |
| /// through SExt instructions only if LookThroughSExt is true.
 | |
| bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
 | |
|                            bool LookThroughSExt, unsigned Depth) {
 | |
|   const unsigned MaxDepth = 6;
 | |
| 
 | |
|   assert(V && "No Value?");
 | |
|   assert(Depth <= MaxDepth && "Limit Search Depth");
 | |
|   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
 | |
| 
 | |
|   const Type *T = V->getType();
 | |
| 
 | |
|   ConstantInt *CI = dyn_cast<ConstantInt>(V);
 | |
| 
 | |
|   if (Base == 0)
 | |
|     return false;
 | |
|     
 | |
|   if (Base == 1) {
 | |
|     Multiple = V;
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
 | |
|   Constant *BaseVal = ConstantInt::get(T, Base);
 | |
|   if (CO && CO == BaseVal) {
 | |
|     // Multiple is 1.
 | |
|     Multiple = ConstantInt::get(T, 1);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   if (CI && CI->getZExtValue() % Base == 0) {
 | |
|     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
 | |
|     return true;  
 | |
|   }
 | |
|   
 | |
|   if (Depth == MaxDepth) return false;  // Limit search depth.
 | |
|         
 | |
|   Operator *I = dyn_cast<Operator>(V);
 | |
|   if (!I) return false;
 | |
| 
 | |
|   switch (I->getOpcode()) {
 | |
|   default: break;
 | |
|   case Instruction::SExt:
 | |
|     if (!LookThroughSExt) return false;
 | |
|     // otherwise fall through to ZExt
 | |
|   case Instruction::ZExt:
 | |
|     return ComputeMultiple(I->getOperand(0), Base, Multiple,
 | |
|                            LookThroughSExt, Depth+1);
 | |
|   case Instruction::Shl:
 | |
|   case Instruction::Mul: {
 | |
|     Value *Op0 = I->getOperand(0);
 | |
|     Value *Op1 = I->getOperand(1);
 | |
| 
 | |
|     if (I->getOpcode() == Instruction::Shl) {
 | |
|       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
 | |
|       if (!Op1CI) return false;
 | |
|       // Turn Op0 << Op1 into Op0 * 2^Op1
 | |
|       APInt Op1Int = Op1CI->getValue();
 | |
|       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
 | |
|       Op1 = ConstantInt::get(V->getContext(), 
 | |
|                              APInt(Op1Int.getBitWidth(), 0).set(BitToSet));
 | |
|     }
 | |
| 
 | |
|     Value *Mul0 = NULL;
 | |
|     Value *Mul1 = NULL;
 | |
|     bool M0 = ComputeMultiple(Op0, Base, Mul0,
 | |
|                               LookThroughSExt, Depth+1);
 | |
|     bool M1 = ComputeMultiple(Op1, Base, Mul1,
 | |
|                               LookThroughSExt, Depth+1);
 | |
| 
 | |
|     if (M0) {
 | |
|       if (isa<Constant>(Op1) && isa<Constant>(Mul0)) {
 | |
|         // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
 | |
|         Multiple = ConstantExpr::getMul(cast<Constant>(Mul0),
 | |
|                                         cast<Constant>(Op1));
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
 | |
|         if (Mul0CI->getValue() == 1) {
 | |
|           // V == Base * Op1, so return Op1
 | |
|           Multiple = Op1;
 | |
|           return true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (M1) {
 | |
|       if (isa<Constant>(Op0) && isa<Constant>(Mul1)) {
 | |
|         // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
 | |
|         Multiple = ConstantExpr::getMul(cast<Constant>(Mul1),
 | |
|                                         cast<Constant>(Op0));
 | |
|         return true;
 | |
|       }
 | |
| 
 | |
|       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
 | |
|         if (Mul1CI->getValue() == 1) {
 | |
|           // V == Base * Op0, so return Op0
 | |
|           Multiple = Op0;
 | |
|           return true;
 | |
|         }
 | |
|     }
 | |
|   }
 | |
|   }
 | |
| 
 | |
|   // We could not determine if V is a multiple of Base.
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| /// CannotBeNegativeZero - Return true if we can prove that the specified FP 
 | |
| /// value is never equal to -0.0.
 | |
| ///
 | |
| /// NOTE: this function will need to be revisited when we support non-default
 | |
| /// rounding modes!
 | |
| ///
 | |
| bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
 | |
|   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
 | |
|     return !CFP->getValueAPF().isNegZero();
 | |
|   
 | |
|   if (Depth == 6)
 | |
|     return 1;  // Limit search depth.
 | |
| 
 | |
|   const Operator *I = dyn_cast<Operator>(V);
 | |
|   if (I == 0) return false;
 | |
|   
 | |
|   // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
 | |
|   if (I->getOpcode() == Instruction::FAdd &&
 | |
|       isa<ConstantFP>(I->getOperand(1)) && 
 | |
|       cast<ConstantFP>(I->getOperand(1))->isNullValue())
 | |
|     return true;
 | |
|     
 | |
|   // sitofp and uitofp turn into +0.0 for zero.
 | |
|   if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
 | |
|     return true;
 | |
|   
 | |
|   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
 | |
|     // sqrt(-0.0) = -0.0, no other negative results are possible.
 | |
|     if (II->getIntrinsicID() == Intrinsic::sqrt)
 | |
|       return CannotBeNegativeZero(II->getOperand(1), Depth+1);
 | |
|   
 | |
|   if (const CallInst *CI = dyn_cast<CallInst>(I))
 | |
|     if (const Function *F = CI->getCalledFunction()) {
 | |
|       if (F->isDeclaration()) {
 | |
|         // abs(x) != -0.0
 | |
|         if (F->getName() == "abs") return true;
 | |
|         // fabs[lf](x) != -0.0
 | |
|         if (F->getName() == "fabs") return true;
 | |
|         if (F->getName() == "fabsf") return true;
 | |
|         if (F->getName() == "fabsl") return true;
 | |
|         if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
 | |
|             F->getName() == "sqrtl")
 | |
|           return CannotBeNegativeZero(CI->getOperand(1), Depth+1);
 | |
|       }
 | |
|     }
 | |
|   
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// GetLinearExpression - Analyze the specified value as a linear expression:
 | |
| /// "A*V + B", where A and B are constant integers.  Return the scale and offset
 | |
| /// values as APInts and return V as a Value*.  The incoming Value is known to
 | |
| /// have IntegerType.  Note that this looks through extends, so the high bits
 | |
| /// may not be represented in the result.
 | |
| static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
 | |
|                                   const TargetData *TD, unsigned Depth) {
 | |
|   assert(V->getType()->isIntegerTy() && "Not an integer value");
 | |
| 
 | |
|   // Limit our recursion depth.
 | |
|   if (Depth == 6) {
 | |
|     Scale = 1;
 | |
|     Offset = 0;
 | |
|     return V;
 | |
|   }
 | |
|   
 | |
|   if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
 | |
|     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
 | |
|       switch (BOp->getOpcode()) {
 | |
|       default: break;
 | |
|       case Instruction::Or:
 | |
|         // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
 | |
|         // analyze it.
 | |
|         if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), TD))
 | |
|           break;
 | |
|         // FALL THROUGH.
 | |
|       case Instruction::Add:
 | |
|         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD, Depth+1);
 | |
|         Offset += RHSC->getValue();
 | |
|         return V;
 | |
|       case Instruction::Mul:
 | |
|         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD, Depth+1);
 | |
|         Offset *= RHSC->getValue();
 | |
|         Scale *= RHSC->getValue();
 | |
|         return V;
 | |
|       case Instruction::Shl:
 | |
|         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD, Depth+1);
 | |
|         Offset <<= RHSC->getValue().getLimitedValue();
 | |
|         Scale <<= RHSC->getValue().getLimitedValue();
 | |
|         return V;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   // Since clients don't care about the high bits of the value, just scales and
 | |
|   // offsets, we can look through extensions.
 | |
|   if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
 | |
|     Value *CastOp = cast<CastInst>(V)->getOperand(0);
 | |
|     unsigned OldWidth = Scale.getBitWidth();
 | |
|     unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
 | |
|     Scale.trunc(SmallWidth);
 | |
|     Offset.trunc(SmallWidth);
 | |
|     Value *Result = GetLinearExpression(CastOp, Scale, Offset, TD, Depth+1);
 | |
|     Scale.zext(OldWidth);
 | |
|     Offset.zext(OldWidth);
 | |
|     return Result;
 | |
|   }
 | |
|   
 | |
|   Scale = 1;
 | |
|   Offset = 0;
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| /// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it
 | |
| /// into a base pointer with a constant offset and a number of scaled symbolic
 | |
| /// offsets.
 | |
| ///
 | |
| /// The scaled symbolic offsets (represented by pairs of a Value* and a scale in
 | |
| /// the VarIndices vector) are Value*'s that are known to be scaled by the
 | |
| /// specified amount, but which may have other unrepresented high bits. As such,
 | |
| /// the gep cannot necessarily be reconstructed from its decomposed form.
 | |
| ///
 | |
| /// When TargetData is around, this function is capable of analyzing everything
 | |
| /// that Value::getUnderlyingObject() can look through.  When not, it just looks
 | |
| /// through pointer casts.
 | |
| ///
 | |
| const Value *llvm::DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
 | |
|                  SmallVectorImpl<std::pair<const Value*, int64_t> > &VarIndices,
 | |
|                                           const TargetData *TD) {
 | |
|   // Limit recursion depth to limit compile time in crazy cases.
 | |
|   unsigned MaxLookup = 6;
 | |
|   
 | |
|   BaseOffs = 0;
 | |
|   do {
 | |
|     // See if this is a bitcast or GEP.
 | |
|     const Operator *Op = dyn_cast<Operator>(V);
 | |
|     if (Op == 0) {
 | |
|       // The only non-operator case we can handle are GlobalAliases.
 | |
|       if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
 | |
|         if (!GA->mayBeOverridden()) {
 | |
|           V = GA->getAliasee();
 | |
|           continue;
 | |
|         }
 | |
|       }
 | |
|       return V;
 | |
|     }
 | |
|     
 | |
|     if (Op->getOpcode() == Instruction::BitCast) {
 | |
|       V = Op->getOperand(0);
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
 | |
|     if (GEPOp == 0)
 | |
|       return V;
 | |
|     
 | |
|     // Don't attempt to analyze GEPs over unsized objects.
 | |
|     if (!cast<PointerType>(GEPOp->getOperand(0)->getType())
 | |
|         ->getElementType()->isSized())
 | |
|       return V;
 | |
|     
 | |
|     // If we are lacking TargetData information, we can't compute the offets of
 | |
|     // elements computed by GEPs.  However, we can handle bitcast equivalent
 | |
|     // GEPs.
 | |
|     if (!TD) {
 | |
|       if (!GEPOp->hasAllZeroIndices())
 | |
|         return V;
 | |
|       V = GEPOp->getOperand(0);
 | |
|       continue;
 | |
|     }
 | |
|     
 | |
|     // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
 | |
|     gep_type_iterator GTI = gep_type_begin(GEPOp);
 | |
|     for (User::const_op_iterator I = GEPOp->op_begin()+1,
 | |
|          E = GEPOp->op_end(); I != E; ++I) {
 | |
|       Value *Index = *I;
 | |
|       // Compute the (potentially symbolic) offset in bytes for this index.
 | |
|       if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
 | |
|         // For a struct, add the member offset.
 | |
|         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
 | |
|         if (FieldNo == 0) continue;
 | |
|         
 | |
|         BaseOffs += TD->getStructLayout(STy)->getElementOffset(FieldNo);
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       // For an array/pointer, add the element offset, explicitly scaled.
 | |
|       if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
 | |
|         if (CIdx->isZero()) continue;
 | |
|         BaseOffs += TD->getTypeAllocSize(*GTI)*CIdx->getSExtValue();
 | |
|         continue;
 | |
|       }
 | |
|       
 | |
|       uint64_t Scale = TD->getTypeAllocSize(*GTI);
 | |
|       
 | |
|       // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
 | |
|       unsigned Width = cast<IntegerType>(Index->getType())->getBitWidth();
 | |
|       APInt IndexScale(Width, 0), IndexOffset(Width, 0);
 | |
|       Index = GetLinearExpression(Index, IndexScale, IndexOffset, TD, 0);
 | |
|       
 | |
|       // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
 | |
|       // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
 | |
|       BaseOffs += IndexOffset.getZExtValue()*Scale;
 | |
|       Scale *= IndexScale.getZExtValue();
 | |
|       
 | |
|       
 | |
|       // If we already had an occurrance of this index variable, merge this
 | |
|       // scale into it.  For example, we want to handle:
 | |
|       //   A[x][x] -> x*16 + x*4 -> x*20
 | |
|       // This also ensures that 'x' only appears in the index list once.
 | |
|       for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
 | |
|         if (VarIndices[i].first == Index) {
 | |
|           Scale += VarIndices[i].second;
 | |
|           VarIndices.erase(VarIndices.begin()+i);
 | |
|           break;
 | |
|         }
 | |
|       }
 | |
|       
 | |
|       // Make sure that we have a scale that makes sense for this target's
 | |
|       // pointer size.
 | |
|       if (unsigned ShiftBits = 64-TD->getPointerSizeInBits()) {
 | |
|         Scale <<= ShiftBits;
 | |
|         Scale >>= ShiftBits;
 | |
|       }
 | |
|       
 | |
|       if (Scale)
 | |
|         VarIndices.push_back(std::make_pair(Index, Scale));
 | |
|     }
 | |
|     
 | |
|     // Analyze the base pointer next.
 | |
|     V = GEPOp->getOperand(0);
 | |
|   } while (--MaxLookup);
 | |
|   
 | |
|   // If the chain of expressions is too deep, just return early.
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| 
 | |
| // This is the recursive version of BuildSubAggregate. It takes a few different
 | |
| // arguments. Idxs is the index within the nested struct From that we are
 | |
| // looking at now (which is of type IndexedType). IdxSkip is the number of
 | |
| // indices from Idxs that should be left out when inserting into the resulting
 | |
| // struct. To is the result struct built so far, new insertvalue instructions
 | |
| // build on that.
 | |
| static Value *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType,
 | |
|                                 SmallVector<unsigned, 10> &Idxs,
 | |
|                                 unsigned IdxSkip,
 | |
|                                 Instruction *InsertBefore) {
 | |
|   const llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType);
 | |
|   if (STy) {
 | |
|     // Save the original To argument so we can modify it
 | |
|     Value *OrigTo = To;
 | |
|     // General case, the type indexed by Idxs is a struct
 | |
|     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
 | |
|       // Process each struct element recursively
 | |
|       Idxs.push_back(i);
 | |
|       Value *PrevTo = To;
 | |
|       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
 | |
|                              InsertBefore);
 | |
|       Idxs.pop_back();
 | |
|       if (!To) {
 | |
|         // Couldn't find any inserted value for this index? Cleanup
 | |
|         while (PrevTo != OrigTo) {
 | |
|           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
 | |
|           PrevTo = Del->getAggregateOperand();
 | |
|           Del->eraseFromParent();
 | |
|         }
 | |
|         // Stop processing elements
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|     // If we succesfully found a value for each of our subaggregates 
 | |
|     if (To)
 | |
|       return To;
 | |
|   }
 | |
|   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
 | |
|   // the struct's elements had a value that was inserted directly. In the latter
 | |
|   // case, perhaps we can't determine each of the subelements individually, but
 | |
|   // we might be able to find the complete struct somewhere.
 | |
|   
 | |
|   // Find the value that is at that particular spot
 | |
|   Value *V = FindInsertedValue(From, Idxs.begin(), Idxs.end());
 | |
| 
 | |
|   if (!V)
 | |
|     return NULL;
 | |
| 
 | |
|   // Insert the value in the new (sub) aggregrate
 | |
|   return llvm::InsertValueInst::Create(To, V, Idxs.begin() + IdxSkip,
 | |
|                                        Idxs.end(), "tmp", InsertBefore);
 | |
| }
 | |
| 
 | |
| // This helper takes a nested struct and extracts a part of it (which is again a
 | |
| // struct) into a new value. For example, given the struct:
 | |
| // { a, { b, { c, d }, e } }
 | |
| // and the indices "1, 1" this returns
 | |
| // { c, d }.
 | |
| //
 | |
| // It does this by inserting an insertvalue for each element in the resulting
 | |
| // struct, as opposed to just inserting a single struct. This will only work if
 | |
| // each of the elements of the substruct are known (ie, inserted into From by an
 | |
| // insertvalue instruction somewhere).
 | |
| //
 | |
| // All inserted insertvalue instructions are inserted before InsertBefore
 | |
| static Value *BuildSubAggregate(Value *From, const unsigned *idx_begin,
 | |
|                                 const unsigned *idx_end,
 | |
|                                 Instruction *InsertBefore) {
 | |
|   assert(InsertBefore && "Must have someplace to insert!");
 | |
|   const Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
 | |
|                                                              idx_begin,
 | |
|                                                              idx_end);
 | |
|   Value *To = UndefValue::get(IndexedType);
 | |
|   SmallVector<unsigned, 10> Idxs(idx_begin, idx_end);
 | |
|   unsigned IdxSkip = Idxs.size();
 | |
| 
 | |
|   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
 | |
| }
 | |
| 
 | |
| /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
 | |
| /// the scalar value indexed is already around as a register, for example if it
 | |
| /// were inserted directly into the aggregrate.
 | |
| ///
 | |
| /// If InsertBefore is not null, this function will duplicate (modified)
 | |
| /// insertvalues when a part of a nested struct is extracted.
 | |
| Value *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin,
 | |
|                          const unsigned *idx_end, Instruction *InsertBefore) {
 | |
|   // Nothing to index? Just return V then (this is useful at the end of our
 | |
|   // recursion)
 | |
|   if (idx_begin == idx_end)
 | |
|     return V;
 | |
|   // We have indices, so V should have an indexable type
 | |
|   assert((V->getType()->isStructTy() || V->getType()->isArrayTy())
 | |
|          && "Not looking at a struct or array?");
 | |
|   assert(ExtractValueInst::getIndexedType(V->getType(), idx_begin, idx_end)
 | |
|          && "Invalid indices for type?");
 | |
|   const CompositeType *PTy = cast<CompositeType>(V->getType());
 | |
| 
 | |
|   if (isa<UndefValue>(V))
 | |
|     return UndefValue::get(ExtractValueInst::getIndexedType(PTy,
 | |
|                                                               idx_begin,
 | |
|                                                               idx_end));
 | |
|   else if (isa<ConstantAggregateZero>(V))
 | |
|     return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy, 
 | |
|                                                                   idx_begin,
 | |
|                                                                   idx_end));
 | |
|   else if (Constant *C = dyn_cast<Constant>(V)) {
 | |
|     if (isa<ConstantArray>(C) || isa<ConstantStruct>(C))
 | |
|       // Recursively process this constant
 | |
|       return FindInsertedValue(C->getOperand(*idx_begin), idx_begin + 1,
 | |
|                                idx_end, InsertBefore);
 | |
|   } else if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
 | |
|     // Loop the indices for the insertvalue instruction in parallel with the
 | |
|     // requested indices
 | |
|     const unsigned *req_idx = idx_begin;
 | |
|     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
 | |
|          i != e; ++i, ++req_idx) {
 | |
|       if (req_idx == idx_end) {
 | |
|         if (InsertBefore)
 | |
|           // The requested index identifies a part of a nested aggregate. Handle
 | |
|           // this specially. For example,
 | |
|           // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
 | |
|           // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
 | |
|           // %C = extractvalue {i32, { i32, i32 } } %B, 1
 | |
|           // This can be changed into
 | |
|           // %A = insertvalue {i32, i32 } undef, i32 10, 0
 | |
|           // %C = insertvalue {i32, i32 } %A, i32 11, 1
 | |
|           // which allows the unused 0,0 element from the nested struct to be
 | |
|           // removed.
 | |
|           return BuildSubAggregate(V, idx_begin, req_idx, InsertBefore);
 | |
|         else
 | |
|           // We can't handle this without inserting insertvalues
 | |
|           return 0;
 | |
|       }
 | |
|       
 | |
|       // This insert value inserts something else than what we are looking for.
 | |
|       // See if the (aggregrate) value inserted into has the value we are
 | |
|       // looking for, then.
 | |
|       if (*req_idx != *i)
 | |
|         return FindInsertedValue(I->getAggregateOperand(), idx_begin, idx_end,
 | |
|                                  InsertBefore);
 | |
|     }
 | |
|     // If we end up here, the indices of the insertvalue match with those
 | |
|     // requested (though possibly only partially). Now we recursively look at
 | |
|     // the inserted value, passing any remaining indices.
 | |
|     return FindInsertedValue(I->getInsertedValueOperand(), req_idx, idx_end,
 | |
|                              InsertBefore);
 | |
|   } else if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
 | |
|     // If we're extracting a value from an aggregrate that was extracted from
 | |
|     // something else, we can extract from that something else directly instead.
 | |
|     // However, we will need to chain I's indices with the requested indices.
 | |
|    
 | |
|     // Calculate the number of indices required 
 | |
|     unsigned size = I->getNumIndices() + (idx_end - idx_begin);
 | |
|     // Allocate some space to put the new indices in
 | |
|     SmallVector<unsigned, 5> Idxs;
 | |
|     Idxs.reserve(size);
 | |
|     // Add indices from the extract value instruction
 | |
|     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
 | |
|          i != e; ++i)
 | |
|       Idxs.push_back(*i);
 | |
|     
 | |
|     // Add requested indices
 | |
|     for (const unsigned *i = idx_begin, *e = idx_end; i != e; ++i)
 | |
|       Idxs.push_back(*i);
 | |
| 
 | |
|     assert(Idxs.size() == size 
 | |
|            && "Number of indices added not correct?");
 | |
|     
 | |
|     return FindInsertedValue(I->getAggregateOperand(), Idxs.begin(), Idxs.end(),
 | |
|                              InsertBefore);
 | |
|   }
 | |
|   // Otherwise, we don't know (such as, extracting from a function return value
 | |
|   // or load instruction)
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| /// GetConstantStringInfo - This function computes the length of a
 | |
| /// null-terminated C string pointed to by V.  If successful, it returns true
 | |
| /// and returns the string in Str.  If unsuccessful, it returns false.
 | |
| bool llvm::GetConstantStringInfo(Value *V, std::string &Str, uint64_t Offset,
 | |
|                                  bool StopAtNul) {
 | |
|   // If V is NULL then return false;
 | |
|   if (V == NULL) return false;
 | |
| 
 | |
|   // Look through bitcast instructions.
 | |
|   if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
 | |
|     return GetConstantStringInfo(BCI->getOperand(0), Str, Offset, StopAtNul);
 | |
|   
 | |
|   // If the value is not a GEP instruction nor a constant expression with a
 | |
|   // GEP instruction, then return false because ConstantArray can't occur
 | |
|   // any other way
 | |
|   User *GEP = 0;
 | |
|   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
 | |
|     GEP = GEPI;
 | |
|   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
 | |
|     if (CE->getOpcode() == Instruction::BitCast)
 | |
|       return GetConstantStringInfo(CE->getOperand(0), Str, Offset, StopAtNul);
 | |
|     if (CE->getOpcode() != Instruction::GetElementPtr)
 | |
|       return false;
 | |
|     GEP = CE;
 | |
|   }
 | |
|   
 | |
|   if (GEP) {
 | |
|     // Make sure the GEP has exactly three arguments.
 | |
|     if (GEP->getNumOperands() != 3)
 | |
|       return false;
 | |
|     
 | |
|     // Make sure the index-ee is a pointer to array of i8.
 | |
|     const PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
 | |
|     const ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
 | |
|     if (AT == 0 || !AT->getElementType()->isIntegerTy(8))
 | |
|       return false;
 | |
|     
 | |
|     // Check to make sure that the first operand of the GEP is an integer and
 | |
|     // has value 0 so that we are sure we're indexing into the initializer.
 | |
|     ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
 | |
|     if (FirstIdx == 0 || !FirstIdx->isZero())
 | |
|       return false;
 | |
|     
 | |
|     // If the second index isn't a ConstantInt, then this is a variable index
 | |
|     // into the array.  If this occurs, we can't say anything meaningful about
 | |
|     // the string.
 | |
|     uint64_t StartIdx = 0;
 | |
|     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
 | |
|       StartIdx = CI->getZExtValue();
 | |
|     else
 | |
|       return false;
 | |
|     return GetConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset,
 | |
|                                  StopAtNul);
 | |
|   }
 | |
|   
 | |
|   // The GEP instruction, constant or instruction, must reference a global
 | |
|   // variable that is a constant and is initialized. The referenced constant
 | |
|   // initializer is the array that we'll use for optimization.
 | |
|   GlobalVariable* GV = dyn_cast<GlobalVariable>(V);
 | |
|   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
 | |
|     return false;
 | |
|   Constant *GlobalInit = GV->getInitializer();
 | |
|   
 | |
|   // Handle the ConstantAggregateZero case
 | |
|   if (isa<ConstantAggregateZero>(GlobalInit)) {
 | |
|     // This is a degenerate case. The initializer is constant zero so the
 | |
|     // length of the string must be zero.
 | |
|     Str.clear();
 | |
|     return true;
 | |
|   }
 | |
|   
 | |
|   // Must be a Constant Array
 | |
|   ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
 | |
|   if (Array == 0 || !Array->getType()->getElementType()->isIntegerTy(8))
 | |
|     return false;
 | |
|   
 | |
|   // Get the number of elements in the array
 | |
|   uint64_t NumElts = Array->getType()->getNumElements();
 | |
|   
 | |
|   if (Offset > NumElts)
 | |
|     return false;
 | |
|   
 | |
|   // Traverse the constant array from 'Offset' which is the place the GEP refers
 | |
|   // to in the array.
 | |
|   Str.reserve(NumElts-Offset);
 | |
|   for (unsigned i = Offset; i != NumElts; ++i) {
 | |
|     Constant *Elt = Array->getOperand(i);
 | |
|     ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
 | |
|     if (!CI) // This array isn't suitable, non-int initializer.
 | |
|       return false;
 | |
|     if (StopAtNul && CI->isZero())
 | |
|       return true; // we found end of string, success!
 | |
|     Str += (char)CI->getZExtValue();
 | |
|   }
 | |
|   
 | |
|   // The array isn't null terminated, but maybe this is a memcpy, not a strcpy.
 | |
|   return true;
 | |
| }
 | |
| 
 | |
| // These next two are very similar to the above, but also look through PHI
 | |
| // nodes.
 | |
| // TODO: See if we can integrate these two together.
 | |
| 
 | |
| /// GetStringLengthH - If we can compute the length of the string pointed to by
 | |
| /// the specified pointer, return 'len+1'.  If we can't, return 0.
 | |
| static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
 | |
|   // Look through noop bitcast instructions.
 | |
|   if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
 | |
|     return GetStringLengthH(BCI->getOperand(0), PHIs);
 | |
| 
 | |
|   // If this is a PHI node, there are two cases: either we have already seen it
 | |
|   // or we haven't.
 | |
|   if (PHINode *PN = dyn_cast<PHINode>(V)) {
 | |
|     if (!PHIs.insert(PN))
 | |
|       return ~0ULL;  // already in the set.
 | |
| 
 | |
|     // If it was new, see if all the input strings are the same length.
 | |
|     uint64_t LenSoFar = ~0ULL;
 | |
|     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | |
|       uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
 | |
|       if (Len == 0) return 0; // Unknown length -> unknown.
 | |
| 
 | |
|       if (Len == ~0ULL) continue;
 | |
| 
 | |
|       if (Len != LenSoFar && LenSoFar != ~0ULL)
 | |
|         return 0;    // Disagree -> unknown.
 | |
|       LenSoFar = Len;
 | |
|     }
 | |
| 
 | |
|     // Success, all agree.
 | |
|     return LenSoFar;
 | |
|   }
 | |
| 
 | |
|   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
 | |
|   if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
 | |
|     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
 | |
|     if (Len1 == 0) return 0;
 | |
|     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
 | |
|     if (Len2 == 0) return 0;
 | |
|     if (Len1 == ~0ULL) return Len2;
 | |
|     if (Len2 == ~0ULL) return Len1;
 | |
|     if (Len1 != Len2) return 0;
 | |
|     return Len1;
 | |
|   }
 | |
| 
 | |
|   // If the value is not a GEP instruction nor a constant expression with a
 | |
|   // GEP instruction, then return unknown.
 | |
|   User *GEP = 0;
 | |
|   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
 | |
|     GEP = GEPI;
 | |
|   } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
 | |
|     if (CE->getOpcode() != Instruction::GetElementPtr)
 | |
|       return 0;
 | |
|     GEP = CE;
 | |
|   } else {
 | |
|     return 0;
 | |
|   }
 | |
| 
 | |
|   // Make sure the GEP has exactly three arguments.
 | |
|   if (GEP->getNumOperands() != 3)
 | |
|     return 0;
 | |
| 
 | |
|   // Check to make sure that the first operand of the GEP is an integer and
 | |
|   // has value 0 so that we are sure we're indexing into the initializer.
 | |
|   if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) {
 | |
|     if (!Idx->isZero())
 | |
|       return 0;
 | |
|   } else
 | |
|     return 0;
 | |
| 
 | |
|   // If the second index isn't a ConstantInt, then this is a variable index
 | |
|   // into the array.  If this occurs, we can't say anything meaningful about
 | |
|   // the string.
 | |
|   uint64_t StartIdx = 0;
 | |
|   if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
 | |
|     StartIdx = CI->getZExtValue();
 | |
|   else
 | |
|     return 0;
 | |
| 
 | |
|   // The GEP instruction, constant or instruction, must reference a global
 | |
|   // variable that is a constant and is initialized. The referenced constant
 | |
|   // initializer is the array that we'll use for optimization.
 | |
|   GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
 | |
|   if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
 | |
|       GV->mayBeOverridden())
 | |
|     return 0;
 | |
|   Constant *GlobalInit = GV->getInitializer();
 | |
| 
 | |
|   // Handle the ConstantAggregateZero case, which is a degenerate case. The
 | |
|   // initializer is constant zero so the length of the string must be zero.
 | |
|   if (isa<ConstantAggregateZero>(GlobalInit))
 | |
|     return 1;  // Len = 0 offset by 1.
 | |
| 
 | |
|   // Must be a Constant Array
 | |
|   ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
 | |
|   if (!Array || !Array->getType()->getElementType()->isIntegerTy(8))
 | |
|     return false;
 | |
| 
 | |
|   // Get the number of elements in the array
 | |
|   uint64_t NumElts = Array->getType()->getNumElements();
 | |
| 
 | |
|   // Traverse the constant array from StartIdx (derived above) which is
 | |
|   // the place the GEP refers to in the array.
 | |
|   for (unsigned i = StartIdx; i != NumElts; ++i) {
 | |
|     Constant *Elt = Array->getOperand(i);
 | |
|     ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
 | |
|     if (!CI) // This array isn't suitable, non-int initializer.
 | |
|       return 0;
 | |
|     if (CI->isZero())
 | |
|       return i-StartIdx+1; // We found end of string, success!
 | |
|   }
 | |
| 
 | |
|   return 0; // The array isn't null terminated, conservatively return 'unknown'.
 | |
| }
 | |
| 
 | |
| /// GetStringLength - If we can compute the length of the string pointed to by
 | |
| /// the specified pointer, return 'len+1'.  If we can't, return 0.
 | |
| uint64_t llvm::GetStringLength(Value *V) {
 | |
|   if (!V->getType()->isPointerTy()) return 0;
 | |
| 
 | |
|   SmallPtrSet<PHINode*, 32> PHIs;
 | |
|   uint64_t Len = GetStringLengthH(V, PHIs);
 | |
|   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
 | |
|   // an empty string as a length.
 | |
|   return Len == ~0ULL ? 1 : Len;
 | |
| }
 |