mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	Added support for address spaces and added a isVolatile field to memcpy, memmove, and memset, e.g., llvm.memcpy.i32(i8*, i8*, i32, i32) -> llvm.memcpy.p0i8.p0i8.i32(i8*, i8*, i32, i32, i1) git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@100304 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1280 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1280 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- InstCombineCalls.cpp -----------------------------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the visitCall and visitInvoke functions.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "InstCombine.h"
 | 
						|
#include "llvm/IntrinsicInst.h"
 | 
						|
#include "llvm/Support/CallSite.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/Analysis/MemoryBuiltins.h"
 | 
						|
#include "llvm/Transforms/Utils/BuildLibCalls.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
/// getPromotedType - Return the specified type promoted as it would be to pass
 | 
						|
/// though a va_arg area.
 | 
						|
static const Type *getPromotedType(const Type *Ty) {
 | 
						|
  if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
 | 
						|
    if (ITy->getBitWidth() < 32)
 | 
						|
      return Type::getInt32Ty(Ty->getContext());
 | 
						|
  }
 | 
						|
  return Ty;
 | 
						|
}
 | 
						|
 | 
						|
/// EnforceKnownAlignment - If the specified pointer points to an object that
 | 
						|
/// we control, modify the object's alignment to PrefAlign. This isn't
 | 
						|
/// often possible though. If alignment is important, a more reliable approach
 | 
						|
/// is to simply align all global variables and allocation instructions to
 | 
						|
/// their preferred alignment from the beginning.
 | 
						|
///
 | 
						|
static unsigned EnforceKnownAlignment(Value *V,
 | 
						|
                                      unsigned Align, unsigned PrefAlign) {
 | 
						|
 | 
						|
  User *U = dyn_cast<User>(V);
 | 
						|
  if (!U) return Align;
 | 
						|
 | 
						|
  switch (Operator::getOpcode(U)) {
 | 
						|
  default: break;
 | 
						|
  case Instruction::BitCast:
 | 
						|
    return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
 | 
						|
  case Instruction::GetElementPtr: {
 | 
						|
    // If all indexes are zero, it is just the alignment of the base pointer.
 | 
						|
    bool AllZeroOperands = true;
 | 
						|
    for (User::op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i)
 | 
						|
      if (!isa<Constant>(*i) ||
 | 
						|
          !cast<Constant>(*i)->isNullValue()) {
 | 
						|
        AllZeroOperands = false;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
    if (AllZeroOperands) {
 | 
						|
      // Treat this like a bitcast.
 | 
						|
      return EnforceKnownAlignment(U->getOperand(0), Align, PrefAlign);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
 | 
						|
    // If there is a large requested alignment and we can, bump up the alignment
 | 
						|
    // of the global.
 | 
						|
    if (!GV->isDeclaration()) {
 | 
						|
      if (GV->getAlignment() >= PrefAlign)
 | 
						|
        Align = GV->getAlignment();
 | 
						|
      else {
 | 
						|
        GV->setAlignment(PrefAlign);
 | 
						|
        Align = PrefAlign;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } else if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
 | 
						|
    // If there is a requested alignment and if this is an alloca, round up.
 | 
						|
    if (AI->getAlignment() >= PrefAlign)
 | 
						|
      Align = AI->getAlignment();
 | 
						|
    else {
 | 
						|
      AI->setAlignment(PrefAlign);
 | 
						|
      Align = PrefAlign;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return Align;
 | 
						|
}
 | 
						|
 | 
						|
/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
 | 
						|
/// we can determine, return it, otherwise return 0.  If PrefAlign is specified,
 | 
						|
/// and it is more than the alignment of the ultimate object, see if we can
 | 
						|
/// increase the alignment of the ultimate object, making this check succeed.
 | 
						|
unsigned InstCombiner::GetOrEnforceKnownAlignment(Value *V,
 | 
						|
                                                  unsigned PrefAlign) {
 | 
						|
  unsigned BitWidth = TD ? TD->getTypeSizeInBits(V->getType()) :
 | 
						|
                      sizeof(PrefAlign) * CHAR_BIT;
 | 
						|
  APInt Mask = APInt::getAllOnesValue(BitWidth);
 | 
						|
  APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
 | 
						|
  ComputeMaskedBits(V, Mask, KnownZero, KnownOne);
 | 
						|
  unsigned TrailZ = KnownZero.countTrailingOnes();
 | 
						|
  unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
 | 
						|
 | 
						|
  if (PrefAlign > Align)
 | 
						|
    Align = EnforceKnownAlignment(V, Align, PrefAlign);
 | 
						|
  
 | 
						|
    // We don't need to make any adjustment.
 | 
						|
  return Align;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
 | 
						|
  unsigned DstAlign = GetOrEnforceKnownAlignment(MI->getOperand(1));
 | 
						|
  unsigned SrcAlign = GetOrEnforceKnownAlignment(MI->getOperand(2));
 | 
						|
  unsigned MinAlign = std::min(DstAlign, SrcAlign);
 | 
						|
  unsigned CopyAlign = MI->getAlignment();
 | 
						|
 | 
						|
  if (CopyAlign < MinAlign) {
 | 
						|
    MI->setAlignment(ConstantInt::get(MI->getAlignmentType(), 
 | 
						|
                                             MinAlign, false));
 | 
						|
    return MI;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
 | 
						|
  // load/store.
 | 
						|
  ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getOperand(3));
 | 
						|
  if (MemOpLength == 0) return 0;
 | 
						|
  
 | 
						|
  // Source and destination pointer types are always "i8*" for intrinsic.  See
 | 
						|
  // if the size is something we can handle with a single primitive load/store.
 | 
						|
  // A single load+store correctly handles overlapping memory in the memmove
 | 
						|
  // case.
 | 
						|
  unsigned Size = MemOpLength->getZExtValue();
 | 
						|
  if (Size == 0) return MI;  // Delete this mem transfer.
 | 
						|
  
 | 
						|
  if (Size > 8 || (Size&(Size-1)))
 | 
						|
    return 0;  // If not 1/2/4/8 bytes, exit.
 | 
						|
  
 | 
						|
  // Use an integer load+store unless we can find something better.
 | 
						|
  unsigned SrcAddrSp =
 | 
						|
    cast<PointerType>(MI->getOperand(2)->getType())->getAddressSpace();
 | 
						|
  unsigned DstAddrSp =
 | 
						|
    cast<PointerType>(MI->getOperand(1)->getType())->getAddressSpace();
 | 
						|
 | 
						|
  const IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
 | 
						|
  Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
 | 
						|
  Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
 | 
						|
  
 | 
						|
  // Memcpy forces the use of i8* for the source and destination.  That means
 | 
						|
  // that if you're using memcpy to move one double around, you'll get a cast
 | 
						|
  // from double* to i8*.  We'd much rather use a double load+store rather than
 | 
						|
  // an i64 load+store, here because this improves the odds that the source or
 | 
						|
  // dest address will be promotable.  See if we can find a better type than the
 | 
						|
  // integer datatype.
 | 
						|
  Value *StrippedDest = MI->getOperand(1)->stripPointerCasts();
 | 
						|
  if (StrippedDest != MI->getOperand(1)) {
 | 
						|
    const Type *SrcETy = cast<PointerType>(StrippedDest->getType())
 | 
						|
                                    ->getElementType();
 | 
						|
    if (TD && SrcETy->isSized() && TD->getTypeStoreSize(SrcETy) == Size) {
 | 
						|
      // The SrcETy might be something like {{{double}}} or [1 x double].  Rip
 | 
						|
      // down through these levels if so.
 | 
						|
      while (!SrcETy->isSingleValueType()) {
 | 
						|
        if (const StructType *STy = dyn_cast<StructType>(SrcETy)) {
 | 
						|
          if (STy->getNumElements() == 1)
 | 
						|
            SrcETy = STy->getElementType(0);
 | 
						|
          else
 | 
						|
            break;
 | 
						|
        } else if (const ArrayType *ATy = dyn_cast<ArrayType>(SrcETy)) {
 | 
						|
          if (ATy->getNumElements() == 1)
 | 
						|
            SrcETy = ATy->getElementType();
 | 
						|
          else
 | 
						|
            break;
 | 
						|
        } else
 | 
						|
          break;
 | 
						|
      }
 | 
						|
      
 | 
						|
      if (SrcETy->isSingleValueType()) {
 | 
						|
        NewSrcPtrTy = PointerType::get(SrcETy, SrcAddrSp);
 | 
						|
        NewDstPtrTy = PointerType::get(SrcETy, DstAddrSp);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  
 | 
						|
  // If the memcpy/memmove provides better alignment info than we can
 | 
						|
  // infer, use it.
 | 
						|
  SrcAlign = std::max(SrcAlign, CopyAlign);
 | 
						|
  DstAlign = std::max(DstAlign, CopyAlign);
 | 
						|
  
 | 
						|
  Value *Src = Builder->CreateBitCast(MI->getOperand(2), NewSrcPtrTy);
 | 
						|
  Value *Dest = Builder->CreateBitCast(MI->getOperand(1), NewDstPtrTy);
 | 
						|
  Instruction *L = new LoadInst(Src, "tmp", MI->isVolatile(), SrcAlign);
 | 
						|
  InsertNewInstBefore(L, *MI);
 | 
						|
  InsertNewInstBefore(new StoreInst(L, Dest, MI->isVolatile(), DstAlign),
 | 
						|
                      *MI);
 | 
						|
 | 
						|
  // Set the size of the copy to 0, it will be deleted on the next iteration.
 | 
						|
  MI->setOperand(3, Constant::getNullValue(MemOpLength->getType()));
 | 
						|
  return MI;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
 | 
						|
  unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest());
 | 
						|
  if (MI->getAlignment() < Alignment) {
 | 
						|
    MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
 | 
						|
                                             Alignment, false));
 | 
						|
    return MI;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Extract the length and alignment and fill if they are constant.
 | 
						|
  ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
 | 
						|
  ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
 | 
						|
  if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
 | 
						|
    return 0;
 | 
						|
  uint64_t Len = LenC->getZExtValue();
 | 
						|
  Alignment = MI->getAlignment();
 | 
						|
  
 | 
						|
  // If the length is zero, this is a no-op
 | 
						|
  if (Len == 0) return MI; // memset(d,c,0,a) -> noop
 | 
						|
  
 | 
						|
  // memset(s,c,n) -> store s, c (for n=1,2,4,8)
 | 
						|
  if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
 | 
						|
    const Type *ITy = IntegerType::get(MI->getContext(), Len*8);  // n=1 -> i8.
 | 
						|
    
 | 
						|
    Value *Dest = MI->getDest();
 | 
						|
    Dest = Builder->CreateBitCast(Dest, PointerType::getUnqual(ITy));
 | 
						|
 | 
						|
    // Alignment 0 is identity for alignment 1 for memset, but not store.
 | 
						|
    if (Alignment == 0) Alignment = 1;
 | 
						|
    
 | 
						|
    // Extract the fill value and store.
 | 
						|
    uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
 | 
						|
    InsertNewInstBefore(new StoreInst(ConstantInt::get(ITy, Fill),
 | 
						|
                                      Dest, false, Alignment), *MI);
 | 
						|
    
 | 
						|
    // Set the size of the copy to 0, it will be deleted on the next iteration.
 | 
						|
    MI->setLength(Constant::getNullValue(LenC->getType()));
 | 
						|
    return MI;
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// visitCallInst - CallInst simplification.  This mostly only handles folding 
 | 
						|
/// of intrinsic instructions.  For normal calls, it allows visitCallSite to do
 | 
						|
/// the heavy lifting.
 | 
						|
///
 | 
						|
Instruction *InstCombiner::visitCallInst(CallInst &CI) {
 | 
						|
  if (isFreeCall(&CI))
 | 
						|
    return visitFree(CI);
 | 
						|
 | 
						|
  // If the caller function is nounwind, mark the call as nounwind, even if the
 | 
						|
  // callee isn't.
 | 
						|
  if (CI.getParent()->getParent()->doesNotThrow() &&
 | 
						|
      !CI.doesNotThrow()) {
 | 
						|
    CI.setDoesNotThrow();
 | 
						|
    return &CI;
 | 
						|
  }
 | 
						|
  
 | 
						|
  IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
 | 
						|
  if (!II) return visitCallSite(&CI);
 | 
						|
  
 | 
						|
  // Intrinsics cannot occur in an invoke, so handle them here instead of in
 | 
						|
  // visitCallSite.
 | 
						|
  if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
 | 
						|
    bool Changed = false;
 | 
						|
 | 
						|
    // memmove/cpy/set of zero bytes is a noop.
 | 
						|
    if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
 | 
						|
      if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
 | 
						|
 | 
						|
      if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
 | 
						|
        if (CI->getZExtValue() == 1) {
 | 
						|
          // Replace the instruction with just byte operations.  We would
 | 
						|
          // transform other cases to loads/stores, but we don't know if
 | 
						|
          // alignment is sufficient.
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    // If we have a memmove and the source operation is a constant global,
 | 
						|
    // then the source and dest pointers can't alias, so we can change this
 | 
						|
    // into a call to memcpy.
 | 
						|
    if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
 | 
						|
      if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
 | 
						|
        if (GVSrc->isConstant()) {
 | 
						|
          Module *M = CI.getParent()->getParent()->getParent();
 | 
						|
          Intrinsic::ID MemCpyID = Intrinsic::memcpy;
 | 
						|
          const Type *Tys[3] = { CI.getOperand(1)->getType(),
 | 
						|
                                 CI.getOperand(2)->getType(),
 | 
						|
                                 CI.getOperand(3)->getType() };
 | 
						|
          CI.setOperand(0, 
 | 
						|
                        Intrinsic::getDeclaration(M, MemCpyID, Tys, 3));
 | 
						|
          Changed = true;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
 | 
						|
      // memmove(x,x,size) -> noop.
 | 
						|
      if (MTI->getSource() == MTI->getDest())
 | 
						|
        return EraseInstFromFunction(CI);
 | 
						|
    }
 | 
						|
 | 
						|
    // If we can determine a pointer alignment that is bigger than currently
 | 
						|
    // set, update the alignment.
 | 
						|
    if (isa<MemTransferInst>(MI)) {
 | 
						|
      if (Instruction *I = SimplifyMemTransfer(MI))
 | 
						|
        return I;
 | 
						|
    } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
 | 
						|
      if (Instruction *I = SimplifyMemSet(MSI))
 | 
						|
        return I;
 | 
						|
    }
 | 
						|
          
 | 
						|
    if (Changed) return II;
 | 
						|
  }
 | 
						|
  
 | 
						|
  switch (II->getIntrinsicID()) {
 | 
						|
  default: break;
 | 
						|
  case Intrinsic::objectsize: {
 | 
						|
    // We need target data for just about everything so depend on it.
 | 
						|
    if (!TD) break;
 | 
						|
    
 | 
						|
    const Type *ReturnTy = CI.getType();
 | 
						|
    bool Min = (cast<ConstantInt>(II->getOperand(2))->getZExtValue() == 1);
 | 
						|
 | 
						|
    // Get to the real allocated thing and offset as fast as possible.
 | 
						|
    Value *Op1 = II->getOperand(1)->stripPointerCasts();
 | 
						|
    
 | 
						|
    // If we've stripped down to a single global variable that we
 | 
						|
    // can know the size of then just return that.
 | 
						|
    if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op1)) {
 | 
						|
      if (GV->hasDefinitiveInitializer()) {
 | 
						|
        Constant *C = GV->getInitializer();
 | 
						|
        uint64_t GlobalSize = TD->getTypeAllocSize(C->getType());
 | 
						|
        return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, GlobalSize));
 | 
						|
      } else {
 | 
						|
        // Can't determine size of the GV.
 | 
						|
        Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
 | 
						|
        return ReplaceInstUsesWith(CI, RetVal);
 | 
						|
      }
 | 
						|
    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(Op1)) {
 | 
						|
      // Get alloca size.
 | 
						|
      if (AI->getAllocatedType()->isSized()) {
 | 
						|
        uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
 | 
						|
        if (AI->isArrayAllocation()) {
 | 
						|
          const ConstantInt *C = dyn_cast<ConstantInt>(AI->getArraySize());
 | 
						|
          if (!C) break;
 | 
						|
          AllocaSize *= C->getZExtValue();
 | 
						|
        }
 | 
						|
        return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy, AllocaSize));
 | 
						|
      }
 | 
						|
    } else if (CallInst *MI = extractMallocCall(Op1)) {
 | 
						|
      const Type* MallocType = getMallocAllocatedType(MI);
 | 
						|
      // Get alloca size.
 | 
						|
      if (MallocType && MallocType->isSized()) {
 | 
						|
        if (Value *NElems = getMallocArraySize(MI, TD, true)) {
 | 
						|
          if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
 | 
						|
        return ReplaceInstUsesWith(CI, ConstantInt::get(ReturnTy,
 | 
						|
               (NElements->getZExtValue() * TD->getTypeAllocSize(MallocType))));
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op1)) {      
 | 
						|
      // Only handle constant GEPs here.
 | 
						|
      if (CE->getOpcode() != Instruction::GetElementPtr) break;
 | 
						|
      GEPOperator *GEP = cast<GEPOperator>(CE);
 | 
						|
      
 | 
						|
      // Make sure we're not a constant offset from an external
 | 
						|
      // global.
 | 
						|
      Value *Operand = GEP->getPointerOperand();
 | 
						|
      Operand = Operand->stripPointerCasts();
 | 
						|
      if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Operand))
 | 
						|
        if (!GV->hasDefinitiveInitializer()) break;
 | 
						|
        
 | 
						|
      // Get what we're pointing to and its size. 
 | 
						|
      const PointerType *BaseType = 
 | 
						|
        cast<PointerType>(Operand->getType());
 | 
						|
      uint64_t Size = TD->getTypeAllocSize(BaseType->getElementType());
 | 
						|
      
 | 
						|
      // Get the current byte offset into the thing. Use the original
 | 
						|
      // operand in case we're looking through a bitcast.
 | 
						|
      SmallVector<Value*, 8> Ops(CE->op_begin()+1, CE->op_end());
 | 
						|
      const PointerType *OffsetType =
 | 
						|
        cast<PointerType>(GEP->getPointerOperand()->getType());
 | 
						|
      uint64_t Offset = TD->getIndexedOffset(OffsetType, &Ops[0], Ops.size());
 | 
						|
 | 
						|
      if (Size < Offset) {
 | 
						|
        // Out of bound reference? Negative index normalized to large
 | 
						|
        // index? Just return "I don't know".
 | 
						|
        Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
 | 
						|
        return ReplaceInstUsesWith(CI, RetVal);
 | 
						|
      }
 | 
						|
      
 | 
						|
      Constant *RetVal = ConstantInt::get(ReturnTy, Size-Offset);
 | 
						|
      return ReplaceInstUsesWith(CI, RetVal);
 | 
						|
      
 | 
						|
    } 
 | 
						|
 | 
						|
    // Do not return "I don't know" here. Later optimization passes could
 | 
						|
    // make it possible to evaluate objectsize to a constant.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case Intrinsic::bswap:
 | 
						|
    // bswap(bswap(x)) -> x
 | 
						|
    if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(II->getOperand(1)))
 | 
						|
      if (Operand->getIntrinsicID() == Intrinsic::bswap)
 | 
						|
        return ReplaceInstUsesWith(CI, Operand->getOperand(1));
 | 
						|
      
 | 
						|
    // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
 | 
						|
    if (TruncInst *TI = dyn_cast<TruncInst>(II->getOperand(1))) {
 | 
						|
      if (IntrinsicInst *Operand = dyn_cast<IntrinsicInst>(TI->getOperand(0)))
 | 
						|
        if (Operand->getIntrinsicID() == Intrinsic::bswap) {
 | 
						|
          unsigned C = Operand->getType()->getPrimitiveSizeInBits() -
 | 
						|
                       TI->getType()->getPrimitiveSizeInBits();
 | 
						|
          Value *CV = ConstantInt::get(Operand->getType(), C);
 | 
						|
          Value *V = Builder->CreateLShr(Operand->getOperand(1), CV);
 | 
						|
          return new TruncInst(V, TI->getType());
 | 
						|
        }
 | 
						|
    }
 | 
						|
      
 | 
						|
    break;
 | 
						|
  case Intrinsic::powi:
 | 
						|
    if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getOperand(2))) {
 | 
						|
      // powi(x, 0) -> 1.0
 | 
						|
      if (Power->isZero())
 | 
						|
        return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
 | 
						|
      // powi(x, 1) -> x
 | 
						|
      if (Power->isOne())
 | 
						|
        return ReplaceInstUsesWith(CI, II->getOperand(1));
 | 
						|
      // powi(x, -1) -> 1/x
 | 
						|
      if (Power->isAllOnesValue())
 | 
						|
        return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
 | 
						|
                                          II->getOperand(1));
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Intrinsic::cttz: {
 | 
						|
    // If all bits below the first known one are known zero,
 | 
						|
    // this value is constant.
 | 
						|
    const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
 | 
						|
    uint32_t BitWidth = IT->getBitWidth();
 | 
						|
    APInt KnownZero(BitWidth, 0);
 | 
						|
    APInt KnownOne(BitWidth, 0);
 | 
						|
    ComputeMaskedBits(II->getOperand(1), APInt::getAllOnesValue(BitWidth),
 | 
						|
                      KnownZero, KnownOne);
 | 
						|
    unsigned TrailingZeros = KnownOne.countTrailingZeros();
 | 
						|
    APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
 | 
						|
    if ((Mask & KnownZero) == Mask)
 | 
						|
      return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
 | 
						|
                                 APInt(BitWidth, TrailingZeros)));
 | 
						|
    
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Intrinsic::ctlz: {
 | 
						|
    // If all bits above the first known one are known zero,
 | 
						|
    // this value is constant.
 | 
						|
    const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
 | 
						|
    uint32_t BitWidth = IT->getBitWidth();
 | 
						|
    APInt KnownZero(BitWidth, 0);
 | 
						|
    APInt KnownOne(BitWidth, 0);
 | 
						|
    ComputeMaskedBits(II->getOperand(1), APInt::getAllOnesValue(BitWidth),
 | 
						|
                      KnownZero, KnownOne);
 | 
						|
    unsigned LeadingZeros = KnownOne.countLeadingZeros();
 | 
						|
    APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
 | 
						|
    if ((Mask & KnownZero) == Mask)
 | 
						|
      return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
 | 
						|
                                 APInt(BitWidth, LeadingZeros)));
 | 
						|
    
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Intrinsic::uadd_with_overflow: {
 | 
						|
    Value *LHS = II->getOperand(1), *RHS = II->getOperand(2);
 | 
						|
    const IntegerType *IT = cast<IntegerType>(II->getOperand(1)->getType());
 | 
						|
    uint32_t BitWidth = IT->getBitWidth();
 | 
						|
    APInt Mask = APInt::getSignBit(BitWidth);
 | 
						|
    APInt LHSKnownZero(BitWidth, 0);
 | 
						|
    APInt LHSKnownOne(BitWidth, 0);
 | 
						|
    ComputeMaskedBits(LHS, Mask, LHSKnownZero, LHSKnownOne);
 | 
						|
    bool LHSKnownNegative = LHSKnownOne[BitWidth - 1];
 | 
						|
    bool LHSKnownPositive = LHSKnownZero[BitWidth - 1];
 | 
						|
 | 
						|
    if (LHSKnownNegative || LHSKnownPositive) {
 | 
						|
      APInt RHSKnownZero(BitWidth, 0);
 | 
						|
      APInt RHSKnownOne(BitWidth, 0);
 | 
						|
      ComputeMaskedBits(RHS, Mask, RHSKnownZero, RHSKnownOne);
 | 
						|
      bool RHSKnownNegative = RHSKnownOne[BitWidth - 1];
 | 
						|
      bool RHSKnownPositive = RHSKnownZero[BitWidth - 1];
 | 
						|
      if (LHSKnownNegative && RHSKnownNegative) {
 | 
						|
        // The sign bit is set in both cases: this MUST overflow.
 | 
						|
        // Create a simple add instruction, and insert it into the struct.
 | 
						|
        Instruction *Add = BinaryOperator::CreateAdd(LHS, RHS, "", &CI);
 | 
						|
        Worklist.Add(Add);
 | 
						|
        Constant *V[] = {
 | 
						|
          UndefValue::get(LHS->getType()),ConstantInt::getTrue(II->getContext())
 | 
						|
        };
 | 
						|
        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
 | 
						|
        return InsertValueInst::Create(Struct, Add, 0);
 | 
						|
      }
 | 
						|
      
 | 
						|
      if (LHSKnownPositive && RHSKnownPositive) {
 | 
						|
        // The sign bit is clear in both cases: this CANNOT overflow.
 | 
						|
        // Create a simple add instruction, and insert it into the struct.
 | 
						|
        Instruction *Add = BinaryOperator::CreateNUWAdd(LHS, RHS, "", &CI);
 | 
						|
        Worklist.Add(Add);
 | 
						|
        Constant *V[] = {
 | 
						|
          UndefValue::get(LHS->getType()),
 | 
						|
          ConstantInt::getFalse(II->getContext())
 | 
						|
        };
 | 
						|
        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
 | 
						|
        return InsertValueInst::Create(Struct, Add, 0);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // FALL THROUGH uadd into sadd
 | 
						|
  case Intrinsic::sadd_with_overflow:
 | 
						|
    // Canonicalize constants into the RHS.
 | 
						|
    if (isa<Constant>(II->getOperand(1)) &&
 | 
						|
        !isa<Constant>(II->getOperand(2))) {
 | 
						|
      Value *LHS = II->getOperand(1);
 | 
						|
      II->setOperand(1, II->getOperand(2));
 | 
						|
      II->setOperand(2, LHS);
 | 
						|
      return II;
 | 
						|
    }
 | 
						|
 | 
						|
    // X + undef -> undef
 | 
						|
    if (isa<UndefValue>(II->getOperand(2)))
 | 
						|
      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
 | 
						|
      
 | 
						|
    if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) {
 | 
						|
      // X + 0 -> {X, false}
 | 
						|
      if (RHS->isZero()) {
 | 
						|
        Constant *V[] = {
 | 
						|
          UndefValue::get(II->getOperand(0)->getType()),
 | 
						|
          ConstantInt::getFalse(II->getContext())
 | 
						|
        };
 | 
						|
        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
 | 
						|
        return InsertValueInst::Create(Struct, II->getOperand(1), 0);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Intrinsic::usub_with_overflow:
 | 
						|
  case Intrinsic::ssub_with_overflow:
 | 
						|
    // undef - X -> undef
 | 
						|
    // X - undef -> undef
 | 
						|
    if (isa<UndefValue>(II->getOperand(1)) ||
 | 
						|
        isa<UndefValue>(II->getOperand(2)))
 | 
						|
      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
 | 
						|
      
 | 
						|
    if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getOperand(2))) {
 | 
						|
      // X - 0 -> {X, false}
 | 
						|
      if (RHS->isZero()) {
 | 
						|
        Constant *V[] = {
 | 
						|
          UndefValue::get(II->getOperand(1)->getType()),
 | 
						|
          ConstantInt::getFalse(II->getContext())
 | 
						|
        };
 | 
						|
        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
 | 
						|
        return InsertValueInst::Create(Struct, II->getOperand(1), 0);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Intrinsic::umul_with_overflow:
 | 
						|
  case Intrinsic::smul_with_overflow:
 | 
						|
    // Canonicalize constants into the RHS.
 | 
						|
    if (isa<Constant>(II->getOperand(1)) &&
 | 
						|
        !isa<Constant>(II->getOperand(2))) {
 | 
						|
      Value *LHS = II->getOperand(1);
 | 
						|
      II->setOperand(1, II->getOperand(2));
 | 
						|
      II->setOperand(2, LHS);
 | 
						|
      return II;
 | 
						|
    }
 | 
						|
 | 
						|
    // X * undef -> undef
 | 
						|
    if (isa<UndefValue>(II->getOperand(2)))
 | 
						|
      return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
 | 
						|
      
 | 
						|
    if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getOperand(2))) {
 | 
						|
      // X*0 -> {0, false}
 | 
						|
      if (RHSI->isZero())
 | 
						|
        return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType()));
 | 
						|
      
 | 
						|
      // X * 1 -> {X, false}
 | 
						|
      if (RHSI->equalsInt(1)) {
 | 
						|
        Constant *V[] = {
 | 
						|
          UndefValue::get(II->getOperand(1)->getType()),
 | 
						|
          ConstantInt::getFalse(II->getContext())
 | 
						|
        };
 | 
						|
        Constant *Struct = ConstantStruct::get(II->getContext(), V, 2, false);
 | 
						|
        return InsertValueInst::Create(Struct, II->getOperand(1), 0);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_lvx:
 | 
						|
  case Intrinsic::ppc_altivec_lvxl:
 | 
						|
  case Intrinsic::x86_sse_loadu_ps:
 | 
						|
  case Intrinsic::x86_sse2_loadu_pd:
 | 
						|
  case Intrinsic::x86_sse2_loadu_dq:
 | 
						|
    // Turn PPC lvx     -> load if the pointer is known aligned.
 | 
						|
    // Turn X86 loadups -> load if the pointer is known aligned.
 | 
						|
    if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
 | 
						|
      Value *Ptr = Builder->CreateBitCast(II->getOperand(1),
 | 
						|
                                         PointerType::getUnqual(II->getType()));
 | 
						|
      return new LoadInst(Ptr);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Intrinsic::ppc_altivec_stvx:
 | 
						|
  case Intrinsic::ppc_altivec_stvxl:
 | 
						|
    // Turn stvx -> store if the pointer is known aligned.
 | 
						|
    if (GetOrEnforceKnownAlignment(II->getOperand(2), 16) >= 16) {
 | 
						|
      const Type *OpPtrTy = 
 | 
						|
        PointerType::getUnqual(II->getOperand(1)->getType());
 | 
						|
      Value *Ptr = Builder->CreateBitCast(II->getOperand(2), OpPtrTy);
 | 
						|
      return new StoreInst(II->getOperand(1), Ptr);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  case Intrinsic::x86_sse_storeu_ps:
 | 
						|
  case Intrinsic::x86_sse2_storeu_pd:
 | 
						|
  case Intrinsic::x86_sse2_storeu_dq:
 | 
						|
    // Turn X86 storeu -> store if the pointer is known aligned.
 | 
						|
    if (GetOrEnforceKnownAlignment(II->getOperand(1), 16) >= 16) {
 | 
						|
      const Type *OpPtrTy = 
 | 
						|
        PointerType::getUnqual(II->getOperand(2)->getType());
 | 
						|
      Value *Ptr = Builder->CreateBitCast(II->getOperand(1), OpPtrTy);
 | 
						|
      return new StoreInst(II->getOperand(2), Ptr);
 | 
						|
    }
 | 
						|
    break;
 | 
						|
    
 | 
						|
  case Intrinsic::x86_sse_cvttss2si: {
 | 
						|
    // These intrinsics only demands the 0th element of its input vector.  If
 | 
						|
    // we can simplify the input based on that, do so now.
 | 
						|
    unsigned VWidth =
 | 
						|
      cast<VectorType>(II->getOperand(1)->getType())->getNumElements();
 | 
						|
    APInt DemandedElts(VWidth, 1);
 | 
						|
    APInt UndefElts(VWidth, 0);
 | 
						|
    if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
 | 
						|
                                              UndefElts)) {
 | 
						|
      II->setOperand(1, V);
 | 
						|
      return II;
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
    
 | 
						|
  case Intrinsic::ppc_altivec_vperm:
 | 
						|
    // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
 | 
						|
    if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
 | 
						|
      assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
 | 
						|
      
 | 
						|
      // Check that all of the elements are integer constants or undefs.
 | 
						|
      bool AllEltsOk = true;
 | 
						|
      for (unsigned i = 0; i != 16; ++i) {
 | 
						|
        if (!isa<ConstantInt>(Mask->getOperand(i)) && 
 | 
						|
            !isa<UndefValue>(Mask->getOperand(i))) {
 | 
						|
          AllEltsOk = false;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      
 | 
						|
      if (AllEltsOk) {
 | 
						|
        // Cast the input vectors to byte vectors.
 | 
						|
        Value *Op0 = Builder->CreateBitCast(II->getOperand(1), Mask->getType());
 | 
						|
        Value *Op1 = Builder->CreateBitCast(II->getOperand(2), Mask->getType());
 | 
						|
        Value *Result = UndefValue::get(Op0->getType());
 | 
						|
        
 | 
						|
        // Only extract each element once.
 | 
						|
        Value *ExtractedElts[32];
 | 
						|
        memset(ExtractedElts, 0, sizeof(ExtractedElts));
 | 
						|
        
 | 
						|
        for (unsigned i = 0; i != 16; ++i) {
 | 
						|
          if (isa<UndefValue>(Mask->getOperand(i)))
 | 
						|
            continue;
 | 
						|
          unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
 | 
						|
          Idx &= 31;  // Match the hardware behavior.
 | 
						|
          
 | 
						|
          if (ExtractedElts[Idx] == 0) {
 | 
						|
            ExtractedElts[Idx] = 
 | 
						|
              Builder->CreateExtractElement(Idx < 16 ? Op0 : Op1, 
 | 
						|
                  ConstantInt::get(Type::getInt32Ty(II->getContext()),
 | 
						|
                                   Idx&15, false), "tmp");
 | 
						|
          }
 | 
						|
        
 | 
						|
          // Insert this value into the result vector.
 | 
						|
          Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
 | 
						|
                         ConstantInt::get(Type::getInt32Ty(II->getContext()),
 | 
						|
                                          i, false), "tmp");
 | 
						|
        }
 | 
						|
        return CastInst::Create(Instruction::BitCast, Result, CI.getType());
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
 | 
						|
  case Intrinsic::stackrestore: {
 | 
						|
    // If the save is right next to the restore, remove the restore.  This can
 | 
						|
    // happen when variable allocas are DCE'd.
 | 
						|
    if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
 | 
						|
      if (SS->getIntrinsicID() == Intrinsic::stacksave) {
 | 
						|
        BasicBlock::iterator BI = SS;
 | 
						|
        if (&*++BI == II)
 | 
						|
          return EraseInstFromFunction(CI);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Scan down this block to see if there is another stack restore in the
 | 
						|
    // same block without an intervening call/alloca.
 | 
						|
    BasicBlock::iterator BI = II;
 | 
						|
    TerminatorInst *TI = II->getParent()->getTerminator();
 | 
						|
    bool CannotRemove = false;
 | 
						|
    for (++BI; &*BI != TI; ++BI) {
 | 
						|
      if (isa<AllocaInst>(BI) || isMalloc(BI)) {
 | 
						|
        CannotRemove = true;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
 | 
						|
        if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
 | 
						|
          // If there is a stackrestore below this one, remove this one.
 | 
						|
          if (II->getIntrinsicID() == Intrinsic::stackrestore)
 | 
						|
            return EraseInstFromFunction(CI);
 | 
						|
          // Otherwise, ignore the intrinsic.
 | 
						|
        } else {
 | 
						|
          // If we found a non-intrinsic call, we can't remove the stack
 | 
						|
          // restore.
 | 
						|
          CannotRemove = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If the stack restore is in a return/unwind block and if there are no
 | 
						|
    // allocas or calls between the restore and the return, nuke the restore.
 | 
						|
    if (!CannotRemove && (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)))
 | 
						|
      return EraseInstFromFunction(CI);
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  }
 | 
						|
 | 
						|
  return visitCallSite(II);
 | 
						|
}
 | 
						|
 | 
						|
// InvokeInst simplification
 | 
						|
//
 | 
						|
Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
 | 
						|
  return visitCallSite(&II);
 | 
						|
}
 | 
						|
 | 
						|
/// isSafeToEliminateVarargsCast - If this cast does not affect the value 
 | 
						|
/// passed through the varargs area, we can eliminate the use of the cast.
 | 
						|
static bool isSafeToEliminateVarargsCast(const CallSite CS,
 | 
						|
                                         const CastInst * const CI,
 | 
						|
                                         const TargetData * const TD,
 | 
						|
                                         const int ix) {
 | 
						|
  if (!CI->isLosslessCast())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // The size of ByVal arguments is derived from the type, so we
 | 
						|
  // can't change to a type with a different size.  If the size were
 | 
						|
  // passed explicitly we could avoid this check.
 | 
						|
  if (!CS.paramHasAttr(ix, Attribute::ByVal))
 | 
						|
    return true;
 | 
						|
 | 
						|
  const Type* SrcTy = 
 | 
						|
            cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
 | 
						|
  const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
 | 
						|
  if (!SrcTy->isSized() || !DstTy->isSized())
 | 
						|
    return false;
 | 
						|
  if (!TD || TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy))
 | 
						|
    return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
class InstCombineFortifiedLibCalls : public SimplifyFortifiedLibCalls {
 | 
						|
  InstCombiner *IC;
 | 
						|
protected:
 | 
						|
  void replaceCall(Value *With) {
 | 
						|
    NewInstruction = IC->ReplaceInstUsesWith(*CI, With);
 | 
						|
  }
 | 
						|
  bool isFoldable(unsigned SizeCIOp, unsigned SizeArgOp, bool isString) const {
 | 
						|
    if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getOperand(SizeCIOp))) {
 | 
						|
      if (SizeCI->isAllOnesValue())
 | 
						|
        return true;
 | 
						|
      if (isString)
 | 
						|
        return SizeCI->getZExtValue() >=
 | 
						|
               GetStringLength(CI->getOperand(SizeArgOp));
 | 
						|
      if (ConstantInt *Arg = dyn_cast<ConstantInt>(CI->getOperand(SizeArgOp)))
 | 
						|
        return SizeCI->getZExtValue() >= Arg->getZExtValue();
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
public:
 | 
						|
  InstCombineFortifiedLibCalls(InstCombiner *IC) : IC(IC), NewInstruction(0) { }
 | 
						|
  Instruction *NewInstruction;
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
// Try to fold some different type of calls here.
 | 
						|
// Currently we're only working with the checking functions, memcpy_chk, 
 | 
						|
// mempcpy_chk, memmove_chk, memset_chk, strcpy_chk, stpcpy_chk, strncpy_chk,
 | 
						|
// strcat_chk and strncat_chk.
 | 
						|
Instruction *InstCombiner::tryOptimizeCall(CallInst *CI, const TargetData *TD) {
 | 
						|
  if (CI->getCalledFunction() == 0) return 0;
 | 
						|
 | 
						|
  InstCombineFortifiedLibCalls Simplifier(this);
 | 
						|
  Simplifier.fold(CI, TD);
 | 
						|
  return Simplifier.NewInstruction;
 | 
						|
}
 | 
						|
 | 
						|
// visitCallSite - Improvements for call and invoke instructions.
 | 
						|
//
 | 
						|
Instruction *InstCombiner::visitCallSite(CallSite CS) {
 | 
						|
  bool Changed = false;
 | 
						|
 | 
						|
  // If the callee is a constexpr cast of a function, attempt to move the cast
 | 
						|
  // to the arguments of the call/invoke.
 | 
						|
  if (transformConstExprCastCall(CS)) return 0;
 | 
						|
 | 
						|
  Value *Callee = CS.getCalledValue();
 | 
						|
 | 
						|
  if (Function *CalleeF = dyn_cast<Function>(Callee))
 | 
						|
    // If the call and callee calling conventions don't match, this call must
 | 
						|
    // be unreachable, as the call is undefined.
 | 
						|
    if (CalleeF->getCallingConv() != CS.getCallingConv() &&
 | 
						|
        // Only do this for calls to a function with a body.  A prototype may
 | 
						|
        // not actually end up matching the implementation's calling conv for a
 | 
						|
        // variety of reasons (e.g. it may be written in assembly).
 | 
						|
        !CalleeF->isDeclaration()) {
 | 
						|
      Instruction *OldCall = CS.getInstruction();
 | 
						|
      new StoreInst(ConstantInt::getTrue(Callee->getContext()),
 | 
						|
                UndefValue::get(Type::getInt1PtrTy(Callee->getContext())), 
 | 
						|
                                  OldCall);
 | 
						|
      // If OldCall dues not return void then replaceAllUsesWith undef.
 | 
						|
      // This allows ValueHandlers and custom metadata to adjust itself.
 | 
						|
      if (!OldCall->getType()->isVoidTy())
 | 
						|
        OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
 | 
						|
      if (isa<CallInst>(OldCall))
 | 
						|
        return EraseInstFromFunction(*OldCall);
 | 
						|
      
 | 
						|
      // We cannot remove an invoke, because it would change the CFG, just
 | 
						|
      // change the callee to a null pointer.
 | 
						|
      cast<InvokeInst>(OldCall)->setCalledFunction(
 | 
						|
                                    Constant::getNullValue(CalleeF->getType()));
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
 | 
						|
  if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
 | 
						|
    // This instruction is not reachable, just remove it.  We insert a store to
 | 
						|
    // undef so that we know that this code is not reachable, despite the fact
 | 
						|
    // that we can't modify the CFG here.
 | 
						|
    new StoreInst(ConstantInt::getTrue(Callee->getContext()),
 | 
						|
               UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
 | 
						|
                  CS.getInstruction());
 | 
						|
 | 
						|
    // If CS dues not return void then replaceAllUsesWith undef.
 | 
						|
    // This allows ValueHandlers and custom metadata to adjust itself.
 | 
						|
    if (!CS.getInstruction()->getType()->isVoidTy())
 | 
						|
      CS.getInstruction()->
 | 
						|
        replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
 | 
						|
 | 
						|
    if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
 | 
						|
      // Don't break the CFG, insert a dummy cond branch.
 | 
						|
      BranchInst::Create(II->getNormalDest(), II->getUnwindDest(),
 | 
						|
                         ConstantInt::getTrue(Callee->getContext()), II);
 | 
						|
    }
 | 
						|
    return EraseInstFromFunction(*CS.getInstruction());
 | 
						|
  }
 | 
						|
 | 
						|
  if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
 | 
						|
    if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
 | 
						|
      if (In->getIntrinsicID() == Intrinsic::init_trampoline)
 | 
						|
        return transformCallThroughTrampoline(CS);
 | 
						|
 | 
						|
  const PointerType *PTy = cast<PointerType>(Callee->getType());
 | 
						|
  const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
 | 
						|
  if (FTy->isVarArg()) {
 | 
						|
    int ix = FTy->getNumParams() + (isa<InvokeInst>(Callee) ? 3 : 1);
 | 
						|
    // See if we can optimize any arguments passed through the varargs area of
 | 
						|
    // the call.
 | 
						|
    for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
 | 
						|
           E = CS.arg_end(); I != E; ++I, ++ix) {
 | 
						|
      CastInst *CI = dyn_cast<CastInst>(*I);
 | 
						|
      if (CI && isSafeToEliminateVarargsCast(CS, CI, TD, ix)) {
 | 
						|
        *I = CI->getOperand(0);
 | 
						|
        Changed = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
 | 
						|
    // Inline asm calls cannot throw - mark them 'nounwind'.
 | 
						|
    CS.setDoesNotThrow();
 | 
						|
    Changed = true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Try to optimize the call if possible, we require TargetData for most of
 | 
						|
  // this.  None of these calls are seen as possibly dead so go ahead and
 | 
						|
  // delete the instruction now.
 | 
						|
  if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
 | 
						|
    Instruction *I = tryOptimizeCall(CI, TD);
 | 
						|
    // If we changed something return the result, etc. Otherwise let
 | 
						|
    // the fallthrough check.
 | 
						|
    if (I) return EraseInstFromFunction(*I);
 | 
						|
  }
 | 
						|
 | 
						|
  return Changed ? CS.getInstruction() : 0;
 | 
						|
}
 | 
						|
 | 
						|
// transformConstExprCastCall - If the callee is a constexpr cast of a function,
 | 
						|
// attempt to move the cast to the arguments of the call/invoke.
 | 
						|
//
 | 
						|
bool InstCombiner::transformConstExprCastCall(CallSite CS) {
 | 
						|
  if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
 | 
						|
  ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
 | 
						|
  if (CE->getOpcode() != Instruction::BitCast || 
 | 
						|
      !isa<Function>(CE->getOperand(0)))
 | 
						|
    return false;
 | 
						|
  Function *Callee = cast<Function>(CE->getOperand(0));
 | 
						|
  Instruction *Caller = CS.getInstruction();
 | 
						|
  const AttrListPtr &CallerPAL = CS.getAttributes();
 | 
						|
 | 
						|
  // Okay, this is a cast from a function to a different type.  Unless doing so
 | 
						|
  // would cause a type conversion of one of our arguments, change this call to
 | 
						|
  // be a direct call with arguments casted to the appropriate types.
 | 
						|
  //
 | 
						|
  const FunctionType *FT = Callee->getFunctionType();
 | 
						|
  const Type *OldRetTy = Caller->getType();
 | 
						|
  const Type *NewRetTy = FT->getReturnType();
 | 
						|
 | 
						|
  if (NewRetTy->isStructTy())
 | 
						|
    return false; // TODO: Handle multiple return values.
 | 
						|
 | 
						|
  // Check to see if we are changing the return type...
 | 
						|
  if (OldRetTy != NewRetTy) {
 | 
						|
    if (Callee->isDeclaration() &&
 | 
						|
        // Conversion is ok if changing from one pointer type to another or from
 | 
						|
        // a pointer to an integer of the same size.
 | 
						|
        !((OldRetTy->isPointerTy() || !TD ||
 | 
						|
           OldRetTy == TD->getIntPtrType(Caller->getContext())) &&
 | 
						|
          (NewRetTy->isPointerTy() || !TD ||
 | 
						|
           NewRetTy == TD->getIntPtrType(Caller->getContext()))))
 | 
						|
      return false;   // Cannot transform this return value.
 | 
						|
 | 
						|
    if (!Caller->use_empty() &&
 | 
						|
        // void -> non-void is handled specially
 | 
						|
        !NewRetTy->isVoidTy() && !CastInst::isCastable(NewRetTy, OldRetTy))
 | 
						|
      return false;   // Cannot transform this return value.
 | 
						|
 | 
						|
    if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
 | 
						|
      Attributes RAttrs = CallerPAL.getRetAttributes();
 | 
						|
      if (RAttrs & Attribute::typeIncompatible(NewRetTy))
 | 
						|
        return false;   // Attribute not compatible with transformed value.
 | 
						|
    }
 | 
						|
 | 
						|
    // If the callsite is an invoke instruction, and the return value is used by
 | 
						|
    // a PHI node in a successor, we cannot change the return type of the call
 | 
						|
    // because there is no place to put the cast instruction (without breaking
 | 
						|
    // the critical edge).  Bail out in this case.
 | 
						|
    if (!Caller->use_empty())
 | 
						|
      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
 | 
						|
        for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
 | 
						|
             UI != E; ++UI)
 | 
						|
          if (PHINode *PN = dyn_cast<PHINode>(*UI))
 | 
						|
            if (PN->getParent() == II->getNormalDest() ||
 | 
						|
                PN->getParent() == II->getUnwindDest())
 | 
						|
              return false;
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
 | 
						|
  unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
 | 
						|
 | 
						|
  CallSite::arg_iterator AI = CS.arg_begin();
 | 
						|
  for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
 | 
						|
    const Type *ParamTy = FT->getParamType(i);
 | 
						|
    const Type *ActTy = (*AI)->getType();
 | 
						|
 | 
						|
    if (!CastInst::isCastable(ActTy, ParamTy))
 | 
						|
      return false;   // Cannot transform this parameter value.
 | 
						|
 | 
						|
    if (CallerPAL.getParamAttributes(i + 1) 
 | 
						|
        & Attribute::typeIncompatible(ParamTy))
 | 
						|
      return false;   // Attribute not compatible with transformed value.
 | 
						|
 | 
						|
    // Converting from one pointer type to another or between a pointer and an
 | 
						|
    // integer of the same size is safe even if we do not have a body.
 | 
						|
    bool isConvertible = ActTy == ParamTy ||
 | 
						|
      (TD && ((ParamTy->isPointerTy() ||
 | 
						|
      ParamTy == TD->getIntPtrType(Caller->getContext())) &&
 | 
						|
              (ActTy->isPointerTy() ||
 | 
						|
              ActTy == TD->getIntPtrType(Caller->getContext()))));
 | 
						|
    if (Callee->isDeclaration() && !isConvertible) return false;
 | 
						|
  }
 | 
						|
 | 
						|
  if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
 | 
						|
      Callee->isDeclaration())
 | 
						|
    return false;   // Do not delete arguments unless we have a function body.
 | 
						|
 | 
						|
  if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
 | 
						|
      !CallerPAL.isEmpty())
 | 
						|
    // In this case we have more arguments than the new function type, but we
 | 
						|
    // won't be dropping them.  Check that these extra arguments have attributes
 | 
						|
    // that are compatible with being a vararg call argument.
 | 
						|
    for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
 | 
						|
      if (CallerPAL.getSlot(i - 1).Index <= FT->getNumParams())
 | 
						|
        break;
 | 
						|
      Attributes PAttrs = CallerPAL.getSlot(i - 1).Attrs;
 | 
						|
      if (PAttrs & Attribute::VarArgsIncompatible)
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
  // Okay, we decided that this is a safe thing to do: go ahead and start
 | 
						|
  // inserting cast instructions as necessary...
 | 
						|
  std::vector<Value*> Args;
 | 
						|
  Args.reserve(NumActualArgs);
 | 
						|
  SmallVector<AttributeWithIndex, 8> attrVec;
 | 
						|
  attrVec.reserve(NumCommonArgs);
 | 
						|
 | 
						|
  // Get any return attributes.
 | 
						|
  Attributes RAttrs = CallerPAL.getRetAttributes();
 | 
						|
 | 
						|
  // If the return value is not being used, the type may not be compatible
 | 
						|
  // with the existing attributes.  Wipe out any problematic attributes.
 | 
						|
  RAttrs &= ~Attribute::typeIncompatible(NewRetTy);
 | 
						|
 | 
						|
  // Add the new return attributes.
 | 
						|
  if (RAttrs)
 | 
						|
    attrVec.push_back(AttributeWithIndex::get(0, RAttrs));
 | 
						|
 | 
						|
  AI = CS.arg_begin();
 | 
						|
  for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
 | 
						|
    const Type *ParamTy = FT->getParamType(i);
 | 
						|
    if ((*AI)->getType() == ParamTy) {
 | 
						|
      Args.push_back(*AI);
 | 
						|
    } else {
 | 
						|
      Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
 | 
						|
          false, ParamTy, false);
 | 
						|
      Args.push_back(Builder->CreateCast(opcode, *AI, ParamTy, "tmp"));
 | 
						|
    }
 | 
						|
 | 
						|
    // Add any parameter attributes.
 | 
						|
    if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
 | 
						|
      attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
 | 
						|
  }
 | 
						|
 | 
						|
  // If the function takes more arguments than the call was taking, add them
 | 
						|
  // now.
 | 
						|
  for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
 | 
						|
    Args.push_back(Constant::getNullValue(FT->getParamType(i)));
 | 
						|
 | 
						|
  // If we are removing arguments to the function, emit an obnoxious warning.
 | 
						|
  if (FT->getNumParams() < NumActualArgs) {
 | 
						|
    if (!FT->isVarArg()) {
 | 
						|
      errs() << "WARNING: While resolving call to function '"
 | 
						|
             << Callee->getName() << "' arguments were dropped!\n";
 | 
						|
    } else {
 | 
						|
      // Add all of the arguments in their promoted form to the arg list.
 | 
						|
      for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
 | 
						|
        const Type *PTy = getPromotedType((*AI)->getType());
 | 
						|
        if (PTy != (*AI)->getType()) {
 | 
						|
          // Must promote to pass through va_arg area!
 | 
						|
          Instruction::CastOps opcode =
 | 
						|
            CastInst::getCastOpcode(*AI, false, PTy, false);
 | 
						|
          Args.push_back(Builder->CreateCast(opcode, *AI, PTy, "tmp"));
 | 
						|
        } else {
 | 
						|
          Args.push_back(*AI);
 | 
						|
        }
 | 
						|
 | 
						|
        // Add any parameter attributes.
 | 
						|
        if (Attributes PAttrs = CallerPAL.getParamAttributes(i + 1))
 | 
						|
          attrVec.push_back(AttributeWithIndex::get(i + 1, PAttrs));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (Attributes FnAttrs =  CallerPAL.getFnAttributes())
 | 
						|
    attrVec.push_back(AttributeWithIndex::get(~0, FnAttrs));
 | 
						|
 | 
						|
  if (NewRetTy->isVoidTy())
 | 
						|
    Caller->setName("");   // Void type should not have a name.
 | 
						|
 | 
						|
  const AttrListPtr &NewCallerPAL = AttrListPtr::get(attrVec.begin(),
 | 
						|
                                                     attrVec.end());
 | 
						|
 | 
						|
  Instruction *NC;
 | 
						|
  if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
 | 
						|
    NC = InvokeInst::Create(Callee, II->getNormalDest(), II->getUnwindDest(),
 | 
						|
                            Args.begin(), Args.end(),
 | 
						|
                            Caller->getName(), Caller);
 | 
						|
    cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
 | 
						|
    cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
 | 
						|
  } else {
 | 
						|
    NC = CallInst::Create(Callee, Args.begin(), Args.end(),
 | 
						|
                          Caller->getName(), Caller);
 | 
						|
    CallInst *CI = cast<CallInst>(Caller);
 | 
						|
    if (CI->isTailCall())
 | 
						|
      cast<CallInst>(NC)->setTailCall();
 | 
						|
    cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
 | 
						|
    cast<CallInst>(NC)->setAttributes(NewCallerPAL);
 | 
						|
  }
 | 
						|
 | 
						|
  // Insert a cast of the return type as necessary.
 | 
						|
  Value *NV = NC;
 | 
						|
  if (OldRetTy != NV->getType() && !Caller->use_empty()) {
 | 
						|
    if (!NV->getType()->isVoidTy()) {
 | 
						|
      Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false, 
 | 
						|
                                                            OldRetTy, false);
 | 
						|
      NV = NC = CastInst::Create(opcode, NC, OldRetTy, "tmp");
 | 
						|
 | 
						|
      // If this is an invoke instruction, we should insert it after the first
 | 
						|
      // non-phi, instruction in the normal successor block.
 | 
						|
      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
 | 
						|
        BasicBlock::iterator I = II->getNormalDest()->getFirstNonPHI();
 | 
						|
        InsertNewInstBefore(NC, *I);
 | 
						|
      } else {
 | 
						|
        // Otherwise, it's a call, just insert cast right after the call instr
 | 
						|
        InsertNewInstBefore(NC, *Caller);
 | 
						|
      }
 | 
						|
      Worklist.AddUsersToWorkList(*Caller);
 | 
						|
    } else {
 | 
						|
      NV = UndefValue::get(Caller->getType());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
  if (!Caller->use_empty())
 | 
						|
    Caller->replaceAllUsesWith(NV);
 | 
						|
  
 | 
						|
  EraseInstFromFunction(*Caller);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// transformCallThroughTrampoline - Turn a call to a function created by the
 | 
						|
// init_trampoline intrinsic into a direct call to the underlying function.
 | 
						|
//
 | 
						|
Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
 | 
						|
  Value *Callee = CS.getCalledValue();
 | 
						|
  const PointerType *PTy = cast<PointerType>(Callee->getType());
 | 
						|
  const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
 | 
						|
  const AttrListPtr &Attrs = CS.getAttributes();
 | 
						|
 | 
						|
  // If the call already has the 'nest' attribute somewhere then give up -
 | 
						|
  // otherwise 'nest' would occur twice after splicing in the chain.
 | 
						|
  if (Attrs.hasAttrSomewhere(Attribute::Nest))
 | 
						|
    return 0;
 | 
						|
 | 
						|
  IntrinsicInst *Tramp =
 | 
						|
    cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
 | 
						|
 | 
						|
  Function *NestF = cast<Function>(Tramp->getOperand(2)->stripPointerCasts());
 | 
						|
  const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
 | 
						|
  const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
 | 
						|
 | 
						|
  const AttrListPtr &NestAttrs = NestF->getAttributes();
 | 
						|
  if (!NestAttrs.isEmpty()) {
 | 
						|
    unsigned NestIdx = 1;
 | 
						|
    const Type *NestTy = 0;
 | 
						|
    Attributes NestAttr = Attribute::None;
 | 
						|
 | 
						|
    // Look for a parameter marked with the 'nest' attribute.
 | 
						|
    for (FunctionType::param_iterator I = NestFTy->param_begin(),
 | 
						|
         E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
 | 
						|
      if (NestAttrs.paramHasAttr(NestIdx, Attribute::Nest)) {
 | 
						|
        // Record the parameter type and any other attributes.
 | 
						|
        NestTy = *I;
 | 
						|
        NestAttr = NestAttrs.getParamAttributes(NestIdx);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
    if (NestTy) {
 | 
						|
      Instruction *Caller = CS.getInstruction();
 | 
						|
      std::vector<Value*> NewArgs;
 | 
						|
      NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
 | 
						|
 | 
						|
      SmallVector<AttributeWithIndex, 8> NewAttrs;
 | 
						|
      NewAttrs.reserve(Attrs.getNumSlots() + 1);
 | 
						|
 | 
						|
      // Insert the nest argument into the call argument list, which may
 | 
						|
      // mean appending it.  Likewise for attributes.
 | 
						|
 | 
						|
      // Add any result attributes.
 | 
						|
      if (Attributes Attr = Attrs.getRetAttributes())
 | 
						|
        NewAttrs.push_back(AttributeWithIndex::get(0, Attr));
 | 
						|
 | 
						|
      {
 | 
						|
        unsigned Idx = 1;
 | 
						|
        CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
 | 
						|
        do {
 | 
						|
          if (Idx == NestIdx) {
 | 
						|
            // Add the chain argument and attributes.
 | 
						|
            Value *NestVal = Tramp->getOperand(3);
 | 
						|
            if (NestVal->getType() != NestTy)
 | 
						|
              NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
 | 
						|
            NewArgs.push_back(NestVal);
 | 
						|
            NewAttrs.push_back(AttributeWithIndex::get(NestIdx, NestAttr));
 | 
						|
          }
 | 
						|
 | 
						|
          if (I == E)
 | 
						|
            break;
 | 
						|
 | 
						|
          // Add the original argument and attributes.
 | 
						|
          NewArgs.push_back(*I);
 | 
						|
          if (Attributes Attr = Attrs.getParamAttributes(Idx))
 | 
						|
            NewAttrs.push_back
 | 
						|
              (AttributeWithIndex::get(Idx + (Idx >= NestIdx), Attr));
 | 
						|
 | 
						|
          ++Idx, ++I;
 | 
						|
        } while (1);
 | 
						|
      }
 | 
						|
 | 
						|
      // Add any function attributes.
 | 
						|
      if (Attributes Attr = Attrs.getFnAttributes())
 | 
						|
        NewAttrs.push_back(AttributeWithIndex::get(~0, Attr));
 | 
						|
 | 
						|
      // The trampoline may have been bitcast to a bogus type (FTy).
 | 
						|
      // Handle this by synthesizing a new function type, equal to FTy
 | 
						|
      // with the chain parameter inserted.
 | 
						|
 | 
						|
      std::vector<const Type*> NewTypes;
 | 
						|
      NewTypes.reserve(FTy->getNumParams()+1);
 | 
						|
 | 
						|
      // Insert the chain's type into the list of parameter types, which may
 | 
						|
      // mean appending it.
 | 
						|
      {
 | 
						|
        unsigned Idx = 1;
 | 
						|
        FunctionType::param_iterator I = FTy->param_begin(),
 | 
						|
          E = FTy->param_end();
 | 
						|
 | 
						|
        do {
 | 
						|
          if (Idx == NestIdx)
 | 
						|
            // Add the chain's type.
 | 
						|
            NewTypes.push_back(NestTy);
 | 
						|
 | 
						|
          if (I == E)
 | 
						|
            break;
 | 
						|
 | 
						|
          // Add the original type.
 | 
						|
          NewTypes.push_back(*I);
 | 
						|
 | 
						|
          ++Idx, ++I;
 | 
						|
        } while (1);
 | 
						|
      }
 | 
						|
 | 
						|
      // Replace the trampoline call with a direct call.  Let the generic
 | 
						|
      // code sort out any function type mismatches.
 | 
						|
      FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes, 
 | 
						|
                                                FTy->isVarArg());
 | 
						|
      Constant *NewCallee =
 | 
						|
        NestF->getType() == PointerType::getUnqual(NewFTy) ?
 | 
						|
        NestF : ConstantExpr::getBitCast(NestF, 
 | 
						|
                                         PointerType::getUnqual(NewFTy));
 | 
						|
      const AttrListPtr &NewPAL = AttrListPtr::get(NewAttrs.begin(),
 | 
						|
                                                   NewAttrs.end());
 | 
						|
 | 
						|
      Instruction *NewCaller;
 | 
						|
      if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
 | 
						|
        NewCaller = InvokeInst::Create(NewCallee,
 | 
						|
                                       II->getNormalDest(), II->getUnwindDest(),
 | 
						|
                                       NewArgs.begin(), NewArgs.end(),
 | 
						|
                                       Caller->getName(), Caller);
 | 
						|
        cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
 | 
						|
        cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
 | 
						|
      } else {
 | 
						|
        NewCaller = CallInst::Create(NewCallee, NewArgs.begin(), NewArgs.end(),
 | 
						|
                                     Caller->getName(), Caller);
 | 
						|
        if (cast<CallInst>(Caller)->isTailCall())
 | 
						|
          cast<CallInst>(NewCaller)->setTailCall();
 | 
						|
        cast<CallInst>(NewCaller)->
 | 
						|
          setCallingConv(cast<CallInst>(Caller)->getCallingConv());
 | 
						|
        cast<CallInst>(NewCaller)->setAttributes(NewPAL);
 | 
						|
      }
 | 
						|
      if (!Caller->getType()->isVoidTy())
 | 
						|
        Caller->replaceAllUsesWith(NewCaller);
 | 
						|
      Caller->eraseFromParent();
 | 
						|
      Worklist.Remove(Caller);
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Replace the trampoline call with a direct call.  Since there is no 'nest'
 | 
						|
  // parameter, there is no need to adjust the argument list.  Let the generic
 | 
						|
  // code sort out any function type mismatches.
 | 
						|
  Constant *NewCallee =
 | 
						|
    NestF->getType() == PTy ? NestF : 
 | 
						|
                              ConstantExpr::getBitCast(NestF, PTy);
 | 
						|
  CS.setCalledFunction(NewCallee);
 | 
						|
  return CS.getInstruction();
 | 
						|
}
 | 
						|
 |