mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	and T->isPointerTy(). Convert most instances of the first form to the second form. Requested by Chris. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@96344 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1275 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1275 lines
		
	
	
		
			50 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// InstructionCombining - Combine instructions to form fewer, simple
 | 
						|
// instructions.  This pass does not modify the CFG.  This pass is where
 | 
						|
// algebraic simplification happens.
 | 
						|
//
 | 
						|
// This pass combines things like:
 | 
						|
//    %Y = add i32 %X, 1
 | 
						|
//    %Z = add i32 %Y, 1
 | 
						|
// into:
 | 
						|
//    %Z = add i32 %X, 2
 | 
						|
//
 | 
						|
// This is a simple worklist driven algorithm.
 | 
						|
//
 | 
						|
// This pass guarantees that the following canonicalizations are performed on
 | 
						|
// the program:
 | 
						|
//    1. If a binary operator has a constant operand, it is moved to the RHS
 | 
						|
//    2. Bitwise operators with constant operands are always grouped so that
 | 
						|
//       shifts are performed first, then or's, then and's, then xor's.
 | 
						|
//    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
 | 
						|
//    4. All cmp instructions on boolean values are replaced with logical ops
 | 
						|
//    5. add X, X is represented as (X*2) => (X << 1)
 | 
						|
//    6. Multiplies with a power-of-two constant argument are transformed into
 | 
						|
//       shifts.
 | 
						|
//   ... etc.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "instcombine"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "InstCombine.h"
 | 
						|
#include "llvm/IntrinsicInst.h"
 | 
						|
#include "llvm/Analysis/ConstantFolding.h"
 | 
						|
#include "llvm/Analysis/InstructionSimplify.h"
 | 
						|
#include "llvm/Analysis/MemoryBuiltins.h"
 | 
						|
#include "llvm/Target/TargetData.h"
 | 
						|
#include "llvm/Transforms/Utils/Local.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/GetElementPtrTypeIterator.h"
 | 
						|
#include "llvm/Support/PatternMatch.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <climits>
 | 
						|
using namespace llvm;
 | 
						|
using namespace llvm::PatternMatch;
 | 
						|
 | 
						|
STATISTIC(NumCombined , "Number of insts combined");
 | 
						|
STATISTIC(NumConstProp, "Number of constant folds");
 | 
						|
STATISTIC(NumDeadInst , "Number of dead inst eliminated");
 | 
						|
STATISTIC(NumSunkInst , "Number of instructions sunk");
 | 
						|
 | 
						|
 | 
						|
char InstCombiner::ID = 0;
 | 
						|
static RegisterPass<InstCombiner>
 | 
						|
X("instcombine", "Combine redundant instructions");
 | 
						|
 | 
						|
void InstCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.addPreservedID(LCSSAID);
 | 
						|
  AU.setPreservesCFG();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// ShouldChangeType - Return true if it is desirable to convert a computation
 | 
						|
/// from 'From' to 'To'.  We don't want to convert from a legal to an illegal
 | 
						|
/// type for example, or from a smaller to a larger illegal type.
 | 
						|
bool InstCombiner::ShouldChangeType(const Type *From, const Type *To) const {
 | 
						|
  assert(From->isIntegerTy() && To->isIntegerTy());
 | 
						|
  
 | 
						|
  // If we don't have TD, we don't know if the source/dest are legal.
 | 
						|
  if (!TD) return false;
 | 
						|
  
 | 
						|
  unsigned FromWidth = From->getPrimitiveSizeInBits();
 | 
						|
  unsigned ToWidth = To->getPrimitiveSizeInBits();
 | 
						|
  bool FromLegal = TD->isLegalInteger(FromWidth);
 | 
						|
  bool ToLegal = TD->isLegalInteger(ToWidth);
 | 
						|
  
 | 
						|
  // If this is a legal integer from type, and the result would be an illegal
 | 
						|
  // type, don't do the transformation.
 | 
						|
  if (FromLegal && !ToLegal)
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // Otherwise, if both are illegal, do not increase the size of the result. We
 | 
						|
  // do allow things like i160 -> i64, but not i64 -> i160.
 | 
						|
  if (!FromLegal && !ToLegal && ToWidth > FromWidth)
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// SimplifyCommutative - This performs a few simplifications for commutative
 | 
						|
// operators:
 | 
						|
//
 | 
						|
//  1. Order operands such that they are listed from right (least complex) to
 | 
						|
//     left (most complex).  This puts constants before unary operators before
 | 
						|
//     binary operators.
 | 
						|
//
 | 
						|
//  2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
 | 
						|
//  3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
 | 
						|
//
 | 
						|
bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
 | 
						|
  bool Changed = false;
 | 
						|
  if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
 | 
						|
    Changed = !I.swapOperands();
 | 
						|
 | 
						|
  if (!I.isAssociative()) return Changed;
 | 
						|
  
 | 
						|
  Instruction::BinaryOps Opcode = I.getOpcode();
 | 
						|
  if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
 | 
						|
    if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
 | 
						|
      if (isa<Constant>(I.getOperand(1))) {
 | 
						|
        Constant *Folded = ConstantExpr::get(I.getOpcode(),
 | 
						|
                                             cast<Constant>(I.getOperand(1)),
 | 
						|
                                             cast<Constant>(Op->getOperand(1)));
 | 
						|
        I.setOperand(0, Op->getOperand(0));
 | 
						|
        I.setOperand(1, Folded);
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      
 | 
						|
      if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)))
 | 
						|
        if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
 | 
						|
            Op->hasOneUse() && Op1->hasOneUse()) {
 | 
						|
          Constant *C1 = cast<Constant>(Op->getOperand(1));
 | 
						|
          Constant *C2 = cast<Constant>(Op1->getOperand(1));
 | 
						|
 | 
						|
          // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
 | 
						|
          Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
 | 
						|
          Instruction *New = BinaryOperator::Create(Opcode, Op->getOperand(0),
 | 
						|
                                                    Op1->getOperand(0),
 | 
						|
                                                    Op1->getName(), &I);
 | 
						|
          Worklist.Add(New);
 | 
						|
          I.setOperand(0, New);
 | 
						|
          I.setOperand(1, Folded);
 | 
						|
          return true;
 | 
						|
        }
 | 
						|
    }
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
 | 
						|
// if the LHS is a constant zero (which is the 'negate' form).
 | 
						|
//
 | 
						|
Value *InstCombiner::dyn_castNegVal(Value *V) const {
 | 
						|
  if (BinaryOperator::isNeg(V))
 | 
						|
    return BinaryOperator::getNegArgument(V);
 | 
						|
 | 
						|
  // Constants can be considered to be negated values if they can be folded.
 | 
						|
  if (ConstantInt *C = dyn_cast<ConstantInt>(V))
 | 
						|
    return ConstantExpr::getNeg(C);
 | 
						|
 | 
						|
  if (ConstantVector *C = dyn_cast<ConstantVector>(V))
 | 
						|
    if (C->getType()->getElementType()->isIntegerTy())
 | 
						|
      return ConstantExpr::getNeg(C);
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
// dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
 | 
						|
// instruction if the LHS is a constant negative zero (which is the 'negate'
 | 
						|
// form).
 | 
						|
//
 | 
						|
Value *InstCombiner::dyn_castFNegVal(Value *V) const {
 | 
						|
  if (BinaryOperator::isFNeg(V))
 | 
						|
    return BinaryOperator::getFNegArgument(V);
 | 
						|
 | 
						|
  // Constants can be considered to be negated values if they can be folded.
 | 
						|
  if (ConstantFP *C = dyn_cast<ConstantFP>(V))
 | 
						|
    return ConstantExpr::getFNeg(C);
 | 
						|
 | 
						|
  if (ConstantVector *C = dyn_cast<ConstantVector>(V))
 | 
						|
    if (C->getType()->getElementType()->isFloatingPointTy())
 | 
						|
      return ConstantExpr::getFNeg(C);
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
 | 
						|
                                             InstCombiner *IC) {
 | 
						|
  if (CastInst *CI = dyn_cast<CastInst>(&I))
 | 
						|
    return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
 | 
						|
 | 
						|
  // Figure out if the constant is the left or the right argument.
 | 
						|
  bool ConstIsRHS = isa<Constant>(I.getOperand(1));
 | 
						|
  Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
 | 
						|
 | 
						|
  if (Constant *SOC = dyn_cast<Constant>(SO)) {
 | 
						|
    if (ConstIsRHS)
 | 
						|
      return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
 | 
						|
    return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
 | 
						|
  }
 | 
						|
 | 
						|
  Value *Op0 = SO, *Op1 = ConstOperand;
 | 
						|
  if (!ConstIsRHS)
 | 
						|
    std::swap(Op0, Op1);
 | 
						|
  
 | 
						|
  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
 | 
						|
    return IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
 | 
						|
                                    SO->getName()+".op");
 | 
						|
  if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
 | 
						|
    return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
 | 
						|
                                   SO->getName()+".cmp");
 | 
						|
  if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
 | 
						|
    return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
 | 
						|
                                   SO->getName()+".cmp");
 | 
						|
  llvm_unreachable("Unknown binary instruction type!");
 | 
						|
}
 | 
						|
 | 
						|
// FoldOpIntoSelect - Given an instruction with a select as one operand and a
 | 
						|
// constant as the other operand, try to fold the binary operator into the
 | 
						|
// select arguments.  This also works for Cast instructions, which obviously do
 | 
						|
// not have a second operand.
 | 
						|
Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
 | 
						|
  // Don't modify shared select instructions
 | 
						|
  if (!SI->hasOneUse()) return 0;
 | 
						|
  Value *TV = SI->getOperand(1);
 | 
						|
  Value *FV = SI->getOperand(2);
 | 
						|
 | 
						|
  if (isa<Constant>(TV) || isa<Constant>(FV)) {
 | 
						|
    // Bool selects with constant operands can be folded to logical ops.
 | 
						|
    if (SI->getType()->isIntegerTy(1)) return 0;
 | 
						|
 | 
						|
    Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
 | 
						|
    Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
 | 
						|
 | 
						|
    return SelectInst::Create(SI->getCondition(), SelectTrueVal,
 | 
						|
                              SelectFalseVal);
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
 | 
						|
/// has a PHI node as operand #0, see if we can fold the instruction into the
 | 
						|
/// PHI (which is only possible if all operands to the PHI are constants).
 | 
						|
///
 | 
						|
/// If AllowAggressive is true, FoldOpIntoPhi will allow certain transforms
 | 
						|
/// that would normally be unprofitable because they strongly encourage jump
 | 
						|
/// threading.
 | 
						|
Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I,
 | 
						|
                                         bool AllowAggressive) {
 | 
						|
  AllowAggressive = false;
 | 
						|
  PHINode *PN = cast<PHINode>(I.getOperand(0));
 | 
						|
  unsigned NumPHIValues = PN->getNumIncomingValues();
 | 
						|
  if (NumPHIValues == 0 ||
 | 
						|
      // We normally only transform phis with a single use, unless we're trying
 | 
						|
      // hard to make jump threading happen.
 | 
						|
      (!PN->hasOneUse() && !AllowAggressive))
 | 
						|
    return 0;
 | 
						|
  
 | 
						|
  
 | 
						|
  // Check to see if all of the operands of the PHI are simple constants
 | 
						|
  // (constantint/constantfp/undef).  If there is one non-constant value,
 | 
						|
  // remember the BB it is in.  If there is more than one or if *it* is a PHI,
 | 
						|
  // bail out.  We don't do arbitrary constant expressions here because moving
 | 
						|
  // their computation can be expensive without a cost model.
 | 
						|
  BasicBlock *NonConstBB = 0;
 | 
						|
  for (unsigned i = 0; i != NumPHIValues; ++i)
 | 
						|
    if (!isa<Constant>(PN->getIncomingValue(i)) ||
 | 
						|
        isa<ConstantExpr>(PN->getIncomingValue(i))) {
 | 
						|
      if (NonConstBB) return 0;  // More than one non-const value.
 | 
						|
      if (isa<PHINode>(PN->getIncomingValue(i))) return 0;  // Itself a phi.
 | 
						|
      NonConstBB = PN->getIncomingBlock(i);
 | 
						|
      
 | 
						|
      // If the incoming non-constant value is in I's block, we have an infinite
 | 
						|
      // loop.
 | 
						|
      if (NonConstBB == I.getParent())
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
  
 | 
						|
  // If there is exactly one non-constant value, we can insert a copy of the
 | 
						|
  // operation in that block.  However, if this is a critical edge, we would be
 | 
						|
  // inserting the computation one some other paths (e.g. inside a loop).  Only
 | 
						|
  // do this if the pred block is unconditionally branching into the phi block.
 | 
						|
  if (NonConstBB != 0 && !AllowAggressive) {
 | 
						|
    BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
 | 
						|
    if (!BI || !BI->isUnconditional()) return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, we can do the transformation: create the new PHI node.
 | 
						|
  PHINode *NewPN = PHINode::Create(I.getType(), "");
 | 
						|
  NewPN->reserveOperandSpace(PN->getNumOperands()/2);
 | 
						|
  InsertNewInstBefore(NewPN, *PN);
 | 
						|
  NewPN->takeName(PN);
 | 
						|
 | 
						|
  // Next, add all of the operands to the PHI.
 | 
						|
  if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
 | 
						|
    // We only currently try to fold the condition of a select when it is a phi,
 | 
						|
    // not the true/false values.
 | 
						|
    Value *TrueV = SI->getTrueValue();
 | 
						|
    Value *FalseV = SI->getFalseValue();
 | 
						|
    BasicBlock *PhiTransBB = PN->getParent();
 | 
						|
    for (unsigned i = 0; i != NumPHIValues; ++i) {
 | 
						|
      BasicBlock *ThisBB = PN->getIncomingBlock(i);
 | 
						|
      Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
 | 
						|
      Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
 | 
						|
      Value *InV = 0;
 | 
						|
      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
 | 
						|
        InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
 | 
						|
      } else {
 | 
						|
        assert(PN->getIncomingBlock(i) == NonConstBB);
 | 
						|
        InV = SelectInst::Create(PN->getIncomingValue(i), TrueVInPred,
 | 
						|
                                 FalseVInPred,
 | 
						|
                                 "phitmp", NonConstBB->getTerminator());
 | 
						|
        Worklist.Add(cast<Instruction>(InV));
 | 
						|
      }
 | 
						|
      NewPN->addIncoming(InV, ThisBB);
 | 
						|
    }
 | 
						|
  } else if (I.getNumOperands() == 2) {
 | 
						|
    Constant *C = cast<Constant>(I.getOperand(1));
 | 
						|
    for (unsigned i = 0; i != NumPHIValues; ++i) {
 | 
						|
      Value *InV = 0;
 | 
						|
      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
 | 
						|
        if (CmpInst *CI = dyn_cast<CmpInst>(&I))
 | 
						|
          InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
 | 
						|
        else
 | 
						|
          InV = ConstantExpr::get(I.getOpcode(), InC, C);
 | 
						|
      } else {
 | 
						|
        assert(PN->getIncomingBlock(i) == NonConstBB);
 | 
						|
        if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) 
 | 
						|
          InV = BinaryOperator::Create(BO->getOpcode(),
 | 
						|
                                       PN->getIncomingValue(i), C, "phitmp",
 | 
						|
                                       NonConstBB->getTerminator());
 | 
						|
        else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
 | 
						|
          InV = CmpInst::Create(CI->getOpcode(),
 | 
						|
                                CI->getPredicate(),
 | 
						|
                                PN->getIncomingValue(i), C, "phitmp",
 | 
						|
                                NonConstBB->getTerminator());
 | 
						|
        else
 | 
						|
          llvm_unreachable("Unknown binop!");
 | 
						|
        
 | 
						|
        Worklist.Add(cast<Instruction>(InV));
 | 
						|
      }
 | 
						|
      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
 | 
						|
    }
 | 
						|
  } else { 
 | 
						|
    CastInst *CI = cast<CastInst>(&I);
 | 
						|
    const Type *RetTy = CI->getType();
 | 
						|
    for (unsigned i = 0; i != NumPHIValues; ++i) {
 | 
						|
      Value *InV;
 | 
						|
      if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
 | 
						|
        InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
 | 
						|
      } else {
 | 
						|
        assert(PN->getIncomingBlock(i) == NonConstBB);
 | 
						|
        InV = CastInst::Create(CI->getOpcode(), PN->getIncomingValue(i), 
 | 
						|
                               I.getType(), "phitmp", 
 | 
						|
                               NonConstBB->getTerminator());
 | 
						|
        Worklist.Add(cast<Instruction>(InV));
 | 
						|
      }
 | 
						|
      NewPN->addIncoming(InV, PN->getIncomingBlock(i));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return ReplaceInstUsesWith(I, NewPN);
 | 
						|
}
 | 
						|
 | 
						|
/// FindElementAtOffset - Given a type and a constant offset, determine whether
 | 
						|
/// or not there is a sequence of GEP indices into the type that will land us at
 | 
						|
/// the specified offset.  If so, fill them into NewIndices and return the
 | 
						|
/// resultant element type, otherwise return null.
 | 
						|
const Type *InstCombiner::FindElementAtOffset(const Type *Ty, int64_t Offset, 
 | 
						|
                                          SmallVectorImpl<Value*> &NewIndices) {
 | 
						|
  if (!TD) return 0;
 | 
						|
  if (!Ty->isSized()) return 0;
 | 
						|
  
 | 
						|
  // Start with the index over the outer type.  Note that the type size
 | 
						|
  // might be zero (even if the offset isn't zero) if the indexed type
 | 
						|
  // is something like [0 x {int, int}]
 | 
						|
  const Type *IntPtrTy = TD->getIntPtrType(Ty->getContext());
 | 
						|
  int64_t FirstIdx = 0;
 | 
						|
  if (int64_t TySize = TD->getTypeAllocSize(Ty)) {
 | 
						|
    FirstIdx = Offset/TySize;
 | 
						|
    Offset -= FirstIdx*TySize;
 | 
						|
    
 | 
						|
    // Handle hosts where % returns negative instead of values [0..TySize).
 | 
						|
    if (Offset < 0) {
 | 
						|
      --FirstIdx;
 | 
						|
      Offset += TySize;
 | 
						|
      assert(Offset >= 0);
 | 
						|
    }
 | 
						|
    assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
 | 
						|
  }
 | 
						|
  
 | 
						|
  NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
 | 
						|
    
 | 
						|
  // Index into the types.  If we fail, set OrigBase to null.
 | 
						|
  while (Offset) {
 | 
						|
    // Indexing into tail padding between struct/array elements.
 | 
						|
    if (uint64_t(Offset*8) >= TD->getTypeSizeInBits(Ty))
 | 
						|
      return 0;
 | 
						|
    
 | 
						|
    if (const StructType *STy = dyn_cast<StructType>(Ty)) {
 | 
						|
      const StructLayout *SL = TD->getStructLayout(STy);
 | 
						|
      assert(Offset < (int64_t)SL->getSizeInBytes() &&
 | 
						|
             "Offset must stay within the indexed type");
 | 
						|
      
 | 
						|
      unsigned Elt = SL->getElementContainingOffset(Offset);
 | 
						|
      NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
 | 
						|
                                            Elt));
 | 
						|
      
 | 
						|
      Offset -= SL->getElementOffset(Elt);
 | 
						|
      Ty = STy->getElementType(Elt);
 | 
						|
    } else if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
 | 
						|
      uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType());
 | 
						|
      assert(EltSize && "Cannot index into a zero-sized array");
 | 
						|
      NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
 | 
						|
      Offset %= EltSize;
 | 
						|
      Ty = AT->getElementType();
 | 
						|
    } else {
 | 
						|
      // Otherwise, we can't index into the middle of this atomic type, bail.
 | 
						|
      return 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  return Ty;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
 | 
						|
  SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
 | 
						|
 | 
						|
  if (Value *V = SimplifyGEPInst(&Ops[0], Ops.size(), TD))
 | 
						|
    return ReplaceInstUsesWith(GEP, V);
 | 
						|
 | 
						|
  Value *PtrOp = GEP.getOperand(0);
 | 
						|
 | 
						|
  if (isa<UndefValue>(GEP.getOperand(0)))
 | 
						|
    return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
 | 
						|
 | 
						|
  // Eliminate unneeded casts for indices.
 | 
						|
  if (TD) {
 | 
						|
    bool MadeChange = false;
 | 
						|
    unsigned PtrSize = TD->getPointerSizeInBits();
 | 
						|
    
 | 
						|
    gep_type_iterator GTI = gep_type_begin(GEP);
 | 
						|
    for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end();
 | 
						|
         I != E; ++I, ++GTI) {
 | 
						|
      if (!isa<SequentialType>(*GTI)) continue;
 | 
						|
      
 | 
						|
      // If we are using a wider index than needed for this platform, shrink it
 | 
						|
      // to what we need.  If narrower, sign-extend it to what we need.  This
 | 
						|
      // explicit cast can make subsequent optimizations more obvious.
 | 
						|
      unsigned OpBits = cast<IntegerType>((*I)->getType())->getBitWidth();
 | 
						|
      if (OpBits == PtrSize)
 | 
						|
        continue;
 | 
						|
      
 | 
						|
      *I = Builder->CreateIntCast(*I, TD->getIntPtrType(GEP.getContext()),true);
 | 
						|
      MadeChange = true;
 | 
						|
    }
 | 
						|
    if (MadeChange) return &GEP;
 | 
						|
  }
 | 
						|
 | 
						|
  // Combine Indices - If the source pointer to this getelementptr instruction
 | 
						|
  // is a getelementptr instruction, combine the indices of the two
 | 
						|
  // getelementptr instructions into a single instruction.
 | 
						|
  //
 | 
						|
  if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
 | 
						|
    // Note that if our source is a gep chain itself that we wait for that
 | 
						|
    // chain to be resolved before we perform this transformation.  This
 | 
						|
    // avoids us creating a TON of code in some cases.
 | 
						|
    //
 | 
						|
    if (GetElementPtrInst *SrcGEP =
 | 
						|
          dyn_cast<GetElementPtrInst>(Src->getOperand(0)))
 | 
						|
      if (SrcGEP->getNumOperands() == 2)
 | 
						|
        return 0;   // Wait until our source is folded to completion.
 | 
						|
 | 
						|
    SmallVector<Value*, 8> Indices;
 | 
						|
 | 
						|
    // Find out whether the last index in the source GEP is a sequential idx.
 | 
						|
    bool EndsWithSequential = false;
 | 
						|
    for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
 | 
						|
         I != E; ++I)
 | 
						|
      EndsWithSequential = !(*I)->isStructTy();
 | 
						|
 | 
						|
    // Can we combine the two pointer arithmetics offsets?
 | 
						|
    if (EndsWithSequential) {
 | 
						|
      // Replace: gep (gep %P, long B), long A, ...
 | 
						|
      // With:    T = long A+B; gep %P, T, ...
 | 
						|
      //
 | 
						|
      Value *Sum;
 | 
						|
      Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
 | 
						|
      Value *GO1 = GEP.getOperand(1);
 | 
						|
      if (SO1 == Constant::getNullValue(SO1->getType())) {
 | 
						|
        Sum = GO1;
 | 
						|
      } else if (GO1 == Constant::getNullValue(GO1->getType())) {
 | 
						|
        Sum = SO1;
 | 
						|
      } else {
 | 
						|
        // If they aren't the same type, then the input hasn't been processed
 | 
						|
        // by the loop above yet (which canonicalizes sequential index types to
 | 
						|
        // intptr_t).  Just avoid transforming this until the input has been
 | 
						|
        // normalized.
 | 
						|
        if (SO1->getType() != GO1->getType())
 | 
						|
          return 0;
 | 
						|
        Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
 | 
						|
      }
 | 
						|
 | 
						|
      // Update the GEP in place if possible.
 | 
						|
      if (Src->getNumOperands() == 2) {
 | 
						|
        GEP.setOperand(0, Src->getOperand(0));
 | 
						|
        GEP.setOperand(1, Sum);
 | 
						|
        return &GEP;
 | 
						|
      }
 | 
						|
      Indices.append(Src->op_begin()+1, Src->op_end()-1);
 | 
						|
      Indices.push_back(Sum);
 | 
						|
      Indices.append(GEP.op_begin()+2, GEP.op_end());
 | 
						|
    } else if (isa<Constant>(*GEP.idx_begin()) &&
 | 
						|
               cast<Constant>(*GEP.idx_begin())->isNullValue() &&
 | 
						|
               Src->getNumOperands() != 1) {
 | 
						|
      // Otherwise we can do the fold if the first index of the GEP is a zero
 | 
						|
      Indices.append(Src->op_begin()+1, Src->op_end());
 | 
						|
      Indices.append(GEP.idx_begin()+1, GEP.idx_end());
 | 
						|
    }
 | 
						|
 | 
						|
    if (!Indices.empty())
 | 
						|
      return (GEP.isInBounds() && Src->isInBounds()) ?
 | 
						|
        GetElementPtrInst::CreateInBounds(Src->getOperand(0), Indices.begin(),
 | 
						|
                                          Indices.end(), GEP.getName()) :
 | 
						|
        GetElementPtrInst::Create(Src->getOperand(0), Indices.begin(),
 | 
						|
                                  Indices.end(), GEP.getName());
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
 | 
						|
  Value *StrippedPtr = PtrOp->stripPointerCasts();
 | 
						|
  if (StrippedPtr != PtrOp) {
 | 
						|
    const PointerType *StrippedPtrTy =cast<PointerType>(StrippedPtr->getType());
 | 
						|
 | 
						|
    bool HasZeroPointerIndex = false;
 | 
						|
    if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
 | 
						|
      HasZeroPointerIndex = C->isZero();
 | 
						|
    
 | 
						|
    // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
 | 
						|
    // into     : GEP [10 x i8]* X, i32 0, ...
 | 
						|
    //
 | 
						|
    // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
 | 
						|
    //           into     : GEP i8* X, ...
 | 
						|
    // 
 | 
						|
    // This occurs when the program declares an array extern like "int X[];"
 | 
						|
    if (HasZeroPointerIndex) {
 | 
						|
      const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
 | 
						|
      if (const ArrayType *CATy =
 | 
						|
          dyn_cast<ArrayType>(CPTy->getElementType())) {
 | 
						|
        // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
 | 
						|
        if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
 | 
						|
          // -> GEP i8* X, ...
 | 
						|
          SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
 | 
						|
          GetElementPtrInst *Res =
 | 
						|
            GetElementPtrInst::Create(StrippedPtr, Idx.begin(),
 | 
						|
                                      Idx.end(), GEP.getName());
 | 
						|
          Res->setIsInBounds(GEP.isInBounds());
 | 
						|
          return Res;
 | 
						|
        }
 | 
						|
        
 | 
						|
        if (const ArrayType *XATy =
 | 
						|
              dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
 | 
						|
          // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
 | 
						|
          if (CATy->getElementType() == XATy->getElementType()) {
 | 
						|
            // -> GEP [10 x i8]* X, i32 0, ...
 | 
						|
            // At this point, we know that the cast source type is a pointer
 | 
						|
            // to an array of the same type as the destination pointer
 | 
						|
            // array.  Because the array type is never stepped over (there
 | 
						|
            // is a leading zero) we can fold the cast into this GEP.
 | 
						|
            GEP.setOperand(0, StrippedPtr);
 | 
						|
            return &GEP;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } else if (GEP.getNumOperands() == 2) {
 | 
						|
      // Transform things like:
 | 
						|
      // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
 | 
						|
      // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
 | 
						|
      const Type *SrcElTy = StrippedPtrTy->getElementType();
 | 
						|
      const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
 | 
						|
      if (TD && SrcElTy->isArrayTy() &&
 | 
						|
          TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
 | 
						|
          TD->getTypeAllocSize(ResElTy)) {
 | 
						|
        Value *Idx[2];
 | 
						|
        Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
 | 
						|
        Idx[1] = GEP.getOperand(1);
 | 
						|
        Value *NewGEP = GEP.isInBounds() ?
 | 
						|
          Builder->CreateInBoundsGEP(StrippedPtr, Idx, Idx + 2, GEP.getName()) :
 | 
						|
          Builder->CreateGEP(StrippedPtr, Idx, Idx + 2, GEP.getName());
 | 
						|
        // V and GEP are both pointer types --> BitCast
 | 
						|
        return new BitCastInst(NewGEP, GEP.getType());
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Transform things like:
 | 
						|
      // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
 | 
						|
      //   (where tmp = 8*tmp2) into:
 | 
						|
      // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
 | 
						|
      
 | 
						|
      if (TD && SrcElTy->isArrayTy() && ResElTy->isIntegerTy(8)) {
 | 
						|
        uint64_t ArrayEltSize =
 | 
						|
            TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType());
 | 
						|
        
 | 
						|
        // Check to see if "tmp" is a scale by a multiple of ArrayEltSize.  We
 | 
						|
        // allow either a mul, shift, or constant here.
 | 
						|
        Value *NewIdx = 0;
 | 
						|
        ConstantInt *Scale = 0;
 | 
						|
        if (ArrayEltSize == 1) {
 | 
						|
          NewIdx = GEP.getOperand(1);
 | 
						|
          Scale = ConstantInt::get(cast<IntegerType>(NewIdx->getType()), 1);
 | 
						|
        } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
 | 
						|
          NewIdx = ConstantInt::get(CI->getType(), 1);
 | 
						|
          Scale = CI;
 | 
						|
        } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
 | 
						|
          if (Inst->getOpcode() == Instruction::Shl &&
 | 
						|
              isa<ConstantInt>(Inst->getOperand(1))) {
 | 
						|
            ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
 | 
						|
            uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
 | 
						|
            Scale = ConstantInt::get(cast<IntegerType>(Inst->getType()),
 | 
						|
                                     1ULL << ShAmtVal);
 | 
						|
            NewIdx = Inst->getOperand(0);
 | 
						|
          } else if (Inst->getOpcode() == Instruction::Mul &&
 | 
						|
                     isa<ConstantInt>(Inst->getOperand(1))) {
 | 
						|
            Scale = cast<ConstantInt>(Inst->getOperand(1));
 | 
						|
            NewIdx = Inst->getOperand(0);
 | 
						|
          }
 | 
						|
        }
 | 
						|
        
 | 
						|
        // If the index will be to exactly the right offset with the scale taken
 | 
						|
        // out, perform the transformation. Note, we don't know whether Scale is
 | 
						|
        // signed or not. We'll use unsigned version of division/modulo
 | 
						|
        // operation after making sure Scale doesn't have the sign bit set.
 | 
						|
        if (ArrayEltSize && Scale && Scale->getSExtValue() >= 0LL &&
 | 
						|
            Scale->getZExtValue() % ArrayEltSize == 0) {
 | 
						|
          Scale = ConstantInt::get(Scale->getType(),
 | 
						|
                                   Scale->getZExtValue() / ArrayEltSize);
 | 
						|
          if (Scale->getZExtValue() != 1) {
 | 
						|
            Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
 | 
						|
                                                       false /*ZExt*/);
 | 
						|
            NewIdx = Builder->CreateMul(NewIdx, C, "idxscale");
 | 
						|
          }
 | 
						|
 | 
						|
          // Insert the new GEP instruction.
 | 
						|
          Value *Idx[2];
 | 
						|
          Idx[0] = Constant::getNullValue(Type::getInt32Ty(GEP.getContext()));
 | 
						|
          Idx[1] = NewIdx;
 | 
						|
          Value *NewGEP = GEP.isInBounds() ?
 | 
						|
            Builder->CreateInBoundsGEP(StrippedPtr, Idx, Idx + 2,GEP.getName()):
 | 
						|
            Builder->CreateGEP(StrippedPtr, Idx, Idx + 2, GEP.getName());
 | 
						|
          // The NewGEP must be pointer typed, so must the old one -> BitCast
 | 
						|
          return new BitCastInst(NewGEP, GEP.getType());
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  /// See if we can simplify:
 | 
						|
  ///   X = bitcast A* to B*
 | 
						|
  ///   Y = gep X, <...constant indices...>
 | 
						|
  /// into a gep of the original struct.  This is important for SROA and alias
 | 
						|
  /// analysis of unions.  If "A" is also a bitcast, wait for A/X to be merged.
 | 
						|
  if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
 | 
						|
    if (TD &&
 | 
						|
        !isa<BitCastInst>(BCI->getOperand(0)) && GEP.hasAllConstantIndices()) {
 | 
						|
      // Determine how much the GEP moves the pointer.  We are guaranteed to get
 | 
						|
      // a constant back from EmitGEPOffset.
 | 
						|
      ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(&GEP));
 | 
						|
      int64_t Offset = OffsetV->getSExtValue();
 | 
						|
      
 | 
						|
      // If this GEP instruction doesn't move the pointer, just replace the GEP
 | 
						|
      // with a bitcast of the real input to the dest type.
 | 
						|
      if (Offset == 0) {
 | 
						|
        // If the bitcast is of an allocation, and the allocation will be
 | 
						|
        // converted to match the type of the cast, don't touch this.
 | 
						|
        if (isa<AllocaInst>(BCI->getOperand(0)) ||
 | 
						|
            isMalloc(BCI->getOperand(0))) {
 | 
						|
          // See if the bitcast simplifies, if so, don't nuke this GEP yet.
 | 
						|
          if (Instruction *I = visitBitCast(*BCI)) {
 | 
						|
            if (I != BCI) {
 | 
						|
              I->takeName(BCI);
 | 
						|
              BCI->getParent()->getInstList().insert(BCI, I);
 | 
						|
              ReplaceInstUsesWith(*BCI, I);
 | 
						|
            }
 | 
						|
            return &GEP;
 | 
						|
          }
 | 
						|
        }
 | 
						|
        return new BitCastInst(BCI->getOperand(0), GEP.getType());
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Otherwise, if the offset is non-zero, we need to find out if there is a
 | 
						|
      // field at Offset in 'A's type.  If so, we can pull the cast through the
 | 
						|
      // GEP.
 | 
						|
      SmallVector<Value*, 8> NewIndices;
 | 
						|
      const Type *InTy =
 | 
						|
        cast<PointerType>(BCI->getOperand(0)->getType())->getElementType();
 | 
						|
      if (FindElementAtOffset(InTy, Offset, NewIndices)) {
 | 
						|
        Value *NGEP = GEP.isInBounds() ?
 | 
						|
          Builder->CreateInBoundsGEP(BCI->getOperand(0), NewIndices.begin(),
 | 
						|
                                     NewIndices.end()) :
 | 
						|
          Builder->CreateGEP(BCI->getOperand(0), NewIndices.begin(),
 | 
						|
                             NewIndices.end());
 | 
						|
        
 | 
						|
        if (NGEP->getType() == GEP.getType())
 | 
						|
          return ReplaceInstUsesWith(GEP, NGEP);
 | 
						|
        NGEP->takeName(&GEP);
 | 
						|
        return new BitCastInst(NGEP, GEP.getType());
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }    
 | 
						|
    
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitFree(Instruction &FI) {
 | 
						|
  Value *Op = FI.getOperand(1);
 | 
						|
 | 
						|
  // free undef -> unreachable.
 | 
						|
  if (isa<UndefValue>(Op)) {
 | 
						|
    // Insert a new store to null because we cannot modify the CFG here.
 | 
						|
    new StoreInst(ConstantInt::getTrue(FI.getContext()),
 | 
						|
           UndefValue::get(Type::getInt1PtrTy(FI.getContext())), &FI);
 | 
						|
    return EraseInstFromFunction(FI);
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If we have 'free null' delete the instruction.  This can happen in stl code
 | 
						|
  // when lots of inlining happens.
 | 
						|
  if (isa<ConstantPointerNull>(Op))
 | 
						|
    return EraseInstFromFunction(FI);
 | 
						|
 | 
						|
  // If we have a malloc call whose only use is a free call, delete both.
 | 
						|
  if (isMalloc(Op)) {
 | 
						|
    if (CallInst* CI = extractMallocCallFromBitCast(Op)) {
 | 
						|
      if (Op->hasOneUse() && CI->hasOneUse()) {
 | 
						|
        EraseInstFromFunction(FI);
 | 
						|
        EraseInstFromFunction(*CI);
 | 
						|
        return EraseInstFromFunction(*cast<Instruction>(Op));
 | 
						|
      }
 | 
						|
    } else {
 | 
						|
      // Op is a call to malloc
 | 
						|
      if (Op->hasOneUse()) {
 | 
						|
        EraseInstFromFunction(FI);
 | 
						|
        return EraseInstFromFunction(*cast<Instruction>(Op));
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
 | 
						|
  // Change br (not X), label True, label False to: br X, label False, True
 | 
						|
  Value *X = 0;
 | 
						|
  BasicBlock *TrueDest;
 | 
						|
  BasicBlock *FalseDest;
 | 
						|
  if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
 | 
						|
      !isa<Constant>(X)) {
 | 
						|
    // Swap Destinations and condition...
 | 
						|
    BI.setCondition(X);
 | 
						|
    BI.setSuccessor(0, FalseDest);
 | 
						|
    BI.setSuccessor(1, TrueDest);
 | 
						|
    return &BI;
 | 
						|
  }
 | 
						|
 | 
						|
  // Cannonicalize fcmp_one -> fcmp_oeq
 | 
						|
  FCmpInst::Predicate FPred; Value *Y;
 | 
						|
  if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)), 
 | 
						|
                             TrueDest, FalseDest)) &&
 | 
						|
      BI.getCondition()->hasOneUse())
 | 
						|
    if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
 | 
						|
        FPred == FCmpInst::FCMP_OGE) {
 | 
						|
      FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
 | 
						|
      Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
 | 
						|
      
 | 
						|
      // Swap Destinations and condition.
 | 
						|
      BI.setSuccessor(0, FalseDest);
 | 
						|
      BI.setSuccessor(1, TrueDest);
 | 
						|
      Worklist.Add(Cond);
 | 
						|
      return &BI;
 | 
						|
    }
 | 
						|
 | 
						|
  // Cannonicalize icmp_ne -> icmp_eq
 | 
						|
  ICmpInst::Predicate IPred;
 | 
						|
  if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
 | 
						|
                      TrueDest, FalseDest)) &&
 | 
						|
      BI.getCondition()->hasOneUse())
 | 
						|
    if (IPred == ICmpInst::ICMP_NE  || IPred == ICmpInst::ICMP_ULE ||
 | 
						|
        IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
 | 
						|
        IPred == ICmpInst::ICMP_SGE) {
 | 
						|
      ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
 | 
						|
      Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
 | 
						|
      // Swap Destinations and condition.
 | 
						|
      BI.setSuccessor(0, FalseDest);
 | 
						|
      BI.setSuccessor(1, TrueDest);
 | 
						|
      Worklist.Add(Cond);
 | 
						|
      return &BI;
 | 
						|
    }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
 | 
						|
  Value *Cond = SI.getCondition();
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(Cond)) {
 | 
						|
    if (I->getOpcode() == Instruction::Add)
 | 
						|
      if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
 | 
						|
        // change 'switch (X+4) case 1:' into 'switch (X) case -3'
 | 
						|
        for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
 | 
						|
          SI.setOperand(i,
 | 
						|
                   ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
 | 
						|
                                                AddRHS));
 | 
						|
        SI.setOperand(0, I->getOperand(0));
 | 
						|
        Worklist.Add(I);
 | 
						|
        return &SI;
 | 
						|
      }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
 | 
						|
  Value *Agg = EV.getAggregateOperand();
 | 
						|
 | 
						|
  if (!EV.hasIndices())
 | 
						|
    return ReplaceInstUsesWith(EV, Agg);
 | 
						|
 | 
						|
  if (Constant *C = dyn_cast<Constant>(Agg)) {
 | 
						|
    if (isa<UndefValue>(C))
 | 
						|
      return ReplaceInstUsesWith(EV, UndefValue::get(EV.getType()));
 | 
						|
      
 | 
						|
    if (isa<ConstantAggregateZero>(C))
 | 
						|
      return ReplaceInstUsesWith(EV, Constant::getNullValue(EV.getType()));
 | 
						|
 | 
						|
    if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
 | 
						|
      // Extract the element indexed by the first index out of the constant
 | 
						|
      Value *V = C->getOperand(*EV.idx_begin());
 | 
						|
      if (EV.getNumIndices() > 1)
 | 
						|
        // Extract the remaining indices out of the constant indexed by the
 | 
						|
        // first index
 | 
						|
        return ExtractValueInst::Create(V, EV.idx_begin() + 1, EV.idx_end());
 | 
						|
      else
 | 
						|
        return ReplaceInstUsesWith(EV, V);
 | 
						|
    }
 | 
						|
    return 0; // Can't handle other constants
 | 
						|
  } 
 | 
						|
  if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
 | 
						|
    // We're extracting from an insertvalue instruction, compare the indices
 | 
						|
    const unsigned *exti, *exte, *insi, *inse;
 | 
						|
    for (exti = EV.idx_begin(), insi = IV->idx_begin(),
 | 
						|
         exte = EV.idx_end(), inse = IV->idx_end();
 | 
						|
         exti != exte && insi != inse;
 | 
						|
         ++exti, ++insi) {
 | 
						|
      if (*insi != *exti)
 | 
						|
        // The insert and extract both reference distinctly different elements.
 | 
						|
        // This means the extract is not influenced by the insert, and we can
 | 
						|
        // replace the aggregate operand of the extract with the aggregate
 | 
						|
        // operand of the insert. i.e., replace
 | 
						|
        // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
 | 
						|
        // %E = extractvalue { i32, { i32 } } %I, 0
 | 
						|
        // with
 | 
						|
        // %E = extractvalue { i32, { i32 } } %A, 0
 | 
						|
        return ExtractValueInst::Create(IV->getAggregateOperand(),
 | 
						|
                                        EV.idx_begin(), EV.idx_end());
 | 
						|
    }
 | 
						|
    if (exti == exte && insi == inse)
 | 
						|
      // Both iterators are at the end: Index lists are identical. Replace
 | 
						|
      // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
 | 
						|
      // %C = extractvalue { i32, { i32 } } %B, 1, 0
 | 
						|
      // with "i32 42"
 | 
						|
      return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
 | 
						|
    if (exti == exte) {
 | 
						|
      // The extract list is a prefix of the insert list. i.e. replace
 | 
						|
      // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
 | 
						|
      // %E = extractvalue { i32, { i32 } } %I, 1
 | 
						|
      // with
 | 
						|
      // %X = extractvalue { i32, { i32 } } %A, 1
 | 
						|
      // %E = insertvalue { i32 } %X, i32 42, 0
 | 
						|
      // by switching the order of the insert and extract (though the
 | 
						|
      // insertvalue should be left in, since it may have other uses).
 | 
						|
      Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
 | 
						|
                                                 EV.idx_begin(), EV.idx_end());
 | 
						|
      return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
 | 
						|
                                     insi, inse);
 | 
						|
    }
 | 
						|
    if (insi == inse)
 | 
						|
      // The insert list is a prefix of the extract list
 | 
						|
      // We can simply remove the common indices from the extract and make it
 | 
						|
      // operate on the inserted value instead of the insertvalue result.
 | 
						|
      // i.e., replace
 | 
						|
      // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
 | 
						|
      // %E = extractvalue { i32, { i32 } } %I, 1, 0
 | 
						|
      // with
 | 
						|
      // %E extractvalue { i32 } { i32 42 }, 0
 | 
						|
      return ExtractValueInst::Create(IV->getInsertedValueOperand(), 
 | 
						|
                                      exti, exte);
 | 
						|
  }
 | 
						|
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
 | 
						|
    // We're extracting from an intrinsic, see if we're the only user, which
 | 
						|
    // allows us to simplify multiple result intrinsics to simpler things that
 | 
						|
    // just get one value..
 | 
						|
    if (II->hasOneUse()) {
 | 
						|
      // Check if we're grabbing the overflow bit or the result of a 'with
 | 
						|
      // overflow' intrinsic.  If it's the latter we can remove the intrinsic
 | 
						|
      // and replace it with a traditional binary instruction.
 | 
						|
      switch (II->getIntrinsicID()) {
 | 
						|
      case Intrinsic::uadd_with_overflow:
 | 
						|
      case Intrinsic::sadd_with_overflow:
 | 
						|
        if (*EV.idx_begin() == 0) {  // Normal result.
 | 
						|
          Value *LHS = II->getOperand(1), *RHS = II->getOperand(2);
 | 
						|
          II->replaceAllUsesWith(UndefValue::get(II->getType()));
 | 
						|
          EraseInstFromFunction(*II);
 | 
						|
          return BinaryOperator::CreateAdd(LHS, RHS);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case Intrinsic::usub_with_overflow:
 | 
						|
      case Intrinsic::ssub_with_overflow:
 | 
						|
        if (*EV.idx_begin() == 0) {  // Normal result.
 | 
						|
          Value *LHS = II->getOperand(1), *RHS = II->getOperand(2);
 | 
						|
          II->replaceAllUsesWith(UndefValue::get(II->getType()));
 | 
						|
          EraseInstFromFunction(*II);
 | 
						|
          return BinaryOperator::CreateSub(LHS, RHS);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      case Intrinsic::umul_with_overflow:
 | 
						|
      case Intrinsic::smul_with_overflow:
 | 
						|
        if (*EV.idx_begin() == 0) {  // Normal result.
 | 
						|
          Value *LHS = II->getOperand(1), *RHS = II->getOperand(2);
 | 
						|
          II->replaceAllUsesWith(UndefValue::get(II->getType()));
 | 
						|
          EraseInstFromFunction(*II);
 | 
						|
          return BinaryOperator::CreateMul(LHS, RHS);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  // Can't simplify extracts from other values. Note that nested extracts are
 | 
						|
  // already simplified implicitely by the above (extract ( extract (insert) )
 | 
						|
  // will be translated into extract ( insert ( extract ) ) first and then just
 | 
						|
  // the value inserted, if appropriate).
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/// TryToSinkInstruction - Try to move the specified instruction from its
 | 
						|
/// current block into the beginning of DestBlock, which can only happen if it's
 | 
						|
/// safe to move the instruction past all of the instructions between it and the
 | 
						|
/// end of its block.
 | 
						|
static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
 | 
						|
  assert(I->hasOneUse() && "Invariants didn't hold!");
 | 
						|
 | 
						|
  // Cannot move control-flow-involving, volatile loads, vaarg, etc.
 | 
						|
  if (isa<PHINode>(I) || I->mayHaveSideEffects() || isa<TerminatorInst>(I))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Do not sink alloca instructions out of the entry block.
 | 
						|
  if (isa<AllocaInst>(I) && I->getParent() ==
 | 
						|
        &DestBlock->getParent()->getEntryBlock())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // We can only sink load instructions if there is nothing between the load and
 | 
						|
  // the end of block that could change the value.
 | 
						|
  if (I->mayReadFromMemory()) {
 | 
						|
    for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
 | 
						|
         Scan != E; ++Scan)
 | 
						|
      if (Scan->mayWriteToMemory())
 | 
						|
        return false;
 | 
						|
  }
 | 
						|
 | 
						|
  BasicBlock::iterator InsertPos = DestBlock->getFirstNonPHI();
 | 
						|
 | 
						|
  I->moveBefore(InsertPos);
 | 
						|
  ++NumSunkInst;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
 | 
						|
/// all reachable code to the worklist.
 | 
						|
///
 | 
						|
/// This has a couple of tricks to make the code faster and more powerful.  In
 | 
						|
/// particular, we constant fold and DCE instructions as we go, to avoid adding
 | 
						|
/// them to the worklist (this significantly speeds up instcombine on code where
 | 
						|
/// many instructions are dead or constant).  Additionally, if we find a branch
 | 
						|
/// whose condition is a known constant, we only visit the reachable successors.
 | 
						|
///
 | 
						|
static bool AddReachableCodeToWorklist(BasicBlock *BB, 
 | 
						|
                                       SmallPtrSet<BasicBlock*, 64> &Visited,
 | 
						|
                                       InstCombiner &IC,
 | 
						|
                                       const TargetData *TD) {
 | 
						|
  bool MadeIRChange = false;
 | 
						|
  SmallVector<BasicBlock*, 256> Worklist;
 | 
						|
  Worklist.push_back(BB);
 | 
						|
  
 | 
						|
  std::vector<Instruction*> InstrsForInstCombineWorklist;
 | 
						|
  InstrsForInstCombineWorklist.reserve(128);
 | 
						|
 | 
						|
  SmallPtrSet<ConstantExpr*, 64> FoldedConstants;
 | 
						|
  
 | 
						|
  do {
 | 
						|
    BB = Worklist.pop_back_val();
 | 
						|
    
 | 
						|
    // We have now visited this block!  If we've already been here, ignore it.
 | 
						|
    if (!Visited.insert(BB)) continue;
 | 
						|
 | 
						|
    for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
 | 
						|
      Instruction *Inst = BBI++;
 | 
						|
      
 | 
						|
      // DCE instruction if trivially dead.
 | 
						|
      if (isInstructionTriviallyDead(Inst)) {
 | 
						|
        ++NumDeadInst;
 | 
						|
        DEBUG(errs() << "IC: DCE: " << *Inst << '\n');
 | 
						|
        Inst->eraseFromParent();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // ConstantProp instruction if trivially constant.
 | 
						|
      if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
 | 
						|
        if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
 | 
						|
          DEBUG(errs() << "IC: ConstFold to: " << *C << " from: "
 | 
						|
                       << *Inst << '\n');
 | 
						|
          Inst->replaceAllUsesWith(C);
 | 
						|
          ++NumConstProp;
 | 
						|
          Inst->eraseFromParent();
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      
 | 
						|
      if (TD) {
 | 
						|
        // See if we can constant fold its operands.
 | 
						|
        for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end();
 | 
						|
             i != e; ++i) {
 | 
						|
          ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
 | 
						|
          if (CE == 0) continue;
 | 
						|
          
 | 
						|
          // If we already folded this constant, don't try again.
 | 
						|
          if (!FoldedConstants.insert(CE))
 | 
						|
            continue;
 | 
						|
          
 | 
						|
          Constant *NewC = ConstantFoldConstantExpression(CE, TD);
 | 
						|
          if (NewC && NewC != CE) {
 | 
						|
            *i = NewC;
 | 
						|
            MadeIRChange = true;
 | 
						|
          }
 | 
						|
        }
 | 
						|
      }
 | 
						|
 | 
						|
      InstrsForInstCombineWorklist.push_back(Inst);
 | 
						|
    }
 | 
						|
 | 
						|
    // Recursively visit successors.  If this is a branch or switch on a
 | 
						|
    // constant, only visit the reachable successor.
 | 
						|
    TerminatorInst *TI = BB->getTerminator();
 | 
						|
    if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
 | 
						|
      if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
 | 
						|
        bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
 | 
						|
        BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
 | 
						|
        Worklist.push_back(ReachableBB);
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
 | 
						|
      if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
 | 
						|
        // See if this is an explicit destination.
 | 
						|
        for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
 | 
						|
          if (SI->getCaseValue(i) == Cond) {
 | 
						|
            BasicBlock *ReachableBB = SI->getSuccessor(i);
 | 
						|
            Worklist.push_back(ReachableBB);
 | 
						|
            continue;
 | 
						|
          }
 | 
						|
        
 | 
						|
        // Otherwise it is the default destination.
 | 
						|
        Worklist.push_back(SI->getSuccessor(0));
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
 | 
						|
      Worklist.push_back(TI->getSuccessor(i));
 | 
						|
  } while (!Worklist.empty());
 | 
						|
  
 | 
						|
  // Once we've found all of the instructions to add to instcombine's worklist,
 | 
						|
  // add them in reverse order.  This way instcombine will visit from the top
 | 
						|
  // of the function down.  This jives well with the way that it adds all uses
 | 
						|
  // of instructions to the worklist after doing a transformation, thus avoiding
 | 
						|
  // some N^2 behavior in pathological cases.
 | 
						|
  IC.Worklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
 | 
						|
                              InstrsForInstCombineWorklist.size());
 | 
						|
  
 | 
						|
  return MadeIRChange;
 | 
						|
}
 | 
						|
 | 
						|
bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
 | 
						|
  MadeIRChange = false;
 | 
						|
  
 | 
						|
  DEBUG(errs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
 | 
						|
        << F.getNameStr() << "\n");
 | 
						|
 | 
						|
  {
 | 
						|
    // Do a depth-first traversal of the function, populate the worklist with
 | 
						|
    // the reachable instructions.  Ignore blocks that are not reachable.  Keep
 | 
						|
    // track of which blocks we visit.
 | 
						|
    SmallPtrSet<BasicBlock*, 64> Visited;
 | 
						|
    MadeIRChange |= AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);
 | 
						|
 | 
						|
    // Do a quick scan over the function.  If we find any blocks that are
 | 
						|
    // unreachable, remove any instructions inside of them.  This prevents
 | 
						|
    // the instcombine code from having to deal with some bad special cases.
 | 
						|
    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
 | 
						|
      if (!Visited.count(BB)) {
 | 
						|
        Instruction *Term = BB->getTerminator();
 | 
						|
        while (Term != BB->begin()) {   // Remove instrs bottom-up
 | 
						|
          BasicBlock::iterator I = Term; --I;
 | 
						|
 | 
						|
          DEBUG(errs() << "IC: DCE: " << *I << '\n');
 | 
						|
          // A debug intrinsic shouldn't force another iteration if we weren't
 | 
						|
          // going to do one without it.
 | 
						|
          if (!isa<DbgInfoIntrinsic>(I)) {
 | 
						|
            ++NumDeadInst;
 | 
						|
            MadeIRChange = true;
 | 
						|
          }
 | 
						|
 | 
						|
          // If I is not void type then replaceAllUsesWith undef.
 | 
						|
          // This allows ValueHandlers and custom metadata to adjust itself.
 | 
						|
          if (!I->getType()->isVoidTy())
 | 
						|
            I->replaceAllUsesWith(UndefValue::get(I->getType()));
 | 
						|
          I->eraseFromParent();
 | 
						|
        }
 | 
						|
      }
 | 
						|
  }
 | 
						|
 | 
						|
  while (!Worklist.isEmpty()) {
 | 
						|
    Instruction *I = Worklist.RemoveOne();
 | 
						|
    if (I == 0) continue;  // skip null values.
 | 
						|
 | 
						|
    // Check to see if we can DCE the instruction.
 | 
						|
    if (isInstructionTriviallyDead(I)) {
 | 
						|
      DEBUG(errs() << "IC: DCE: " << *I << '\n');
 | 
						|
      EraseInstFromFunction(*I);
 | 
						|
      ++NumDeadInst;
 | 
						|
      MadeIRChange = true;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Instruction isn't dead, see if we can constant propagate it.
 | 
						|
    if (!I->use_empty() && isa<Constant>(I->getOperand(0)))
 | 
						|
      if (Constant *C = ConstantFoldInstruction(I, TD)) {
 | 
						|
        DEBUG(errs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
 | 
						|
 | 
						|
        // Add operands to the worklist.
 | 
						|
        ReplaceInstUsesWith(*I, C);
 | 
						|
        ++NumConstProp;
 | 
						|
        EraseInstFromFunction(*I);
 | 
						|
        MadeIRChange = true;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
    // See if we can trivially sink this instruction to a successor basic block.
 | 
						|
    if (I->hasOneUse()) {
 | 
						|
      BasicBlock *BB = I->getParent();
 | 
						|
      Instruction *UserInst = cast<Instruction>(I->use_back());
 | 
						|
      BasicBlock *UserParent;
 | 
						|
      
 | 
						|
      // Get the block the use occurs in.
 | 
						|
      if (PHINode *PN = dyn_cast<PHINode>(UserInst))
 | 
						|
        UserParent = PN->getIncomingBlock(I->use_begin().getUse());
 | 
						|
      else
 | 
						|
        UserParent = UserInst->getParent();
 | 
						|
      
 | 
						|
      if (UserParent != BB) {
 | 
						|
        bool UserIsSuccessor = false;
 | 
						|
        // See if the user is one of our successors.
 | 
						|
        for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
 | 
						|
          if (*SI == UserParent) {
 | 
						|
            UserIsSuccessor = true;
 | 
						|
            break;
 | 
						|
          }
 | 
						|
 | 
						|
        // If the user is one of our immediate successors, and if that successor
 | 
						|
        // only has us as a predecessors (we'd have to split the critical edge
 | 
						|
        // otherwise), we can keep going.
 | 
						|
        if (UserIsSuccessor && UserParent->getSinglePredecessor())
 | 
						|
          // Okay, the CFG is simple enough, try to sink this instruction.
 | 
						|
          MadeIRChange |= TryToSinkInstruction(I, UserParent);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Now that we have an instruction, try combining it to simplify it.
 | 
						|
    Builder->SetInsertPoint(I->getParent(), I);
 | 
						|
    
 | 
						|
#ifndef NDEBUG
 | 
						|
    std::string OrigI;
 | 
						|
#endif
 | 
						|
    DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
 | 
						|
    DEBUG(errs() << "IC: Visiting: " << OrigI << '\n');
 | 
						|
 | 
						|
    if (Instruction *Result = visit(*I)) {
 | 
						|
      ++NumCombined;
 | 
						|
      // Should we replace the old instruction with a new one?
 | 
						|
      if (Result != I) {
 | 
						|
        DEBUG(errs() << "IC: Old = " << *I << '\n'
 | 
						|
                     << "    New = " << *Result << '\n');
 | 
						|
 | 
						|
        // Everything uses the new instruction now.
 | 
						|
        I->replaceAllUsesWith(Result);
 | 
						|
 | 
						|
        // Push the new instruction and any users onto the worklist.
 | 
						|
        Worklist.Add(Result);
 | 
						|
        Worklist.AddUsersToWorkList(*Result);
 | 
						|
 | 
						|
        // Move the name to the new instruction first.
 | 
						|
        Result->takeName(I);
 | 
						|
 | 
						|
        // Insert the new instruction into the basic block...
 | 
						|
        BasicBlock *InstParent = I->getParent();
 | 
						|
        BasicBlock::iterator InsertPos = I;
 | 
						|
 | 
						|
        if (!isa<PHINode>(Result))        // If combining a PHI, don't insert
 | 
						|
          while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
 | 
						|
            ++InsertPos;
 | 
						|
 | 
						|
        InstParent->getInstList().insert(InsertPos, Result);
 | 
						|
 | 
						|
        EraseInstFromFunction(*I);
 | 
						|
      } else {
 | 
						|
#ifndef NDEBUG
 | 
						|
        DEBUG(errs() << "IC: Mod = " << OrigI << '\n'
 | 
						|
                     << "    New = " << *I << '\n');
 | 
						|
#endif
 | 
						|
 | 
						|
        // If the instruction was modified, it's possible that it is now dead.
 | 
						|
        // if so, remove it.
 | 
						|
        if (isInstructionTriviallyDead(I)) {
 | 
						|
          EraseInstFromFunction(*I);
 | 
						|
        } else {
 | 
						|
          Worklist.Add(I);
 | 
						|
          Worklist.AddUsersToWorkList(*I);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      MadeIRChange = true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  Worklist.Zap();
 | 
						|
  return MadeIRChange;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool InstCombiner::runOnFunction(Function &F) {
 | 
						|
  MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
 | 
						|
  TD = getAnalysisIfAvailable<TargetData>();
 | 
						|
 | 
						|
  
 | 
						|
  /// Builder - This is an IRBuilder that automatically inserts new
 | 
						|
  /// instructions into the worklist when they are created.
 | 
						|
  IRBuilder<true, TargetFolder, InstCombineIRInserter> 
 | 
						|
    TheBuilder(F.getContext(), TargetFolder(TD),
 | 
						|
               InstCombineIRInserter(Worklist));
 | 
						|
  Builder = &TheBuilder;
 | 
						|
  
 | 
						|
  bool EverMadeChange = false;
 | 
						|
 | 
						|
  // Iterate while there is work to do.
 | 
						|
  unsigned Iteration = 0;
 | 
						|
  while (DoOneIteration(F, Iteration++))
 | 
						|
    EverMadeChange = true;
 | 
						|
  
 | 
						|
  Builder = 0;
 | 
						|
  return EverMadeChange;
 | 
						|
}
 | 
						|
 | 
						|
FunctionPass *llvm::createInstructionCombiningPass() {
 | 
						|
  return new InstCombiner();
 | 
						|
}
 |