mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	in a very specific use pattern embodied in the carefully reduced testcase. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@97794 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1074 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1074 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This pass reassociates commutative expressions in an order that is designed
 | 
						|
// to promote better constant propagation, GCSE, LICM, PRE, etc.
 | 
						|
//
 | 
						|
// For example: 4 + (x + 5) -> x + (4 + 5)
 | 
						|
//
 | 
						|
// In the implementation of this algorithm, constants are assigned rank = 0,
 | 
						|
// function arguments are rank = 1, and other values are assigned ranks
 | 
						|
// corresponding to the reverse post order traversal of current function
 | 
						|
// (starting at 2), which effectively gives values in deep loops higher rank
 | 
						|
// than values not in loops.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "reassociate"
 | 
						|
#include "llvm/Transforms/Scalar.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Function.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/IntrinsicInst.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Assembly/Writer.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ValueHandle.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/ADT/PostOrderIterator.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include <algorithm>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(NumLinear , "Number of insts linearized");
 | 
						|
STATISTIC(NumChanged, "Number of insts reassociated");
 | 
						|
STATISTIC(NumAnnihil, "Number of expr tree annihilated");
 | 
						|
STATISTIC(NumFactor , "Number of multiplies factored");
 | 
						|
 | 
						|
namespace {
 | 
						|
  struct ValueEntry {
 | 
						|
    unsigned Rank;
 | 
						|
    Value *Op;
 | 
						|
    ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
 | 
						|
  };
 | 
						|
  inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
 | 
						|
    return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
/// PrintOps - Print out the expression identified in the Ops list.
 | 
						|
///
 | 
						|
static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
 | 
						|
  Module *M = I->getParent()->getParent()->getParent();
 | 
						|
  dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
 | 
						|
       << *Ops[0].Op->getType() << '\t';
 | 
						|
  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
 | 
						|
    dbgs() << "[ ";
 | 
						|
    WriteAsOperand(dbgs(), Ops[i].Op, false, M);
 | 
						|
    dbgs() << ", #" << Ops[i].Rank << "] ";
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif
 | 
						|
  
 | 
						|
namespace {
 | 
						|
  class Reassociate : public FunctionPass {
 | 
						|
    DenseMap<BasicBlock*, unsigned> RankMap;
 | 
						|
    DenseMap<AssertingVH<>, unsigned> ValueRankMap;
 | 
						|
    bool MadeChange;
 | 
						|
  public:
 | 
						|
    static char ID; // Pass identification, replacement for typeid
 | 
						|
    Reassociate() : FunctionPass(&ID) {}
 | 
						|
 | 
						|
    bool runOnFunction(Function &F);
 | 
						|
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
      AU.setPreservesCFG();
 | 
						|
    }
 | 
						|
  private:
 | 
						|
    void BuildRankMap(Function &F);
 | 
						|
    unsigned getRank(Value *V);
 | 
						|
    Value *ReassociateExpression(BinaryOperator *I);
 | 
						|
    void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops,
 | 
						|
                         unsigned Idx = 0);
 | 
						|
    Value *OptimizeExpression(BinaryOperator *I,
 | 
						|
                              SmallVectorImpl<ValueEntry> &Ops);
 | 
						|
    Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
 | 
						|
    void LinearizeExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
 | 
						|
    void LinearizeExpr(BinaryOperator *I);
 | 
						|
    Value *RemoveFactorFromExpression(Value *V, Value *Factor);
 | 
						|
    void ReassociateBB(BasicBlock *BB);
 | 
						|
    
 | 
						|
    void RemoveDeadBinaryOp(Value *V);
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
char Reassociate::ID = 0;
 | 
						|
static RegisterPass<Reassociate> X("reassociate", "Reassociate expressions");
 | 
						|
 | 
						|
// Public interface to the Reassociate pass
 | 
						|
FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
 | 
						|
 | 
						|
void Reassociate::RemoveDeadBinaryOp(Value *V) {
 | 
						|
  Instruction *Op = dyn_cast<Instruction>(V);
 | 
						|
  if (!Op || !isa<BinaryOperator>(Op) || !Op->use_empty())
 | 
						|
    return;
 | 
						|
  
 | 
						|
  Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
 | 
						|
  
 | 
						|
  ValueRankMap.erase(Op);
 | 
						|
  Op->eraseFromParent();
 | 
						|
  RemoveDeadBinaryOp(LHS);
 | 
						|
  RemoveDeadBinaryOp(RHS);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static bool isUnmovableInstruction(Instruction *I) {
 | 
						|
  if (I->getOpcode() == Instruction::PHI ||
 | 
						|
      I->getOpcode() == Instruction::Alloca ||
 | 
						|
      I->getOpcode() == Instruction::Load ||
 | 
						|
      I->getOpcode() == Instruction::Invoke ||
 | 
						|
      (I->getOpcode() == Instruction::Call &&
 | 
						|
       !isa<DbgInfoIntrinsic>(I)) ||
 | 
						|
      I->getOpcode() == Instruction::UDiv || 
 | 
						|
      I->getOpcode() == Instruction::SDiv ||
 | 
						|
      I->getOpcode() == Instruction::FDiv ||
 | 
						|
      I->getOpcode() == Instruction::URem ||
 | 
						|
      I->getOpcode() == Instruction::SRem ||
 | 
						|
      I->getOpcode() == Instruction::FRem)
 | 
						|
    return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
void Reassociate::BuildRankMap(Function &F) {
 | 
						|
  unsigned i = 2;
 | 
						|
 | 
						|
  // Assign distinct ranks to function arguments
 | 
						|
  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
 | 
						|
    ValueRankMap[&*I] = ++i;
 | 
						|
 | 
						|
  ReversePostOrderTraversal<Function*> RPOT(&F);
 | 
						|
  for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
 | 
						|
         E = RPOT.end(); I != E; ++I) {
 | 
						|
    BasicBlock *BB = *I;
 | 
						|
    unsigned BBRank = RankMap[BB] = ++i << 16;
 | 
						|
 | 
						|
    // Walk the basic block, adding precomputed ranks for any instructions that
 | 
						|
    // we cannot move.  This ensures that the ranks for these instructions are
 | 
						|
    // all different in the block.
 | 
						|
    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
 | 
						|
      if (isUnmovableInstruction(I))
 | 
						|
        ValueRankMap[&*I] = ++BBRank;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
unsigned Reassociate::getRank(Value *V) {
 | 
						|
  Instruction *I = dyn_cast<Instruction>(V);
 | 
						|
  if (I == 0) {
 | 
						|
    if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
 | 
						|
    return 0;  // Otherwise it's a global or constant, rank 0.
 | 
						|
  }
 | 
						|
 | 
						|
  if (unsigned Rank = ValueRankMap[I])
 | 
						|
    return Rank;    // Rank already known?
 | 
						|
 | 
						|
  // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
 | 
						|
  // we can reassociate expressions for code motion!  Since we do not recurse
 | 
						|
  // for PHI nodes, we cannot have infinite recursion here, because there
 | 
						|
  // cannot be loops in the value graph that do not go through PHI nodes.
 | 
						|
  unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
 | 
						|
  for (unsigned i = 0, e = I->getNumOperands();
 | 
						|
       i != e && Rank != MaxRank; ++i)
 | 
						|
    Rank = std::max(Rank, getRank(I->getOperand(i)));
 | 
						|
 | 
						|
  // If this is a not or neg instruction, do not count it for rank.  This
 | 
						|
  // assures us that X and ~X will have the same rank.
 | 
						|
  if (!I->getType()->isIntegerTy() ||
 | 
						|
      (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
 | 
						|
    ++Rank;
 | 
						|
 | 
						|
  //DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = "
 | 
						|
  //     << Rank << "\n");
 | 
						|
 | 
						|
  return ValueRankMap[I] = Rank;
 | 
						|
}
 | 
						|
 | 
						|
/// isReassociableOp - Return true if V is an instruction of the specified
 | 
						|
/// opcode and if it only has one use.
 | 
						|
static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
 | 
						|
  if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
 | 
						|
      cast<Instruction>(V)->getOpcode() == Opcode)
 | 
						|
    return cast<BinaryOperator>(V);
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// LowerNegateToMultiply - Replace 0-X with X*-1.
 | 
						|
///
 | 
						|
static Instruction *LowerNegateToMultiply(Instruction *Neg,
 | 
						|
                              DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
 | 
						|
  Constant *Cst = Constant::getAllOnesValue(Neg->getType());
 | 
						|
 | 
						|
  Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
 | 
						|
  ValueRankMap.erase(Neg);
 | 
						|
  Res->takeName(Neg);
 | 
						|
  Neg->replaceAllUsesWith(Res);
 | 
						|
  Neg->eraseFromParent();
 | 
						|
  return Res;
 | 
						|
}
 | 
						|
 | 
						|
// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
 | 
						|
// Note that if D is also part of the expression tree that we recurse to
 | 
						|
// linearize it as well.  Besides that case, this does not recurse into A,B, or
 | 
						|
// C.
 | 
						|
void Reassociate::LinearizeExpr(BinaryOperator *I) {
 | 
						|
  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
 | 
						|
  BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
 | 
						|
  assert(isReassociableOp(LHS, I->getOpcode()) &&
 | 
						|
         isReassociableOp(RHS, I->getOpcode()) &&
 | 
						|
         "Not an expression that needs linearization?");
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Linear" << *LHS << '\n' << *RHS << '\n' << *I << '\n');
 | 
						|
 | 
						|
  // Move the RHS instruction to live immediately before I, avoiding breaking
 | 
						|
  // dominator properties.
 | 
						|
  RHS->moveBefore(I);
 | 
						|
 | 
						|
  // Move operands around to do the linearization.
 | 
						|
  I->setOperand(1, RHS->getOperand(0));
 | 
						|
  RHS->setOperand(0, LHS);
 | 
						|
  I->setOperand(0, RHS);
 | 
						|
 | 
						|
  ++NumLinear;
 | 
						|
  MadeChange = true;
 | 
						|
  DEBUG(dbgs() << "Linearized: " << *I << '\n');
 | 
						|
 | 
						|
  // If D is part of this expression tree, tail recurse.
 | 
						|
  if (isReassociableOp(I->getOperand(1), I->getOpcode()))
 | 
						|
    LinearizeExpr(I);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// LinearizeExprTree - Given an associative binary expression tree, traverse
 | 
						|
/// all of the uses putting it into canonical form.  This forces a left-linear
 | 
						|
/// form of the expression (((a+b)+c)+d), and collects information about the
 | 
						|
/// rank of the non-tree operands.
 | 
						|
///
 | 
						|
/// NOTE: These intentionally destroys the expression tree operands (turning
 | 
						|
/// them into undef values) to reduce #uses of the values.  This means that the
 | 
						|
/// caller MUST use something like RewriteExprTree to put the values back in.
 | 
						|
///
 | 
						|
void Reassociate::LinearizeExprTree(BinaryOperator *I,
 | 
						|
                                    SmallVectorImpl<ValueEntry> &Ops) {
 | 
						|
  Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
 | 
						|
  unsigned Opcode = I->getOpcode();
 | 
						|
 | 
						|
  // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
 | 
						|
  BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
 | 
						|
  BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
 | 
						|
 | 
						|
  // If this is a multiply expression tree and it contains internal negations,
 | 
						|
  // transform them into multiplies by -1 so they can be reassociated.
 | 
						|
  if (I->getOpcode() == Instruction::Mul) {
 | 
						|
    if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
 | 
						|
      LHS = LowerNegateToMultiply(cast<Instruction>(LHS), ValueRankMap);
 | 
						|
      LHSBO = isReassociableOp(LHS, Opcode);
 | 
						|
    }
 | 
						|
    if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
 | 
						|
      RHS = LowerNegateToMultiply(cast<Instruction>(RHS), ValueRankMap);
 | 
						|
      RHSBO = isReassociableOp(RHS, Opcode);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (!LHSBO) {
 | 
						|
    if (!RHSBO) {
 | 
						|
      // Neither the LHS or RHS as part of the tree, thus this is a leaf.  As
 | 
						|
      // such, just remember these operands and their rank.
 | 
						|
      Ops.push_back(ValueEntry(getRank(LHS), LHS));
 | 
						|
      Ops.push_back(ValueEntry(getRank(RHS), RHS));
 | 
						|
      
 | 
						|
      // Clear the leaves out.
 | 
						|
      I->setOperand(0, UndefValue::get(I->getType()));
 | 
						|
      I->setOperand(1, UndefValue::get(I->getType()));
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Turn X+(Y+Z) -> (Y+Z)+X
 | 
						|
    std::swap(LHSBO, RHSBO);
 | 
						|
    std::swap(LHS, RHS);
 | 
						|
    bool Success = !I->swapOperands();
 | 
						|
    assert(Success && "swapOperands failed");
 | 
						|
    Success = false;
 | 
						|
    MadeChange = true;
 | 
						|
  } else if (RHSBO) {
 | 
						|
    // Turn (A+B)+(C+D) -> (((A+B)+C)+D).  This guarantees the RHS is not
 | 
						|
    // part of the expression tree.
 | 
						|
    LinearizeExpr(I);
 | 
						|
    LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
 | 
						|
    RHS = I->getOperand(1);
 | 
						|
    RHSBO = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, now we know that the LHS is a nested expression and that the RHS is
 | 
						|
  // not.  Perform reassociation.
 | 
						|
  assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
 | 
						|
 | 
						|
  // Move LHS right before I to make sure that the tree expression dominates all
 | 
						|
  // values.
 | 
						|
  LHSBO->moveBefore(I);
 | 
						|
 | 
						|
  // Linearize the expression tree on the LHS.
 | 
						|
  LinearizeExprTree(LHSBO, Ops);
 | 
						|
 | 
						|
  // Remember the RHS operand and its rank.
 | 
						|
  Ops.push_back(ValueEntry(getRank(RHS), RHS));
 | 
						|
  
 | 
						|
  // Clear the RHS leaf out.
 | 
						|
  I->setOperand(1, UndefValue::get(I->getType()));
 | 
						|
}
 | 
						|
 | 
						|
// RewriteExprTree - Now that the operands for this expression tree are
 | 
						|
// linearized and optimized, emit them in-order.  This function is written to be
 | 
						|
// tail recursive.
 | 
						|
void Reassociate::RewriteExprTree(BinaryOperator *I,
 | 
						|
                                  SmallVectorImpl<ValueEntry> &Ops,
 | 
						|
                                  unsigned i) {
 | 
						|
  if (i+2 == Ops.size()) {
 | 
						|
    if (I->getOperand(0) != Ops[i].Op ||
 | 
						|
        I->getOperand(1) != Ops[i+1].Op) {
 | 
						|
      Value *OldLHS = I->getOperand(0);
 | 
						|
      DEBUG(dbgs() << "RA: " << *I << '\n');
 | 
						|
      I->setOperand(0, Ops[i].Op);
 | 
						|
      I->setOperand(1, Ops[i+1].Op);
 | 
						|
      DEBUG(dbgs() << "TO: " << *I << '\n');
 | 
						|
      MadeChange = true;
 | 
						|
      ++NumChanged;
 | 
						|
      
 | 
						|
      // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
 | 
						|
      // delete the extra, now dead, nodes.
 | 
						|
      RemoveDeadBinaryOp(OldLHS);
 | 
						|
    }
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  assert(i+2 < Ops.size() && "Ops index out of range!");
 | 
						|
 | 
						|
  if (I->getOperand(1) != Ops[i].Op) {
 | 
						|
    DEBUG(dbgs() << "RA: " << *I << '\n');
 | 
						|
    I->setOperand(1, Ops[i].Op);
 | 
						|
    DEBUG(dbgs() << "TO: " << *I << '\n');
 | 
						|
    MadeChange = true;
 | 
						|
    ++NumChanged;
 | 
						|
  }
 | 
						|
  
 | 
						|
  BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
 | 
						|
  assert(LHS->getOpcode() == I->getOpcode() &&
 | 
						|
         "Improper expression tree!");
 | 
						|
  
 | 
						|
  // Compactify the tree instructions together with each other to guarantee
 | 
						|
  // that the expression tree is dominated by all of Ops.
 | 
						|
  LHS->moveBefore(I);
 | 
						|
  RewriteExprTree(LHS, Ops, i+1);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
// NegateValue - Insert instructions before the instruction pointed to by BI,
 | 
						|
// that computes the negative version of the value specified.  The negative
 | 
						|
// version of the value is returned, and BI is left pointing at the instruction
 | 
						|
// that should be processed next by the reassociation pass.
 | 
						|
//
 | 
						|
static Value *NegateValue(Value *V, Instruction *BI) {
 | 
						|
  if (Constant *C = dyn_cast<Constant>(V))
 | 
						|
    return ConstantExpr::getNeg(C);
 | 
						|
  
 | 
						|
  // We are trying to expose opportunity for reassociation.  One of the things
 | 
						|
  // that we want to do to achieve this is to push a negation as deep into an
 | 
						|
  // expression chain as possible, to expose the add instructions.  In practice,
 | 
						|
  // this means that we turn this:
 | 
						|
  //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
 | 
						|
  // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
 | 
						|
  // the constants.  We assume that instcombine will clean up the mess later if
 | 
						|
  // we introduce tons of unnecessary negation instructions.
 | 
						|
  //
 | 
						|
  if (Instruction *I = dyn_cast<Instruction>(V))
 | 
						|
    if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
 | 
						|
      // Push the negates through the add.
 | 
						|
      I->setOperand(0, NegateValue(I->getOperand(0), BI));
 | 
						|
      I->setOperand(1, NegateValue(I->getOperand(1), BI));
 | 
						|
 | 
						|
      // We must move the add instruction here, because the neg instructions do
 | 
						|
      // not dominate the old add instruction in general.  By moving it, we are
 | 
						|
      // assured that the neg instructions we just inserted dominate the 
 | 
						|
      // instruction we are about to insert after them.
 | 
						|
      //
 | 
						|
      I->moveBefore(BI);
 | 
						|
      I->setName(I->getName()+".neg");
 | 
						|
      return I;
 | 
						|
    }
 | 
						|
  
 | 
						|
  // Okay, we need to materialize a negated version of V with an instruction.
 | 
						|
  // Scan the use lists of V to see if we have one already.
 | 
						|
  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
 | 
						|
    if (!BinaryOperator::isNeg(*UI)) continue;
 | 
						|
 | 
						|
    // We found one!  Now we have to make sure that the definition dominates
 | 
						|
    // this use.  We do this by moving it to the entry block (if it is a
 | 
						|
    // non-instruction value) or right after the definition.  These negates will
 | 
						|
    // be zapped by reassociate later, so we don't need much finesse here.
 | 
						|
    BinaryOperator *TheNeg = cast<BinaryOperator>(*UI);
 | 
						|
 | 
						|
    // Verify that the negate is in this function, V might be a constant expr.
 | 
						|
    if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    BasicBlock::iterator InsertPt;
 | 
						|
    if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
 | 
						|
      if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
 | 
						|
        InsertPt = II->getNormalDest()->begin();
 | 
						|
      } else {
 | 
						|
        InsertPt = InstInput;
 | 
						|
        ++InsertPt;
 | 
						|
      }
 | 
						|
      while (isa<PHINode>(InsertPt)) ++InsertPt;
 | 
						|
    } else {
 | 
						|
      InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
 | 
						|
    }
 | 
						|
    TheNeg->moveBefore(InsertPt);
 | 
						|
    return TheNeg;
 | 
						|
  }
 | 
						|
 | 
						|
  // Insert a 'neg' instruction that subtracts the value from zero to get the
 | 
						|
  // negation.
 | 
						|
  return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
 | 
						|
}
 | 
						|
 | 
						|
/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
 | 
						|
/// X-Y into (X + -Y).
 | 
						|
static bool ShouldBreakUpSubtract(Instruction *Sub) {
 | 
						|
  // If this is a negation, we can't split it up!
 | 
						|
  if (BinaryOperator::isNeg(Sub))
 | 
						|
    return false;
 | 
						|
  
 | 
						|
  // Don't bother to break this up unless either the LHS is an associable add or
 | 
						|
  // subtract or if this is only used by one.
 | 
						|
  if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
 | 
						|
      isReassociableOp(Sub->getOperand(0), Instruction::Sub))
 | 
						|
    return true;
 | 
						|
  if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
 | 
						|
      isReassociableOp(Sub->getOperand(1), Instruction::Sub))
 | 
						|
    return true;
 | 
						|
  if (Sub->hasOneUse() && 
 | 
						|
      (isReassociableOp(Sub->use_back(), Instruction::Add) ||
 | 
						|
       isReassociableOp(Sub->use_back(), Instruction::Sub)))
 | 
						|
    return true;
 | 
						|
    
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
 | 
						|
/// only used by an add, transform this into (X+(0-Y)) to promote better
 | 
						|
/// reassociation.
 | 
						|
static Instruction *BreakUpSubtract(Instruction *Sub,
 | 
						|
                              DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
 | 
						|
  // Convert a subtract into an add and a neg instruction. This allows sub
 | 
						|
  // instructions to be commuted with other add instructions.
 | 
						|
  //
 | 
						|
  // Calculate the negative value of Operand 1 of the sub instruction,
 | 
						|
  // and set it as the RHS of the add instruction we just made.
 | 
						|
  //
 | 
						|
  Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
 | 
						|
  Instruction *New =
 | 
						|
    BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
 | 
						|
  New->takeName(Sub);
 | 
						|
 | 
						|
  // Everyone now refers to the add instruction.
 | 
						|
  ValueRankMap.erase(Sub);
 | 
						|
  Sub->replaceAllUsesWith(New);
 | 
						|
  Sub->eraseFromParent();
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Negated: " << *New << '\n');
 | 
						|
  return New;
 | 
						|
}
 | 
						|
 | 
						|
/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
 | 
						|
/// by one, change this into a multiply by a constant to assist with further
 | 
						|
/// reassociation.
 | 
						|
static Instruction *ConvertShiftToMul(Instruction *Shl, 
 | 
						|
                              DenseMap<AssertingVH<>, unsigned> &ValueRankMap) {
 | 
						|
  // If an operand of this shift is a reassociable multiply, or if the shift
 | 
						|
  // is used by a reassociable multiply or add, turn into a multiply.
 | 
						|
  if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
 | 
						|
      (Shl->hasOneUse() && 
 | 
						|
       (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
 | 
						|
        isReassociableOp(Shl->use_back(), Instruction::Add)))) {
 | 
						|
    Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
 | 
						|
    MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
 | 
						|
    
 | 
						|
    Instruction *Mul =
 | 
						|
      BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
 | 
						|
    ValueRankMap.erase(Shl);
 | 
						|
    Mul->takeName(Shl);
 | 
						|
    Shl->replaceAllUsesWith(Mul);
 | 
						|
    Shl->eraseFromParent();
 | 
						|
    return Mul;
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
// Scan backwards and forwards among values with the same rank as element i to
 | 
						|
// see if X exists.  If X does not exist, return i.  This is useful when
 | 
						|
// scanning for 'x' when we see '-x' because they both get the same rank.
 | 
						|
static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
 | 
						|
                                  Value *X) {
 | 
						|
  unsigned XRank = Ops[i].Rank;
 | 
						|
  unsigned e = Ops.size();
 | 
						|
  for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
 | 
						|
    if (Ops[j].Op == X)
 | 
						|
      return j;
 | 
						|
  // Scan backwards.
 | 
						|
  for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
 | 
						|
    if (Ops[j].Op == X)
 | 
						|
      return j;
 | 
						|
  return i;
 | 
						|
}
 | 
						|
 | 
						|
/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
 | 
						|
/// and returning the result.  Insert the tree before I.
 | 
						|
static Value *EmitAddTreeOfValues(Instruction *I, SmallVectorImpl<Value*> &Ops){
 | 
						|
  if (Ops.size() == 1) return Ops.back();
 | 
						|
  
 | 
						|
  Value *V1 = Ops.back();
 | 
						|
  Ops.pop_back();
 | 
						|
  Value *V2 = EmitAddTreeOfValues(I, Ops);
 | 
						|
  return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
 | 
						|
}
 | 
						|
 | 
						|
/// RemoveFactorFromExpression - If V is an expression tree that is a 
 | 
						|
/// multiplication sequence, and if this sequence contains a multiply by Factor,
 | 
						|
/// remove Factor from the tree and return the new tree.
 | 
						|
Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
 | 
						|
  BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
 | 
						|
  if (!BO) return 0;
 | 
						|
  
 | 
						|
  SmallVector<ValueEntry, 8> Factors;
 | 
						|
  LinearizeExprTree(BO, Factors);
 | 
						|
 | 
						|
  bool FoundFactor = false;
 | 
						|
  bool NeedsNegate = false;
 | 
						|
  for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
 | 
						|
    if (Factors[i].Op == Factor) {
 | 
						|
      FoundFactor = true;
 | 
						|
      Factors.erase(Factors.begin()+i);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // If this is a negative version of this factor, remove it.
 | 
						|
    if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor))
 | 
						|
      if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
 | 
						|
        if (FC1->getValue() == -FC2->getValue()) {
 | 
						|
          FoundFactor = NeedsNegate = true;
 | 
						|
          Factors.erase(Factors.begin()+i);
 | 
						|
          break;
 | 
						|
        }
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (!FoundFactor) {
 | 
						|
    // Make sure to restore the operands to the expression tree.
 | 
						|
    RewriteExprTree(BO, Factors);
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
  
 | 
						|
  BasicBlock::iterator InsertPt = BO; ++InsertPt;
 | 
						|
  
 | 
						|
  // If this was just a single multiply, remove the multiply and return the only
 | 
						|
  // remaining operand.
 | 
						|
  if (Factors.size() == 1) {
 | 
						|
    ValueRankMap.erase(BO);
 | 
						|
    BO->eraseFromParent();
 | 
						|
    V = Factors[0].Op;
 | 
						|
  } else {
 | 
						|
    RewriteExprTree(BO, Factors);
 | 
						|
    V = BO;
 | 
						|
  }
 | 
						|
  
 | 
						|
  if (NeedsNegate)
 | 
						|
    V = BinaryOperator::CreateNeg(V, "neg", InsertPt);
 | 
						|
  
 | 
						|
  return V;
 | 
						|
}
 | 
						|
 | 
						|
/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
 | 
						|
/// add its operands as factors, otherwise add V to the list of factors.
 | 
						|
///
 | 
						|
/// Ops is the top-level list of add operands we're trying to factor.
 | 
						|
static void FindSingleUseMultiplyFactors(Value *V,
 | 
						|
                                         SmallVectorImpl<Value*> &Factors,
 | 
						|
                                       const SmallVectorImpl<ValueEntry> &Ops,
 | 
						|
                                         bool IsRoot) {
 | 
						|
  BinaryOperator *BO;
 | 
						|
  if (!(V->hasOneUse() || V->use_empty()) || // More than one use.
 | 
						|
      !(BO = dyn_cast<BinaryOperator>(V)) ||
 | 
						|
      BO->getOpcode() != Instruction::Mul) {
 | 
						|
    Factors.push_back(V);
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If this value has a single use because it is another input to the add
 | 
						|
  // tree we're reassociating and we dropped its use, it actually has two
 | 
						|
  // uses and we can't factor it.
 | 
						|
  if (!IsRoot) {
 | 
						|
    for (unsigned i = 0, e = Ops.size(); i != e; ++i)
 | 
						|
      if (Ops[i].Op == V) {
 | 
						|
        Factors.push_back(V);
 | 
						|
        return;
 | 
						|
      }
 | 
						|
  }
 | 
						|
  
 | 
						|
  
 | 
						|
  // Otherwise, add the LHS and RHS to the list of factors.
 | 
						|
  FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops, false);
 | 
						|
  FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops, false);
 | 
						|
}
 | 
						|
 | 
						|
/// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
 | 
						|
/// instruction.  This optimizes based on identities.  If it can be reduced to
 | 
						|
/// a single Value, it is returned, otherwise the Ops list is mutated as
 | 
						|
/// necessary.
 | 
						|
static Value *OptimizeAndOrXor(unsigned Opcode,
 | 
						|
                               SmallVectorImpl<ValueEntry> &Ops) {
 | 
						|
  // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
 | 
						|
  // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
 | 
						|
  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
 | 
						|
    // First, check for X and ~X in the operand list.
 | 
						|
    assert(i < Ops.size());
 | 
						|
    if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
 | 
						|
      Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
 | 
						|
      unsigned FoundX = FindInOperandList(Ops, i, X);
 | 
						|
      if (FoundX != i) {
 | 
						|
        if (Opcode == Instruction::And)   // ...&X&~X = 0
 | 
						|
          return Constant::getNullValue(X->getType());
 | 
						|
        
 | 
						|
        if (Opcode == Instruction::Or)    // ...|X|~X = -1
 | 
						|
          return Constant::getAllOnesValue(X->getType());
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Next, check for duplicate pairs of values, which we assume are next to
 | 
						|
    // each other, due to our sorting criteria.
 | 
						|
    assert(i < Ops.size());
 | 
						|
    if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
 | 
						|
      if (Opcode == Instruction::And || Opcode == Instruction::Or) {
 | 
						|
        // Drop duplicate values for And and Or.
 | 
						|
        Ops.erase(Ops.begin()+i);
 | 
						|
        --i; --e;
 | 
						|
        ++NumAnnihil;
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      
 | 
						|
      // Drop pairs of values for Xor.
 | 
						|
      assert(Opcode == Instruction::Xor);
 | 
						|
      if (e == 2)
 | 
						|
        return Constant::getNullValue(Ops[0].Op->getType());
 | 
						|
      
 | 
						|
      // Y ^ X^X -> Y
 | 
						|
      Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
 | 
						|
      i -= 1; e -= 2;
 | 
						|
      ++NumAnnihil;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// OptimizeAdd - Optimize a series of operands to an 'add' instruction.  This
 | 
						|
/// optimizes based on identities.  If it can be reduced to a single Value, it
 | 
						|
/// is returned, otherwise the Ops list is mutated as necessary.
 | 
						|
Value *Reassociate::OptimizeAdd(Instruction *I,
 | 
						|
                                SmallVectorImpl<ValueEntry> &Ops) {
 | 
						|
  // Scan the operand lists looking for X and -X pairs.  If we find any, we
 | 
						|
  // can simplify the expression. X+-X == 0.  While we're at it, scan for any
 | 
						|
  // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
 | 
						|
  //
 | 
						|
  // TODO: We could handle "X + ~X" -> "-1" if we wanted, since "-X = ~X+1".
 | 
						|
  //
 | 
						|
  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
 | 
						|
    Value *TheOp = Ops[i].Op;
 | 
						|
    // Check to see if we've seen this operand before.  If so, we factor all
 | 
						|
    // instances of the operand together.  Due to our sorting criteria, we know
 | 
						|
    // that these need to be next to each other in the vector.
 | 
						|
    if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
 | 
						|
      // Rescan the list, remove all instances of this operand from the expr.
 | 
						|
      unsigned NumFound = 0;
 | 
						|
      do {
 | 
						|
        Ops.erase(Ops.begin()+i);
 | 
						|
        ++NumFound;
 | 
						|
      } while (i != Ops.size() && Ops[i].Op == TheOp);
 | 
						|
      
 | 
						|
      DEBUG(errs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
 | 
						|
      ++NumFactor;
 | 
						|
      
 | 
						|
      // Insert a new multiply.
 | 
						|
      Value *Mul = ConstantInt::get(cast<IntegerType>(I->getType()), NumFound);
 | 
						|
      Mul = BinaryOperator::CreateMul(TheOp, Mul, "factor", I);
 | 
						|
      
 | 
						|
      // Now that we have inserted a multiply, optimize it. This allows us to
 | 
						|
      // handle cases that require multiple factoring steps, such as this:
 | 
						|
      // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
 | 
						|
      Mul = ReassociateExpression(cast<BinaryOperator>(Mul));
 | 
						|
      
 | 
						|
      // If every add operand was a duplicate, return the multiply.
 | 
						|
      if (Ops.empty())
 | 
						|
        return Mul;
 | 
						|
      
 | 
						|
      // Otherwise, we had some input that didn't have the dupe, such as
 | 
						|
      // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
 | 
						|
      // things being added by this operation.
 | 
						|
      Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
 | 
						|
      
 | 
						|
      --i;
 | 
						|
      e = Ops.size();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    
 | 
						|
    // Check for X and -X in the operand list.
 | 
						|
    if (!BinaryOperator::isNeg(TheOp))
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    Value *X = BinaryOperator::getNegArgument(TheOp);
 | 
						|
    unsigned FoundX = FindInOperandList(Ops, i, X);
 | 
						|
    if (FoundX == i)
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    // Remove X and -X from the operand list.
 | 
						|
    if (Ops.size() == 2)
 | 
						|
      return Constant::getNullValue(X->getType());
 | 
						|
    
 | 
						|
    Ops.erase(Ops.begin()+i);
 | 
						|
    if (i < FoundX)
 | 
						|
      --FoundX;
 | 
						|
    else
 | 
						|
      --i;   // Need to back up an extra one.
 | 
						|
    Ops.erase(Ops.begin()+FoundX);
 | 
						|
    ++NumAnnihil;
 | 
						|
    --i;     // Revisit element.
 | 
						|
    e -= 2;  // Removed two elements.
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Scan the operand list, checking to see if there are any common factors
 | 
						|
  // between operands.  Consider something like A*A+A*B*C+D.  We would like to
 | 
						|
  // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
 | 
						|
  // To efficiently find this, we count the number of times a factor occurs
 | 
						|
  // for any ADD operands that are MULs.
 | 
						|
  DenseMap<Value*, unsigned> FactorOccurrences;
 | 
						|
  
 | 
						|
  // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
 | 
						|
  // where they are actually the same multiply.
 | 
						|
  unsigned MaxOcc = 0;
 | 
						|
  Value *MaxOccVal = 0;
 | 
						|
  for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
 | 
						|
    BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
 | 
						|
    if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
 | 
						|
      continue;
 | 
						|
    
 | 
						|
    // Compute all of the factors of this added value.
 | 
						|
    SmallVector<Value*, 8> Factors;
 | 
						|
    FindSingleUseMultiplyFactors(BOp, Factors, Ops, true);
 | 
						|
    assert(Factors.size() > 1 && "Bad linearize!");
 | 
						|
    
 | 
						|
    // Add one to FactorOccurrences for each unique factor in this op.
 | 
						|
    SmallPtrSet<Value*, 8> Duplicates;
 | 
						|
    for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
 | 
						|
      Value *Factor = Factors[i];
 | 
						|
      if (!Duplicates.insert(Factor)) continue;
 | 
						|
      
 | 
						|
      unsigned Occ = ++FactorOccurrences[Factor];
 | 
						|
      if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
 | 
						|
      
 | 
						|
      // If Factor is a negative constant, add the negated value as a factor
 | 
						|
      // because we can percolate the negate out.  Watch for minint, which
 | 
						|
      // cannot be positivified.
 | 
						|
      if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor))
 | 
						|
        if (CI->getValue().isNegative() && !CI->getValue().isMinSignedValue()) {
 | 
						|
          Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
 | 
						|
          assert(!Duplicates.count(Factor) &&
 | 
						|
                 "Shouldn't have two constant factors, missed a canonicalize");
 | 
						|
          
 | 
						|
          unsigned Occ = ++FactorOccurrences[Factor];
 | 
						|
          if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factor; }
 | 
						|
        }
 | 
						|
    }
 | 
						|
  }
 | 
						|
  
 | 
						|
  // If any factor occurred more than one time, we can pull it out.
 | 
						|
  if (MaxOcc > 1) {
 | 
						|
    DEBUG(errs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
 | 
						|
    ++NumFactor;
 | 
						|
 | 
						|
    // Create a new instruction that uses the MaxOccVal twice.  If we don't do
 | 
						|
    // this, we could otherwise run into situations where removing a factor
 | 
						|
    // from an expression will drop a use of maxocc, and this can cause 
 | 
						|
    // RemoveFactorFromExpression on successive values to behave differently.
 | 
						|
    Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
 | 
						|
    SmallVector<Value*, 4> NewMulOps;
 | 
						|
    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
 | 
						|
      // Only try to remove factors from expressions we're allowed to.
 | 
						|
      BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op);
 | 
						|
      if (BOp == 0 || BOp->getOpcode() != Instruction::Mul || !BOp->use_empty())
 | 
						|
        continue;
 | 
						|
      
 | 
						|
      if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
 | 
						|
        NewMulOps.push_back(V);
 | 
						|
        Ops.erase(Ops.begin()+i);
 | 
						|
        --i; --e;
 | 
						|
      }
 | 
						|
    }
 | 
						|
    
 | 
						|
    // No need for extra uses anymore.
 | 
						|
    delete DummyInst;
 | 
						|
 | 
						|
    unsigned NumAddedValues = NewMulOps.size();
 | 
						|
    Value *V = EmitAddTreeOfValues(I, NewMulOps);
 | 
						|
 | 
						|
    // Now that we have inserted the add tree, optimize it. This allows us to
 | 
						|
    // handle cases that require multiple factoring steps, such as this:
 | 
						|
    // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
 | 
						|
    assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
 | 
						|
    (void)NumAddedValues;
 | 
						|
    V = ReassociateExpression(cast<BinaryOperator>(V));
 | 
						|
 | 
						|
    // Create the multiply.
 | 
						|
    Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
 | 
						|
 | 
						|
    // Rerun associate on the multiply in case the inner expression turned into
 | 
						|
    // a multiply.  We want to make sure that we keep things in canonical form.
 | 
						|
    V2 = ReassociateExpression(cast<BinaryOperator>(V2));
 | 
						|
    
 | 
						|
    // If every add operand included the factor (e.g. "A*B + A*C"), then the
 | 
						|
    // entire result expression is just the multiply "A*(B+C)".
 | 
						|
    if (Ops.empty())
 | 
						|
      return V2;
 | 
						|
    
 | 
						|
    // Otherwise, we had some input that didn't have the factor, such as
 | 
						|
    // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
 | 
						|
    // things being added by this operation.
 | 
						|
    Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
 | 
						|
  }
 | 
						|
  
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
Value *Reassociate::OptimizeExpression(BinaryOperator *I,
 | 
						|
                                       SmallVectorImpl<ValueEntry> &Ops) {
 | 
						|
  // Now that we have the linearized expression tree, try to optimize it.
 | 
						|
  // Start by folding any constants that we found.
 | 
						|
  bool IterateOptimization = false;
 | 
						|
  if (Ops.size() == 1) return Ops[0].Op;
 | 
						|
 | 
						|
  unsigned Opcode = I->getOpcode();
 | 
						|
  
 | 
						|
  if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
 | 
						|
    if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
 | 
						|
      Ops.pop_back();
 | 
						|
      Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
 | 
						|
      return OptimizeExpression(I, Ops);
 | 
						|
    }
 | 
						|
 | 
						|
  // Check for destructive annihilation due to a constant being used.
 | 
						|
  if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
 | 
						|
    switch (Opcode) {
 | 
						|
    default: break;
 | 
						|
    case Instruction::And:
 | 
						|
      if (CstVal->isZero())                  // X & 0 -> 0
 | 
						|
        return CstVal;
 | 
						|
      if (CstVal->isAllOnesValue())          // X & -1 -> X
 | 
						|
        Ops.pop_back();
 | 
						|
      break;
 | 
						|
    case Instruction::Mul:
 | 
						|
      if (CstVal->isZero()) {                // X * 0 -> 0
 | 
						|
        ++NumAnnihil;
 | 
						|
        return CstVal;
 | 
						|
      }
 | 
						|
        
 | 
						|
      if (cast<ConstantInt>(CstVal)->isOne())
 | 
						|
        Ops.pop_back();                      // X * 1 -> X
 | 
						|
      break;
 | 
						|
    case Instruction::Or:
 | 
						|
      if (CstVal->isAllOnesValue())          // X | -1 -> -1
 | 
						|
        return CstVal;
 | 
						|
      // FALLTHROUGH!
 | 
						|
    case Instruction::Add:
 | 
						|
    case Instruction::Xor:
 | 
						|
      if (CstVal->isZero())                  // X [|^+] 0 -> X
 | 
						|
        Ops.pop_back();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  if (Ops.size() == 1) return Ops[0].Op;
 | 
						|
 | 
						|
  // Handle destructive annihilation due to identities between elements in the
 | 
						|
  // argument list here.
 | 
						|
  switch (Opcode) {
 | 
						|
  default: break;
 | 
						|
  case Instruction::And:
 | 
						|
  case Instruction::Or:
 | 
						|
  case Instruction::Xor: {
 | 
						|
    unsigned NumOps = Ops.size();
 | 
						|
    if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
 | 
						|
      return Result;
 | 
						|
    IterateOptimization |= Ops.size() != NumOps;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  case Instruction::Add: {
 | 
						|
    unsigned NumOps = Ops.size();
 | 
						|
    if (Value *Result = OptimizeAdd(I, Ops))
 | 
						|
      return Result;
 | 
						|
    IterateOptimization |= Ops.size() != NumOps;
 | 
						|
  }
 | 
						|
 | 
						|
    break;
 | 
						|
  //case Instruction::Mul:
 | 
						|
  }
 | 
						|
 | 
						|
  if (IterateOptimization)
 | 
						|
    return OptimizeExpression(I, Ops);
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// ReassociateBB - Inspect all of the instructions in this basic block,
 | 
						|
/// reassociating them as we go.
 | 
						|
void Reassociate::ReassociateBB(BasicBlock *BB) {
 | 
						|
  for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
 | 
						|
    Instruction *BI = BBI++;
 | 
						|
    if (BI->getOpcode() == Instruction::Shl &&
 | 
						|
        isa<ConstantInt>(BI->getOperand(1)))
 | 
						|
      if (Instruction *NI = ConvertShiftToMul(BI, ValueRankMap)) {
 | 
						|
        MadeChange = true;
 | 
						|
        BI = NI;
 | 
						|
      }
 | 
						|
 | 
						|
    // Reject cases where it is pointless to do this.
 | 
						|
    if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPointTy() || 
 | 
						|
        BI->getType()->isVectorTy())
 | 
						|
      continue;  // Floating point ops are not associative.
 | 
						|
 | 
						|
    // Do not reassociate boolean (i1) expressions.  We want to preserve the
 | 
						|
    // original order of evaluation for short-circuited comparisons that
 | 
						|
    // SimplifyCFG has folded to AND/OR expressions.  If the expression
 | 
						|
    // is not further optimized, it is likely to be transformed back to a
 | 
						|
    // short-circuited form for code gen, and the source order may have been
 | 
						|
    // optimized for the most likely conditions.
 | 
						|
    if (BI->getType()->isIntegerTy(1))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If this is a subtract instruction which is not already in negate form,
 | 
						|
    // see if we can convert it to X+-Y.
 | 
						|
    if (BI->getOpcode() == Instruction::Sub) {
 | 
						|
      if (ShouldBreakUpSubtract(BI)) {
 | 
						|
        BI = BreakUpSubtract(BI, ValueRankMap);
 | 
						|
        // Reset the BBI iterator in case BreakUpSubtract changed the
 | 
						|
        // instruction it points to.
 | 
						|
        BBI = BI;
 | 
						|
        ++BBI;
 | 
						|
        MadeChange = true;
 | 
						|
      } else if (BinaryOperator::isNeg(BI)) {
 | 
						|
        // Otherwise, this is a negation.  See if the operand is a multiply tree
 | 
						|
        // and if this is not an inner node of a multiply tree.
 | 
						|
        if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
 | 
						|
            (!BI->hasOneUse() ||
 | 
						|
             !isReassociableOp(BI->use_back(), Instruction::Mul))) {
 | 
						|
          BI = LowerNegateToMultiply(BI, ValueRankMap);
 | 
						|
          MadeChange = true;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If this instruction is a commutative binary operator, process it.
 | 
						|
    if (!BI->isAssociative()) continue;
 | 
						|
    BinaryOperator *I = cast<BinaryOperator>(BI);
 | 
						|
 | 
						|
    // If this is an interior node of a reassociable tree, ignore it until we
 | 
						|
    // get to the root of the tree, to avoid N^2 analysis.
 | 
						|
    if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If this is an add tree that is used by a sub instruction, ignore it 
 | 
						|
    // until we process the subtract.
 | 
						|
    if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
 | 
						|
        cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
 | 
						|
      continue;
 | 
						|
 | 
						|
    ReassociateExpression(I);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
Value *Reassociate::ReassociateExpression(BinaryOperator *I) {
 | 
						|
  
 | 
						|
  // First, walk the expression tree, linearizing the tree, collecting the
 | 
						|
  // operand information.
 | 
						|
  SmallVector<ValueEntry, 8> Ops;
 | 
						|
  LinearizeExprTree(I, Ops);
 | 
						|
  
 | 
						|
  DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
 | 
						|
  
 | 
						|
  // Now that we have linearized the tree to a list and have gathered all of
 | 
						|
  // the operands and their ranks, sort the operands by their rank.  Use a
 | 
						|
  // stable_sort so that values with equal ranks will have their relative
 | 
						|
  // positions maintained (and so the compiler is deterministic).  Note that
 | 
						|
  // this sorts so that the highest ranking values end up at the beginning of
 | 
						|
  // the vector.
 | 
						|
  std::stable_sort(Ops.begin(), Ops.end());
 | 
						|
  
 | 
						|
  // OptimizeExpression - Now that we have the expression tree in a convenient
 | 
						|
  // sorted form, optimize it globally if possible.
 | 
						|
  if (Value *V = OptimizeExpression(I, Ops)) {
 | 
						|
    // This expression tree simplified to something that isn't a tree,
 | 
						|
    // eliminate it.
 | 
						|
    DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
 | 
						|
    I->replaceAllUsesWith(V);
 | 
						|
    RemoveDeadBinaryOp(I);
 | 
						|
    ++NumAnnihil;
 | 
						|
    return V;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // We want to sink immediates as deeply as possible except in the case where
 | 
						|
  // this is a multiply tree used only by an add, and the immediate is a -1.
 | 
						|
  // In this case we reassociate to put the negation on the outside so that we
 | 
						|
  // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
 | 
						|
  if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
 | 
						|
      cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
 | 
						|
      isa<ConstantInt>(Ops.back().Op) &&
 | 
						|
      cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
 | 
						|
    ValueEntry Tmp = Ops.pop_back_val();
 | 
						|
    Ops.insert(Ops.begin(), Tmp);
 | 
						|
  }
 | 
						|
  
 | 
						|
  DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
 | 
						|
  
 | 
						|
  if (Ops.size() == 1) {
 | 
						|
    // This expression tree simplified to something that isn't a tree,
 | 
						|
    // eliminate it.
 | 
						|
    I->replaceAllUsesWith(Ops[0].Op);
 | 
						|
    RemoveDeadBinaryOp(I);
 | 
						|
    return Ops[0].Op;
 | 
						|
  }
 | 
						|
  
 | 
						|
  // Now that we ordered and optimized the expressions, splat them back into
 | 
						|
  // the expression tree, removing any unneeded nodes.
 | 
						|
  RewriteExprTree(I, Ops);
 | 
						|
  return I;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool Reassociate::runOnFunction(Function &F) {
 | 
						|
  // Recalculate the rank map for F
 | 
						|
  BuildRankMap(F);
 | 
						|
 | 
						|
  MadeChange = false;
 | 
						|
  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
 | 
						|
    ReassociateBB(FI);
 | 
						|
 | 
						|
  // We are done with the rank map.
 | 
						|
  RankMap.clear();
 | 
						|
  ValueRankMap.clear();
 | 
						|
  return MadeChange;
 | 
						|
}
 | 
						|
 |