llvm-6502/lib/CodeGen/RegAllocLinearScan.cpp

778 lines
30 KiB
C++

//===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a linear scan register allocator.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "regalloc"
#include "llvm/Function.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegInfo.h"
#include "llvm/Support/CFG.h"
#include "Support/Debug.h"
#include "Support/DepthFirstIterator.h"
#include "Support/Statistic.h"
#include "Support/STLExtras.h"
#include <iostream>
using namespace llvm;
namespace {
Statistic<> numSpilled ("ra-linearscan", "Number of registers spilled");
Statistic<> numReloaded("ra-linearscan", "Number of registers reloaded");
class RA : public MachineFunctionPass {
public:
typedef std::vector<const LiveIntervals::Interval*> IntervalPtrs;
private:
MachineFunction* mf_;
const TargetMachine* tm_;
const MRegisterInfo* mri_;
MachineBasicBlock* currentMbb_;
MachineBasicBlock::iterator currentInstr_;
typedef LiveIntervals::Intervals Intervals;
const Intervals* li_;
IntervalPtrs active_, inactive_;
typedef std::vector<unsigned> Regs;
Regs tempUseOperands_;
Regs tempDefOperands_;
Regs reserved_;
typedef LiveIntervals::MachineBasicBlockPtrs MachineBasicBlockPtrs;
MachineBasicBlockPtrs mbbs_;
typedef std::vector<unsigned> Phys2VirtMap;
Phys2VirtMap p2vMap_;
typedef std::map<unsigned, unsigned> Virt2PhysMap;
Virt2PhysMap v2pMap_;
typedef std::map<unsigned, int> Virt2StackSlotMap;
Virt2StackSlotMap v2ssMap_;
int instrAdded_;
public:
virtual const char* getPassName() const {
return "Linear Scan Register Allocator";
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<LiveVariables>();
AU.addRequired<LiveIntervals>();
MachineFunctionPass::getAnalysisUsage(AU);
}
private:
/// runOnMachineFunction - register allocate the whole function
bool runOnMachineFunction(MachineFunction&);
/// processActiveIntervals - expire old intervals and move
/// non-overlapping ones to the incative list
void processActiveIntervals(Intervals::const_iterator cur);
/// processInactiveIntervals - expire old intervals and move
/// overlapping ones to the active list
void processInactiveIntervals(Intervals::const_iterator cur);
/// assignStackSlotAtInterval - choose and spill
/// interval. Currently we spill the interval with the last
/// end point in the active and inactive lists and the current
/// interval
void assignStackSlotAtInterval(Intervals::const_iterator cur);
///
/// register handling helpers
///
/// reservePhysReg - reserves a physical register and spills
/// any value assigned to it if any
void reservePhysReg(unsigned reg);
/// clearReservedPhysReg - marks pysical register as free for
/// use
void clearReservedPhysReg(unsigned reg);
/// physRegAvailable - returns true if the specifed physical
/// register is available
bool physRegAvailable(unsigned physReg);
/// getFreePhysReg - return a free physical register for this
/// virtual register if we have one, otherwise return 0
unsigned getFreePhysReg(unsigned virtReg);
/// tempPhysRegAvailable - returns true if the specifed
/// temporary physical register is available
bool tempPhysRegAvailable(unsigned physReg);
/// getFreeTempPhysReg - return a free temprorary physical
/// register for this register class if we have one (should
/// never return 0)
unsigned getFreeTempPhysReg(const TargetRegisterClass* rc);
/// getFreeTempPhysReg - return a free temprorary physical
/// register for this virtual register if we have one (should
/// never return 0)
unsigned getFreeTempPhysReg(unsigned virtReg) {
const TargetRegisterClass* rc =
mf_->getSSARegMap()->getRegClass(virtReg);
return getFreeTempPhysReg(rc);
}
/// assignVirt2PhysReg - assigns the free physical register to
/// the virtual register passed as arguments
void assignVirt2PhysReg(unsigned virtReg, unsigned physReg);
/// clearVirtReg - free the physical register associated with this
/// virtual register and disassociate virtual->physical and
/// physical->virtual mappings
void clearVirtReg(unsigned virtReg);
/// assignVirt2StackSlot - assigns this virtual register to a
/// stack slot
void assignVirt2StackSlot(unsigned virtReg);
/// findOrCreateStackSlot - returns the offset of the
/// specified register on the stack allocating space if
/// necessary
int findOrCreateStackSlot(unsigned virtReg);
/// spillVirtReg - spills the virtual register
void spillVirtReg(unsigned virtReg);
/// loadPhysReg - loads to the physical register the value of
/// the virtual register specifed. Virtual register must have
/// an assigned stack slot
void loadVirt2PhysReg(unsigned virtReg, unsigned physReg);
void printVirt2PhysMap() const {
std::cerr << "allocated registers:\n";
for (Virt2PhysMap::const_iterator
i = v2pMap_.begin(), e = v2pMap_.end(); i != e; ++i) {
std::cerr << '[' << i->first << ','
<< mri_->getName(i->second) << "]\n";
}
std::cerr << '\n';
}
void printIntervals(const char* const str,
RA::IntervalPtrs::const_iterator i,
RA::IntervalPtrs::const_iterator e) const {
if (str) std::cerr << str << " intervals:\n";
for (; i != e; ++i) {
std::cerr << "\t\t" << **i << " -> ";
if ((*i)->reg < MRegisterInfo::FirstVirtualRegister) {
std::cerr << mri_->getName((*i)->reg);
}
else {
std::cerr << mri_->getName(v2pMap_.find((*i)->reg)->second);
}
std::cerr << '\n';
}
}
};
}
bool RA::runOnMachineFunction(MachineFunction &fn) {
mf_ = &fn;
tm_ = &fn.getTarget();
mri_ = tm_->getRegisterInfo();
li_ = &getAnalysis<LiveIntervals>().getIntervals();
active_.clear();
inactive_.clear();
mbbs_ = getAnalysis<LiveIntervals>().getOrderedMachineBasicBlockPtrs();
p2vMap_.resize(MRegisterInfo::FirstVirtualRegister-1);
p2vMap_.clear();
v2pMap_.clear();
v2ssMap_.clear();
// FIXME: this will work only for the X86 backend. I need to
// device an algorthm to select the minimal (considering register
// aliasing) number of temp registers to reserve so that we have 2
// registers for each register class available.
// reserve R32: EDI, EBX,
// R16: DI, BX,
// R8: DH, BH,
// RFP: FP5, FP6
reserved_.push_back(19); /* EDI */
reserved_.push_back(17); /* EBX */
reserved_.push_back(12); /* DI */
reserved_.push_back( 7); /* BX */
reserved_.push_back(11); /* DH */
reserved_.push_back( 4); /* BH */
reserved_.push_back(28); /* FP5 */
reserved_.push_back(29); /* FP6 */
// liner scan algorithm
for (Intervals::const_iterator
i = li_->begin(), e = li_->end(); i != e; ++i) {
DEBUG(std::cerr << "processing current interval: " << *i << '\n');
DEBUG(printIntervals("\tactive", active_.begin(), active_.end()));
DEBUG(printIntervals("\tinactive", inactive_.begin(), inactive_.end()));
processActiveIntervals(i);
// processInactiveIntervals(i);
// if this register is preallocated, look for an interval that
// overlaps with it and assign it to a memory location
if (i->reg < MRegisterInfo::FirstVirtualRegister) {
for (IntervalPtrs::iterator
ai = active_.begin(), ae = active_.end(); ai != ae; ++ai) {
unsigned virtReg = (*ai)->reg;
Virt2PhysMap::const_iterator it = v2pMap_.find(virtReg);
if (it != v2pMap_.end() && it->second == i->reg) {
active_.erase(ai);
clearVirtReg(virtReg);
break;
}
}
reservePhysReg(i->reg);
active_.push_back(&*i);
}
// otherwise we are allocating a virtual register. try to find
// a free physical register or spill an interval in order to
// assign it one (we could spill the current though).
else {
unsigned physReg = getFreePhysReg(i->reg);
if (!physReg) {
assignStackSlotAtInterval(i);
}
else {
assignVirt2PhysReg(i->reg, physReg);
active_.push_back(&*i);
}
}
}
DEBUG(std::cerr << "finished register allocation\n");
DEBUG(printVirt2PhysMap());
DEBUG(std::cerr << "Rewrite machine code:\n");
for (MachineBasicBlockPtrs::iterator
mbbi = mbbs_.begin(), mbbe = mbbs_.end(); mbbi != mbbe; ++mbbi) {
instrAdded_ = 0;
currentMbb_ = *mbbi;
for (currentInstr_ = currentMbb_->begin();
currentInstr_ != currentMbb_->end(); ++currentInstr_) {
DEBUG(std::cerr << "\tinstruction: ";
(*currentInstr_)->print(std::cerr, *tm_););
DEBUG(std::cerr << "\t\tspilling temporarily defined operands "
"of previous instruction:\n");
for (unsigned i = 0, e = tempDefOperands_.size(); i != e; ++i) {
spillVirtReg(tempDefOperands_[i]);
}
tempDefOperands_.clear();
// use our current mapping and actually replace and
// virtual register with its allocated physical registers
DEBUG(std::cerr << "\t\treplacing virtual registers with mapped "
"physical registers:\n");
for (unsigned i = 0, e = (*currentInstr_)->getNumOperands();
i != e; ++i) {
MachineOperand& op = (*currentInstr_)->getOperand(i);
if (op.isVirtualRegister()) {
unsigned virtReg = op.getAllocatedRegNum();
unsigned physReg = v2pMap_[virtReg];
// if this virtual registers lives on the stack,
// load it to a temporary physical register
if (physReg) {
DEBUG(std::cerr << "\t\t\t%reg" << virtReg
<< " -> " << mri_->getName(physReg) << '\n');
(*currentInstr_)->SetMachineOperandReg(i, physReg);
}
}
}
DEBUG(std::cerr << "\t\tloading temporarily used operands to "
"registers:\n");
for (unsigned i = 0, e = (*currentInstr_)->getNumOperands();
i != e; ++i) {
MachineOperand& op = (*currentInstr_)->getOperand(i);
if (op.isVirtualRegister() && op.opIsUse()) {
unsigned virtReg = op.getAllocatedRegNum();
unsigned physReg = v2pMap_[virtReg];
if (!physReg) {
physReg = getFreeTempPhysReg(virtReg);
}
loadVirt2PhysReg(virtReg, physReg);
tempUseOperands_.push_back(virtReg);
(*currentInstr_)->SetMachineOperandReg(i, physReg);
}
}
DEBUG(std::cerr << "\t\tclearing temporarily used operands:\n");
for (unsigned i = 0, e = tempUseOperands_.size(); i != e; ++i) {
clearVirtReg(tempUseOperands_[i]);
}
tempUseOperands_.clear();
DEBUG(std::cerr << "\t\tassigning temporarily defined operands to "
"registers:\n");
for (unsigned i = 0, e = (*currentInstr_)->getNumOperands();
i != e; ++i) {
MachineOperand& op = (*currentInstr_)->getOperand(i);
if (op.isVirtualRegister() && !op.opIsUse()) {
unsigned virtReg = op.getAllocatedRegNum();
unsigned physReg = v2pMap_[virtReg];
if (!physReg) {
physReg = getFreeTempPhysReg(virtReg);
}
if (op.opIsDefAndUse()) {
loadVirt2PhysReg(virtReg, physReg);
}
else {
assignVirt2PhysReg(virtReg, physReg);
}
tempDefOperands_.push_back(virtReg);
(*currentInstr_)->SetMachineOperandReg(i, physReg);
}
}
// if the instruction is a two address instruction and the
// source operands are not identical we need to insert
// extra instructions.
unsigned opcode = (*currentInstr_)->getOpcode();
if (tm_->getInstrInfo().isTwoAddrInstr(opcode) &&
(*currentInstr_)->getOperand(0).getAllocatedRegNum() !=
(*currentInstr_)->getOperand(1).getAllocatedRegNum()) {
assert((*currentInstr_)->getOperand(1).isRegister() &&
(*currentInstr_)->getOperand(1).getAllocatedRegNum() &&
(*currentInstr_)->getOperand(1).opIsUse() &&
"Two address instruction invalid");
unsigned regA =
(*currentInstr_)->getOperand(0).getAllocatedRegNum();
unsigned regB =
(*currentInstr_)->getOperand(1).getAllocatedRegNum();
unsigned regC =
((*currentInstr_)->getNumOperands() > 2 &&
(*currentInstr_)->getOperand(2).isRegister()) ?
(*currentInstr_)->getOperand(2).getAllocatedRegNum() :
0;
const TargetRegisterClass* rc = mri_->getRegClass(regA);
// special case: "a = b op a". If b is a temporary
// reserved register rewrite as: "b = b op a; a = b"
// otherwise use a temporary reserved register t and
// rewrite as: "t = b; t = t op a; a = t"
if (regC && regA == regC) {
// b is a temp reserved register
if (find(reserved_.begin(), reserved_.end(),
regB) != reserved_.end()) {
(*currentInstr_)->SetMachineOperandReg(0, regB);
++currentInstr_;
instrAdded_ += mri_->copyRegToReg(*currentMbb_,
currentInstr_,
regA,
regB,
rc);
--currentInstr_;
}
// b is just a normal register
else {
unsigned tempReg = getFreeTempPhysReg(rc);
assert (tempReg &&
"no free temp reserved physical register?");
instrAdded_ += mri_->copyRegToReg(*currentMbb_,
currentInstr_,
tempReg,
regB,
rc);
(*currentInstr_)->SetMachineOperandReg(0, tempReg);
(*currentInstr_)->SetMachineOperandReg(1, tempReg);
++currentInstr_;
instrAdded_ += mri_->copyRegToReg(*currentMbb_,
currentInstr_,
regA,
tempReg,
rc);
--currentInstr_;
}
}
// "a = b op c" gets rewritten to "a = b; a = a op c"
else {
instrAdded_ += mri_->copyRegToReg(*currentMbb_,
currentInstr_,
regA,
regB,
rc);
(*currentInstr_)->SetMachineOperandReg(1, regA);
}
}
}
for (unsigned i = 0, e = p2vMap_.size(); i != e; ++i) {
assert(p2vMap_[i] != i &&
"reserved physical registers at end of basic block?");
}
}
return true;
}
void RA::processActiveIntervals(Intervals::const_iterator cur)
{
DEBUG(std::cerr << "\tprocessing active intervals:\n");
for (IntervalPtrs::iterator i = active_.begin(); i != active_.end();) {
unsigned reg = (*i)->reg;
// remove expired intervals. we expire earlier because this if
// an interval expires this is going to be the last use. in
// this case we can reuse the register for a def in the same
// instruction
if ((*i)->expired(cur->start() + 1)) {
DEBUG(std::cerr << "\t\tinterval " << **i << " expired\n");
if (reg < MRegisterInfo::FirstVirtualRegister) {
clearReservedPhysReg(reg);
}
else {
p2vMap_[v2pMap_[reg]] = 0;
}
// remove interval from active
i = active_.erase(i);
}
// move not active intervals to inactive list
// else if (!(*i)->overlaps(curIndex)) {
// DEBUG(std::cerr << "\t\t\tinterval " << **i << " inactive\n");
// unmarkReg(virtReg);
// // add interval to inactive
// inactive_.push_back(*i);
// // remove interval from active
// i = active_.erase(i);
// }
else {
++i;
}
}
}
void RA::processInactiveIntervals(Intervals::const_iterator cur)
{
// DEBUG(std::cerr << "\tprocessing inactive intervals:\n");
// for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end();) {
// unsigned virtReg = (*i)->reg;
// // remove expired intervals
// if ((*i)->expired(curIndex)) {
// DEBUG(std::cerr << "\t\t\tinterval " << **i << " expired\n");
// freePhysReg(virtReg);
// // remove from inactive
// i = inactive_.erase(i);
// }
// // move re-activated intervals in active list
// else if ((*i)->overlaps(curIndex)) {
// DEBUG(std::cerr << "\t\t\tinterval " << **i << " active\n");
// markReg(virtReg);
// // add to active
// active_.push_back(*i);
// // remove from inactive
// i = inactive_.erase(i);
// }
// else {
// ++i;
// }
// }
}
void RA::assignStackSlotAtInterval(Intervals::const_iterator cur)
{
DEBUG(std::cerr << "\t\tassigning stack slot at interval "
<< *cur << ":\n");
assert(!active_.empty() &&
"active set cannot be empty when choosing a register to spill");
const TargetRegisterClass* rcCur =
mf_->getSSARegMap()->getRegClass(cur->reg);
// find the interval for a virtual register that ends last in
// active and belongs to the same register class as the current
// interval
IntervalPtrs::iterator lastEndActive = active_.begin();
for (IntervalPtrs::iterator e = active_.end();
lastEndActive != e; ++lastEndActive) {
if ((*lastEndActive)->reg >= MRegisterInfo::FirstVirtualRegister) {
const TargetRegisterClass* rc =
mri_->getRegClass(v2pMap_[(*lastEndActive)->reg]);
if (rcCur == rc) {
break;
}
}
}
for (IntervalPtrs::iterator i = lastEndActive, e = active_.end();
i != e; ++i) {
if ((*i)->reg >= MRegisterInfo::FirstVirtualRegister) {
const TargetRegisterClass* rc =
mri_->getRegClass(v2pMap_[(*i)->reg]);
if (rcCur == rc &&
(*lastEndActive)->end() < (*i)->end()) {
lastEndActive = i;
}
}
}
// find the interval for a virtual register that ends last in
// inactive and belongs to the same register class as the current
// interval
IntervalPtrs::iterator lastEndInactive = inactive_.begin();
for (IntervalPtrs::iterator e = inactive_.end();
lastEndInactive != e; ++lastEndInactive) {
if ((*lastEndInactive)->reg >= MRegisterInfo::FirstVirtualRegister) {
const TargetRegisterClass* rc =
mri_->getRegClass(v2pMap_[(*lastEndInactive)->reg]);
if (rcCur == rc) {
break;
}
}
}
for (IntervalPtrs::iterator i = lastEndInactive, e = inactive_.end();
i != e; ++i) {
if ((*i)->reg >= MRegisterInfo::FirstVirtualRegister) {
const TargetRegisterClass* rc =
mri_->getRegClass(v2pMap_[(*i)->reg]);
if (rcCur == rc &&
(*lastEndInactive)->end() < (*i)->end()) {
lastEndInactive = i;
}
}
}
unsigned lastEndActiveInactive = 0;
if (lastEndActive != active_.end() &&
lastEndActiveInactive < (*lastEndActive)->end()) {
lastEndActiveInactive = (*lastEndActive)->end();
}
if (lastEndInactive != inactive_.end() &&
lastEndActiveInactive < (*lastEndInactive)->end()) {
lastEndActiveInactive = (*lastEndInactive)->end();
}
if (lastEndActiveInactive > cur->end()) {
if (lastEndInactive == inactive_.end() ||
(*lastEndActive)->end() > (*lastEndInactive)->end()) {
assignVirt2StackSlot((*lastEndActive)->reg);
active_.erase(lastEndActive);
}
else {
assignVirt2StackSlot((*lastEndInactive)->reg);
inactive_.erase(lastEndInactive);
}
unsigned physReg = getFreePhysReg(cur->reg);
assert(physReg && "no free physical register after spill?");
assignVirt2PhysReg(cur->reg, physReg);
active_.push_back(&*cur);
}
else {
assignVirt2StackSlot(cur->reg);
}
}
void RA::reservePhysReg(unsigned physReg)
{
DEBUG(std::cerr << "\t\t\treserving physical physical register: "
<< mri_->getName(physReg) << '\n');
// if this register holds a value spill it
unsigned virtReg = p2vMap_[physReg];
if (virtReg != 0) {
assert(virtReg != physReg && "reserving an already reserved phus reg?");
// remove interval from active
for (IntervalPtrs::iterator i = active_.begin(), e = active_.end();
i != e; ++i) {
if ((*i)->reg == virtReg) {
active_.erase(i);
break;
}
}
spillVirtReg(virtReg);
}
p2vMap_[physReg] = physReg; // this denotes a reserved physical register
}
void RA::clearReservedPhysReg(unsigned physReg)
{
DEBUG(std::cerr << "\t\t\tclearing reserved physical physical register: "
<< mri_->getName(physReg) << '\n');
assert(p2vMap_[physReg] == physReg &&
"attempt to clear a non reserved physical register");
p2vMap_[physReg] = 0;
}
bool RA::physRegAvailable(unsigned physReg)
{
if (p2vMap_[physReg]) {
return false;
}
// if it aliases other registers it is still not free
for (const unsigned* as = mri_->getAliasSet(physReg); *as; ++as) {
if (p2vMap_[*as]) {
return false;
}
}
// if it is one of the reserved registers it is still not free
if (find(reserved_.begin(), reserved_.end(), physReg) != reserved_.end()) {
return false;
}
return true;
}
unsigned RA::getFreePhysReg(unsigned virtReg)
{
DEBUG(std::cerr << "\t\tgetting free physical register: ");
const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
TargetRegisterClass::iterator reg = rc->allocation_order_begin(*mf_);
TargetRegisterClass::iterator regEnd = rc->allocation_order_end(*mf_);
for (; reg != regEnd; ++reg) {
if (physRegAvailable(*reg)) {
assert(*reg != 0 && "Cannot use register!");
DEBUG(std::cerr << mri_->getName(*reg) << '\n');
return *reg; // Found an unused register!
}
}
DEBUG(std::cerr << "no free register\n");
return 0;
}
bool RA::tempPhysRegAvailable(unsigned physReg)
{
assert(find(reserved_.begin(), reserved_.end(), physReg) != reserved_.end()
&& "cannot call this method with a non reserved temp register");
if (p2vMap_[physReg]) {
return false;
}
// if it aliases other registers it is still not free
for (const unsigned* as = mri_->getAliasSet(physReg); *as; ++as) {
if (p2vMap_[*as]) {
return false;
}
}
return true;
}
unsigned RA::getFreeTempPhysReg(const TargetRegisterClass* rc)
{
DEBUG(std::cerr << "\t\tgetting free temporary physical register: ");
for (Regs::const_iterator
reg = reserved_.begin(), regEnd = reserved_.end();
reg != regEnd; ++reg) {
if (rc == mri_->getRegClass(*reg) && tempPhysRegAvailable(*reg)) {
assert(*reg != 0 && "Cannot use register!");
DEBUG(std::cerr << mri_->getName(*reg) << '\n');
return *reg; // Found an unused register!
}
}
assert(0 && "no free temporary physical register?");
return 0;
}
void RA::assignVirt2PhysReg(unsigned virtReg, unsigned physReg)
{
assert((physRegAvailable(physReg) ||
find(reserved_.begin(),
reserved_.end(),
physReg) != reserved_.end()) &&
"attempt to allocate to a not available physical register");
v2pMap_[virtReg] = physReg;
p2vMap_[physReg] = virtReg;
}
void RA::clearVirtReg(unsigned virtReg)
{
Virt2PhysMap::iterator it = v2pMap_.find(virtReg);
assert(it != v2pMap_.end() &&
"attempting to clear a not allocated virtual register");
unsigned physReg = it->second;
p2vMap_[physReg] = 0;
v2pMap_[virtReg] = 0; // this marks that this virtual register
// lives on the stack
DEBUG(std::cerr << "\t\t\tcleared register " << mri_->getName(physReg)
<< "\n");
}
void RA::assignVirt2StackSlot(unsigned virtReg)
{
const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
int frameIndex = mf_->getFrameInfo()->CreateStackObject(rc);
bool inserted = v2ssMap_.insert(std::make_pair(virtReg, frameIndex)).second;
assert(inserted &&
"attempt to assign stack slot to already assigned register?");
// if the virtual register was previously assigned clear the mapping
// and free the virtual register
if (v2pMap_.find(virtReg) != v2pMap_.end()) {
clearVirtReg(virtReg);
}
}
int RA::findOrCreateStackSlot(unsigned virtReg)
{
// use lower_bound so that we can do a possibly O(1) insert later
// if necessary
Virt2StackSlotMap::iterator it = v2ssMap_.lower_bound(virtReg);
if (it != v2ssMap_.end() && it->first == virtReg) {
return it->second;
}
const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
int frameIndex = mf_->getFrameInfo()->CreateStackObject(rc);
v2ssMap_.insert(it, std::make_pair(virtReg, frameIndex));
return frameIndex;
}
void RA::spillVirtReg(unsigned virtReg)
{
DEBUG(std::cerr << "\t\t\tspilling register: " << virtReg);
const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
int frameIndex = findOrCreateStackSlot(virtReg);
DEBUG(std::cerr << " to stack slot #" << frameIndex << '\n');
++numSpilled;
instrAdded_ += mri_->storeRegToStackSlot(*currentMbb_, currentInstr_,
v2pMap_[virtReg], frameIndex, rc);
clearVirtReg(virtReg);
}
void RA::loadVirt2PhysReg(unsigned virtReg, unsigned physReg)
{
DEBUG(std::cerr << "\t\t\tloading register: " << virtReg);
const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
int frameIndex = findOrCreateStackSlot(virtReg);
DEBUG(std::cerr << " from stack slot #" << frameIndex << '\n');
++numReloaded;
instrAdded_ += mri_->loadRegFromStackSlot(*currentMbb_, currentInstr_,
physReg, frameIndex, rc);
assignVirt2PhysReg(virtReg, physReg);
}
FunctionPass* llvm::createLinearScanRegisterAllocator() {
return new RA();
}