mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@184569 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2257 lines
		
	
	
		
			84 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			2257 lines
		
	
	
		
			84 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- RegisterCoalescer.cpp - Generic Register Coalescing Interface -------==//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// This file implements the generic RegisterCoalescer interface which
 | 
						|
// is used as the common interface used by all clients and
 | 
						|
// implementations of register coalescing.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "regalloc"
 | 
						|
#include "RegisterCoalescer.h"
 | 
						|
#include "llvm/ADT/OwningPtr.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallSet.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/Analysis/AliasAnalysis.h"
 | 
						|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
 | 
						|
#include "llvm/CodeGen/LiveRangeEdit.h"
 | 
						|
#include "llvm/CodeGen/MachineFrameInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineLoopInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineRegisterInfo.h"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/CodeGen/RegisterClassInfo.h"
 | 
						|
#include "llvm/CodeGen/VirtRegMap.h"
 | 
						|
#include "llvm/IR/Value.h"
 | 
						|
#include "llvm/Pass.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/ErrorHandling.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Target/TargetMachine.h"
 | 
						|
#include "llvm/Target/TargetRegisterInfo.h"
 | 
						|
#include "llvm/Target/TargetSubtargetInfo.h"
 | 
						|
#include <algorithm>
 | 
						|
#include <cmath>
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
STATISTIC(numJoins    , "Number of interval joins performed");
 | 
						|
STATISTIC(numCrossRCs , "Number of cross class joins performed");
 | 
						|
STATISTIC(numCommutes , "Number of instruction commuting performed");
 | 
						|
STATISTIC(numExtends  , "Number of copies extended");
 | 
						|
STATISTIC(NumReMats   , "Number of instructions re-materialized");
 | 
						|
STATISTIC(NumInflated , "Number of register classes inflated");
 | 
						|
STATISTIC(NumLaneConflicts, "Number of dead lane conflicts tested");
 | 
						|
STATISTIC(NumLaneResolves,  "Number of dead lane conflicts resolved");
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
EnableJoining("join-liveintervals",
 | 
						|
              cl::desc("Coalesce copies (default=true)"),
 | 
						|
              cl::init(true));
 | 
						|
 | 
						|
// Temporary flag to test critical edge unsplitting.
 | 
						|
static cl::opt<bool>
 | 
						|
EnableJoinSplits("join-splitedges",
 | 
						|
  cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden);
 | 
						|
 | 
						|
// Temporary flag to test global copy optimization.
 | 
						|
static cl::opt<cl::boolOrDefault>
 | 
						|
EnableGlobalCopies("join-globalcopies",
 | 
						|
  cl::desc("Coalesce copies that span blocks (default=subtarget)"),
 | 
						|
  cl::init(cl::BOU_UNSET), cl::Hidden);
 | 
						|
 | 
						|
static cl::opt<bool>
 | 
						|
VerifyCoalescing("verify-coalescing",
 | 
						|
         cl::desc("Verify machine instrs before and after register coalescing"),
 | 
						|
         cl::Hidden);
 | 
						|
 | 
						|
namespace {
 | 
						|
  class RegisterCoalescer : public MachineFunctionPass,
 | 
						|
                            private LiveRangeEdit::Delegate {
 | 
						|
    MachineFunction* MF;
 | 
						|
    MachineRegisterInfo* MRI;
 | 
						|
    const TargetMachine* TM;
 | 
						|
    const TargetRegisterInfo* TRI;
 | 
						|
    const TargetInstrInfo* TII;
 | 
						|
    LiveIntervals *LIS;
 | 
						|
    const MachineLoopInfo* Loops;
 | 
						|
    AliasAnalysis *AA;
 | 
						|
    RegisterClassInfo RegClassInfo;
 | 
						|
 | 
						|
    /// \brief True if the coalescer should aggressively coalesce global copies
 | 
						|
    /// in favor of keeping local copies.
 | 
						|
    bool JoinGlobalCopies;
 | 
						|
 | 
						|
    /// \brief True if the coalescer should aggressively coalesce fall-thru
 | 
						|
    /// blocks exclusively containing copies.
 | 
						|
    bool JoinSplitEdges;
 | 
						|
 | 
						|
    /// WorkList - Copy instructions yet to be coalesced.
 | 
						|
    SmallVector<MachineInstr*, 8> WorkList;
 | 
						|
    SmallVector<MachineInstr*, 8> LocalWorkList;
 | 
						|
 | 
						|
    /// ErasedInstrs - Set of instruction pointers that have been erased, and
 | 
						|
    /// that may be present in WorkList.
 | 
						|
    SmallPtrSet<MachineInstr*, 8> ErasedInstrs;
 | 
						|
 | 
						|
    /// Dead instructions that are about to be deleted.
 | 
						|
    SmallVector<MachineInstr*, 8> DeadDefs;
 | 
						|
 | 
						|
    /// Virtual registers to be considered for register class inflation.
 | 
						|
    SmallVector<unsigned, 8> InflateRegs;
 | 
						|
 | 
						|
    /// Recursively eliminate dead defs in DeadDefs.
 | 
						|
    void eliminateDeadDefs();
 | 
						|
 | 
						|
    /// LiveRangeEdit callback.
 | 
						|
    void LRE_WillEraseInstruction(MachineInstr *MI);
 | 
						|
 | 
						|
    /// coalesceLocals - coalesce the LocalWorkList.
 | 
						|
    void coalesceLocals();
 | 
						|
 | 
						|
    /// joinAllIntervals - join compatible live intervals
 | 
						|
    void joinAllIntervals();
 | 
						|
 | 
						|
    /// copyCoalesceInMBB - Coalesce copies in the specified MBB, putting
 | 
						|
    /// copies that cannot yet be coalesced into WorkList.
 | 
						|
    void copyCoalesceInMBB(MachineBasicBlock *MBB);
 | 
						|
 | 
						|
    /// copyCoalesceWorkList - Try to coalesce all copies in CurrList. Return
 | 
						|
    /// true if any progress was made.
 | 
						|
    bool copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList);
 | 
						|
 | 
						|
    /// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
 | 
						|
    /// which are the src/dst of the copy instruction CopyMI.  This returns
 | 
						|
    /// true if the copy was successfully coalesced away. If it is not
 | 
						|
    /// currently possible to coalesce this interval, but it may be possible if
 | 
						|
    /// other things get coalesced, then it returns true by reference in
 | 
						|
    /// 'Again'.
 | 
						|
    bool joinCopy(MachineInstr *TheCopy, bool &Again);
 | 
						|
 | 
						|
    /// joinIntervals - Attempt to join these two intervals.  On failure, this
 | 
						|
    /// returns false.  The output "SrcInt" will not have been modified, so we
 | 
						|
    /// can use this information below to update aliases.
 | 
						|
    bool joinIntervals(CoalescerPair &CP);
 | 
						|
 | 
						|
    /// Attempt joining two virtual registers. Return true on success.
 | 
						|
    bool joinVirtRegs(CoalescerPair &CP);
 | 
						|
 | 
						|
    /// Attempt joining with a reserved physreg.
 | 
						|
    bool joinReservedPhysReg(CoalescerPair &CP);
 | 
						|
 | 
						|
    /// adjustCopiesBackFrom - We found a non-trivially-coalescable copy. If
 | 
						|
    /// the source value number is defined by a copy from the destination reg
 | 
						|
    /// see if we can merge these two destination reg valno# into a single
 | 
						|
    /// value number, eliminating a copy.
 | 
						|
    bool adjustCopiesBackFrom(const CoalescerPair &CP, MachineInstr *CopyMI);
 | 
						|
 | 
						|
    /// hasOtherReachingDefs - Return true if there are definitions of IntB
 | 
						|
    /// other than BValNo val# that can reach uses of AValno val# of IntA.
 | 
						|
    bool hasOtherReachingDefs(LiveInterval &IntA, LiveInterval &IntB,
 | 
						|
                              VNInfo *AValNo, VNInfo *BValNo);
 | 
						|
 | 
						|
    /// removeCopyByCommutingDef - We found a non-trivially-coalescable copy.
 | 
						|
    /// If the source value number is defined by a commutable instruction and
 | 
						|
    /// its other operand is coalesced to the copy dest register, see if we
 | 
						|
    /// can transform the copy into a noop by commuting the definition.
 | 
						|
    bool removeCopyByCommutingDef(const CoalescerPair &CP,MachineInstr *CopyMI);
 | 
						|
 | 
						|
    /// reMaterializeTrivialDef - If the source of a copy is defined by a
 | 
						|
    /// trivial computation, replace the copy by rematerialize the definition.
 | 
						|
    bool reMaterializeTrivialDef(CoalescerPair &CP, MachineInstr *CopyMI,
 | 
						|
                                 bool &IsDefCopy);
 | 
						|
 | 
						|
    /// canJoinPhys - Return true if a physreg copy should be joined.
 | 
						|
    bool canJoinPhys(const CoalescerPair &CP);
 | 
						|
 | 
						|
    /// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
 | 
						|
    /// update the subregister number if it is not zero. If DstReg is a
 | 
						|
    /// physical register and the existing subregister number of the def / use
 | 
						|
    /// being updated is not zero, make sure to set it to the correct physical
 | 
						|
    /// subregister.
 | 
						|
    void updateRegDefsUses(unsigned SrcReg, unsigned DstReg, unsigned SubIdx);
 | 
						|
 | 
						|
    /// eliminateUndefCopy - Handle copies of undef values.
 | 
						|
    bool eliminateUndefCopy(MachineInstr *CopyMI, const CoalescerPair &CP);
 | 
						|
 | 
						|
  public:
 | 
						|
    static char ID; // Class identification, replacement for typeinfo
 | 
						|
    RegisterCoalescer() : MachineFunctionPass(ID) {
 | 
						|
      initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
 | 
						|
 | 
						|
    virtual void releaseMemory();
 | 
						|
 | 
						|
    /// runOnMachineFunction - pass entry point
 | 
						|
    virtual bool runOnMachineFunction(MachineFunction&);
 | 
						|
 | 
						|
    /// print - Implement the dump method.
 | 
						|
    virtual void print(raw_ostream &O, const Module* = 0) const;
 | 
						|
  };
 | 
						|
} /// end anonymous namespace
 | 
						|
 | 
						|
char &llvm::RegisterCoalescerID = RegisterCoalescer::ID;
 | 
						|
 | 
						|
INITIALIZE_PASS_BEGIN(RegisterCoalescer, "simple-register-coalescing",
 | 
						|
                      "Simple Register Coalescing", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
 | 
						|
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
 | 
						|
INITIALIZE_PASS_END(RegisterCoalescer, "simple-register-coalescing",
 | 
						|
                    "Simple Register Coalescing", false, false)
 | 
						|
 | 
						|
char RegisterCoalescer::ID = 0;
 | 
						|
 | 
						|
static bool isMoveInstr(const TargetRegisterInfo &tri, const MachineInstr *MI,
 | 
						|
                        unsigned &Src, unsigned &Dst,
 | 
						|
                        unsigned &SrcSub, unsigned &DstSub) {
 | 
						|
  if (MI->isCopy()) {
 | 
						|
    Dst = MI->getOperand(0).getReg();
 | 
						|
    DstSub = MI->getOperand(0).getSubReg();
 | 
						|
    Src = MI->getOperand(1).getReg();
 | 
						|
    SrcSub = MI->getOperand(1).getSubReg();
 | 
						|
  } else if (MI->isSubregToReg()) {
 | 
						|
    Dst = MI->getOperand(0).getReg();
 | 
						|
    DstSub = tri.composeSubRegIndices(MI->getOperand(0).getSubReg(),
 | 
						|
                                      MI->getOperand(3).getImm());
 | 
						|
    Src = MI->getOperand(2).getReg();
 | 
						|
    SrcSub = MI->getOperand(2).getSubReg();
 | 
						|
  } else
 | 
						|
    return false;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Return true if this block should be vacated by the coalescer to eliminate
 | 
						|
// branches. The important cases to handle in the coalescer are critical edges
 | 
						|
// split during phi elimination which contain only copies. Simple blocks that
 | 
						|
// contain non-branches should also be vacated, but this can be handled by an
 | 
						|
// earlier pass similar to early if-conversion.
 | 
						|
static bool isSplitEdge(const MachineBasicBlock *MBB) {
 | 
						|
  if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  for (MachineBasicBlock::const_iterator MII = MBB->begin(), E = MBB->end();
 | 
						|
       MII != E; ++MII) {
 | 
						|
    if (!MII->isCopyLike() && !MII->isUnconditionalBranch())
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool CoalescerPair::setRegisters(const MachineInstr *MI) {
 | 
						|
  SrcReg = DstReg = 0;
 | 
						|
  SrcIdx = DstIdx = 0;
 | 
						|
  NewRC = 0;
 | 
						|
  Flipped = CrossClass = false;
 | 
						|
 | 
						|
  unsigned Src, Dst, SrcSub, DstSub;
 | 
						|
  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
 | 
						|
    return false;
 | 
						|
  Partial = SrcSub || DstSub;
 | 
						|
 | 
						|
  // If one register is a physreg, it must be Dst.
 | 
						|
  if (TargetRegisterInfo::isPhysicalRegister(Src)) {
 | 
						|
    if (TargetRegisterInfo::isPhysicalRegister(Dst))
 | 
						|
      return false;
 | 
						|
    std::swap(Src, Dst);
 | 
						|
    std::swap(SrcSub, DstSub);
 | 
						|
    Flipped = true;
 | 
						|
  }
 | 
						|
 | 
						|
  const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
 | 
						|
 | 
						|
  if (TargetRegisterInfo::isPhysicalRegister(Dst)) {
 | 
						|
    // Eliminate DstSub on a physreg.
 | 
						|
    if (DstSub) {
 | 
						|
      Dst = TRI.getSubReg(Dst, DstSub);
 | 
						|
      if (!Dst) return false;
 | 
						|
      DstSub = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    // Eliminate SrcSub by picking a corresponding Dst superregister.
 | 
						|
    if (SrcSub) {
 | 
						|
      Dst = TRI.getMatchingSuperReg(Dst, SrcSub, MRI.getRegClass(Src));
 | 
						|
      if (!Dst) return false;
 | 
						|
      SrcSub = 0;
 | 
						|
    } else if (!MRI.getRegClass(Src)->contains(Dst)) {
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    // Both registers are virtual.
 | 
						|
    const TargetRegisterClass *SrcRC = MRI.getRegClass(Src);
 | 
						|
    const TargetRegisterClass *DstRC = MRI.getRegClass(Dst);
 | 
						|
 | 
						|
    // Both registers have subreg indices.
 | 
						|
    if (SrcSub && DstSub) {
 | 
						|
      // Copies between different sub-registers are never coalescable.
 | 
						|
      if (Src == Dst && SrcSub != DstSub)
 | 
						|
        return false;
 | 
						|
 | 
						|
      NewRC = TRI.getCommonSuperRegClass(SrcRC, SrcSub, DstRC, DstSub,
 | 
						|
                                         SrcIdx, DstIdx);
 | 
						|
      if (!NewRC)
 | 
						|
        return false;
 | 
						|
    } else if (DstSub) {
 | 
						|
      // SrcReg will be merged with a sub-register of DstReg.
 | 
						|
      SrcIdx = DstSub;
 | 
						|
      NewRC = TRI.getMatchingSuperRegClass(DstRC, SrcRC, DstSub);
 | 
						|
    } else if (SrcSub) {
 | 
						|
      // DstReg will be merged with a sub-register of SrcReg.
 | 
						|
      DstIdx = SrcSub;
 | 
						|
      NewRC = TRI.getMatchingSuperRegClass(SrcRC, DstRC, SrcSub);
 | 
						|
    } else {
 | 
						|
      // This is a straight copy without sub-registers.
 | 
						|
      NewRC = TRI.getCommonSubClass(DstRC, SrcRC);
 | 
						|
    }
 | 
						|
 | 
						|
    // The combined constraint may be impossible to satisfy.
 | 
						|
    if (!NewRC)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // Prefer SrcReg to be a sub-register of DstReg.
 | 
						|
    // FIXME: Coalescer should support subregs symmetrically.
 | 
						|
    if (DstIdx && !SrcIdx) {
 | 
						|
      std::swap(Src, Dst);
 | 
						|
      std::swap(SrcIdx, DstIdx);
 | 
						|
      Flipped = !Flipped;
 | 
						|
    }
 | 
						|
 | 
						|
    CrossClass = NewRC != DstRC || NewRC != SrcRC;
 | 
						|
  }
 | 
						|
  // Check our invariants
 | 
						|
  assert(TargetRegisterInfo::isVirtualRegister(Src) && "Src must be virtual");
 | 
						|
  assert(!(TargetRegisterInfo::isPhysicalRegister(Dst) && DstSub) &&
 | 
						|
         "Cannot have a physical SubIdx");
 | 
						|
  SrcReg = Src;
 | 
						|
  DstReg = Dst;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool CoalescerPair::flip() {
 | 
						|
  if (TargetRegisterInfo::isPhysicalRegister(DstReg))
 | 
						|
    return false;
 | 
						|
  std::swap(SrcReg, DstReg);
 | 
						|
  std::swap(SrcIdx, DstIdx);
 | 
						|
  Flipped = !Flipped;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
bool CoalescerPair::isCoalescable(const MachineInstr *MI) const {
 | 
						|
  if (!MI)
 | 
						|
    return false;
 | 
						|
  unsigned Src, Dst, SrcSub, DstSub;
 | 
						|
  if (!isMoveInstr(TRI, MI, Src, Dst, SrcSub, DstSub))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Find the virtual register that is SrcReg.
 | 
						|
  if (Dst == SrcReg) {
 | 
						|
    std::swap(Src, Dst);
 | 
						|
    std::swap(SrcSub, DstSub);
 | 
						|
  } else if (Src != SrcReg) {
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Now check that Dst matches DstReg.
 | 
						|
  if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
 | 
						|
    if (!TargetRegisterInfo::isPhysicalRegister(Dst))
 | 
						|
      return false;
 | 
						|
    assert(!DstIdx && !SrcIdx && "Inconsistent CoalescerPair state.");
 | 
						|
    // DstSub could be set for a physreg from INSERT_SUBREG.
 | 
						|
    if (DstSub)
 | 
						|
      Dst = TRI.getSubReg(Dst, DstSub);
 | 
						|
    // Full copy of Src.
 | 
						|
    if (!SrcSub)
 | 
						|
      return DstReg == Dst;
 | 
						|
    // This is a partial register copy. Check that the parts match.
 | 
						|
    return TRI.getSubReg(DstReg, SrcSub) == Dst;
 | 
						|
  } else {
 | 
						|
    // DstReg is virtual.
 | 
						|
    if (DstReg != Dst)
 | 
						|
      return false;
 | 
						|
    // Registers match, do the subregisters line up?
 | 
						|
    return TRI.composeSubRegIndices(SrcIdx, SrcSub) ==
 | 
						|
           TRI.composeSubRegIndices(DstIdx, DstSub);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void RegisterCoalescer::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.setPreservesCFG();
 | 
						|
  AU.addRequired<AliasAnalysis>();
 | 
						|
  AU.addRequired<LiveIntervals>();
 | 
						|
  AU.addPreserved<LiveIntervals>();
 | 
						|
  AU.addPreserved<SlotIndexes>();
 | 
						|
  AU.addRequired<MachineLoopInfo>();
 | 
						|
  AU.addPreserved<MachineLoopInfo>();
 | 
						|
  AU.addPreservedID(MachineDominatorsID);
 | 
						|
  MachineFunctionPass::getAnalysisUsage(AU);
 | 
						|
}
 | 
						|
 | 
						|
void RegisterCoalescer::eliminateDeadDefs() {
 | 
						|
  SmallVector<LiveInterval*, 8> NewRegs;
 | 
						|
  LiveRangeEdit(0, NewRegs, *MF, *LIS, 0, this).eliminateDeadDefs(DeadDefs);
 | 
						|
}
 | 
						|
 | 
						|
// Callback from eliminateDeadDefs().
 | 
						|
void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr *MI) {
 | 
						|
  // MI may be in WorkList. Make sure we don't visit it.
 | 
						|
  ErasedInstrs.insert(MI);
 | 
						|
}
 | 
						|
 | 
						|
/// adjustCopiesBackFrom - We found a non-trivially-coalescable copy with IntA
 | 
						|
/// being the source and IntB being the dest, thus this defines a value number
 | 
						|
/// in IntB.  If the source value number (in IntA) is defined by a copy from B,
 | 
						|
/// see if we can merge these two pieces of B into a single value number,
 | 
						|
/// eliminating a copy.  For example:
 | 
						|
///
 | 
						|
///  A3 = B0
 | 
						|
///    ...
 | 
						|
///  B1 = A3      <- this copy
 | 
						|
///
 | 
						|
/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
 | 
						|
/// value number to be replaced with B0 (which simplifies the B liveinterval).
 | 
						|
///
 | 
						|
/// This returns true if an interval was modified.
 | 
						|
///
 | 
						|
bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair &CP,
 | 
						|
                                             MachineInstr *CopyMI) {
 | 
						|
  assert(!CP.isPartial() && "This doesn't work for partial copies.");
 | 
						|
  assert(!CP.isPhys() && "This doesn't work for physreg copies.");
 | 
						|
 | 
						|
  LiveInterval &IntA =
 | 
						|
    LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
 | 
						|
  LiveInterval &IntB =
 | 
						|
    LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
 | 
						|
  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
 | 
						|
 | 
						|
  // BValNo is a value number in B that is defined by a copy from A.  'B3' in
 | 
						|
  // the example above.
 | 
						|
  LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
 | 
						|
  if (BLR == IntB.end()) return false;
 | 
						|
  VNInfo *BValNo = BLR->valno;
 | 
						|
 | 
						|
  // Get the location that B is defined at.  Two options: either this value has
 | 
						|
  // an unknown definition point or it is defined at CopyIdx.  If unknown, we
 | 
						|
  // can't process it.
 | 
						|
  if (BValNo->def != CopyIdx) return false;
 | 
						|
 | 
						|
  // AValNo is the value number in A that defines the copy, A3 in the example.
 | 
						|
  SlotIndex CopyUseIdx = CopyIdx.getRegSlot(true);
 | 
						|
  LiveInterval::iterator ALR = IntA.FindLiveRangeContaining(CopyUseIdx);
 | 
						|
  // The live range might not exist after fun with physreg coalescing.
 | 
						|
  if (ALR == IntA.end()) return false;
 | 
						|
  VNInfo *AValNo = ALR->valno;
 | 
						|
 | 
						|
  // If AValNo is defined as a copy from IntB, we can potentially process this.
 | 
						|
  // Get the instruction that defines this value number.
 | 
						|
  MachineInstr *ACopyMI = LIS->getInstructionFromIndex(AValNo->def);
 | 
						|
  // Don't allow any partial copies, even if isCoalescable() allows them.
 | 
						|
  if (!CP.isCoalescable(ACopyMI) || !ACopyMI->isFullCopy())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Get the LiveRange in IntB that this value number starts with.
 | 
						|
  LiveInterval::iterator ValLR =
 | 
						|
    IntB.FindLiveRangeContaining(AValNo->def.getPrevSlot());
 | 
						|
  if (ValLR == IntB.end())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Make sure that the end of the live range is inside the same block as
 | 
						|
  // CopyMI.
 | 
						|
  MachineInstr *ValLREndInst =
 | 
						|
    LIS->getInstructionFromIndex(ValLR->end.getPrevSlot());
 | 
						|
  if (!ValLREndInst || ValLREndInst->getParent() != CopyMI->getParent())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Okay, we now know that ValLR ends in the same block that the CopyMI
 | 
						|
  // live-range starts.  If there are no intervening live ranges between them in
 | 
						|
  // IntB, we can merge them.
 | 
						|
  if (ValLR+1 != BLR) return false;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Extending: " << PrintReg(IntB.reg, TRI));
 | 
						|
 | 
						|
  SlotIndex FillerStart = ValLR->end, FillerEnd = BLR->start;
 | 
						|
  // We are about to delete CopyMI, so need to remove it as the 'instruction
 | 
						|
  // that defines this value #'. Update the valnum with the new defining
 | 
						|
  // instruction #.
 | 
						|
  BValNo->def = FillerStart;
 | 
						|
 | 
						|
  // Okay, we can merge them.  We need to insert a new liverange:
 | 
						|
  // [ValLR.end, BLR.begin) of either value number, then we merge the
 | 
						|
  // two value numbers.
 | 
						|
  IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
 | 
						|
 | 
						|
  // Okay, merge "B1" into the same value number as "B0".
 | 
						|
  if (BValNo != ValLR->valno)
 | 
						|
    IntB.MergeValueNumberInto(BValNo, ValLR->valno);
 | 
						|
  DEBUG(dbgs() << "   result = " << IntB << '\n');
 | 
						|
 | 
						|
  // If the source instruction was killing the source register before the
 | 
						|
  // merge, unset the isKill marker given the live range has been extended.
 | 
						|
  int UIdx = ValLREndInst->findRegisterUseOperandIdx(IntB.reg, true);
 | 
						|
  if (UIdx != -1) {
 | 
						|
    ValLREndInst->getOperand(UIdx).setIsKill(false);
 | 
						|
  }
 | 
						|
 | 
						|
  // Rewrite the copy. If the copy instruction was killing the destination
 | 
						|
  // register before the merge, find the last use and trim the live range. That
 | 
						|
  // will also add the isKill marker.
 | 
						|
  CopyMI->substituteRegister(IntA.reg, IntB.reg, 0, *TRI);
 | 
						|
  if (ALR->end == CopyIdx)
 | 
						|
    LIS->shrinkToUses(&IntA);
 | 
						|
 | 
						|
  ++numExtends;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// hasOtherReachingDefs - Return true if there are definitions of IntB
 | 
						|
/// other than BValNo val# that can reach uses of AValno val# of IntA.
 | 
						|
bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval &IntA,
 | 
						|
                                             LiveInterval &IntB,
 | 
						|
                                             VNInfo *AValNo,
 | 
						|
                                             VNInfo *BValNo) {
 | 
						|
  // If AValNo has PHI kills, conservatively assume that IntB defs can reach
 | 
						|
  // the PHI values.
 | 
						|
  if (LIS->hasPHIKill(IntA, AValNo))
 | 
						|
    return true;
 | 
						|
 | 
						|
  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
 | 
						|
       AI != AE; ++AI) {
 | 
						|
    if (AI->valno != AValNo) continue;
 | 
						|
    LiveInterval::Ranges::iterator BI =
 | 
						|
      std::upper_bound(IntB.ranges.begin(), IntB.ranges.end(), AI->start);
 | 
						|
    if (BI != IntB.ranges.begin())
 | 
						|
      --BI;
 | 
						|
    for (; BI != IntB.ranges.end() && AI->end >= BI->start; ++BI) {
 | 
						|
      if (BI->valno == BValNo)
 | 
						|
        continue;
 | 
						|
      if (BI->start <= AI->start && BI->end > AI->start)
 | 
						|
        return true;
 | 
						|
      if (BI->start > AI->start && BI->start < AI->end)
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// removeCopyByCommutingDef - We found a non-trivially-coalescable copy with
 | 
						|
/// IntA being the source and IntB being the dest, thus this defines a value
 | 
						|
/// number in IntB.  If the source value number (in IntA) is defined by a
 | 
						|
/// commutable instruction and its other operand is coalesced to the copy dest
 | 
						|
/// register, see if we can transform the copy into a noop by commuting the
 | 
						|
/// definition. For example,
 | 
						|
///
 | 
						|
///  A3 = op A2 B0<kill>
 | 
						|
///    ...
 | 
						|
///  B1 = A3      <- this copy
 | 
						|
///    ...
 | 
						|
///     = op A3   <- more uses
 | 
						|
///
 | 
						|
/// ==>
 | 
						|
///
 | 
						|
///  B2 = op B0 A2<kill>
 | 
						|
///    ...
 | 
						|
///  B1 = B2      <- now an identify copy
 | 
						|
///    ...
 | 
						|
///     = op B2   <- more uses
 | 
						|
///
 | 
						|
/// This returns true if an interval was modified.
 | 
						|
///
 | 
						|
bool RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair &CP,
 | 
						|
                                                 MachineInstr *CopyMI) {
 | 
						|
  assert (!CP.isPhys());
 | 
						|
 | 
						|
  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot();
 | 
						|
 | 
						|
  LiveInterval &IntA =
 | 
						|
    LIS->getInterval(CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg());
 | 
						|
  LiveInterval &IntB =
 | 
						|
    LIS->getInterval(CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg());
 | 
						|
 | 
						|
  // BValNo is a value number in B that is defined by a copy from A. 'B3' in
 | 
						|
  // the example above.
 | 
						|
  VNInfo *BValNo = IntB.getVNInfoAt(CopyIdx);
 | 
						|
  if (!BValNo || BValNo->def != CopyIdx)
 | 
						|
    return false;
 | 
						|
 | 
						|
  assert(BValNo->def == CopyIdx && "Copy doesn't define the value?");
 | 
						|
 | 
						|
  // AValNo is the value number in A that defines the copy, A3 in the example.
 | 
						|
  VNInfo *AValNo = IntA.getVNInfoAt(CopyIdx.getRegSlot(true));
 | 
						|
  assert(AValNo && "COPY source not live");
 | 
						|
  if (AValNo->isPHIDef() || AValNo->isUnused())
 | 
						|
    return false;
 | 
						|
  MachineInstr *DefMI = LIS->getInstructionFromIndex(AValNo->def);
 | 
						|
  if (!DefMI)
 | 
						|
    return false;
 | 
						|
  if (!DefMI->isCommutable())
 | 
						|
    return false;
 | 
						|
  // If DefMI is a two-address instruction then commuting it will change the
 | 
						|
  // destination register.
 | 
						|
  int DefIdx = DefMI->findRegisterDefOperandIdx(IntA.reg);
 | 
						|
  assert(DefIdx != -1);
 | 
						|
  unsigned UseOpIdx;
 | 
						|
  if (!DefMI->isRegTiedToUseOperand(DefIdx, &UseOpIdx))
 | 
						|
    return false;
 | 
						|
  unsigned Op1, Op2, NewDstIdx;
 | 
						|
  if (!TII->findCommutedOpIndices(DefMI, Op1, Op2))
 | 
						|
    return false;
 | 
						|
  if (Op1 == UseOpIdx)
 | 
						|
    NewDstIdx = Op2;
 | 
						|
  else if (Op2 == UseOpIdx)
 | 
						|
    NewDstIdx = Op1;
 | 
						|
  else
 | 
						|
    return false;
 | 
						|
 | 
						|
  MachineOperand &NewDstMO = DefMI->getOperand(NewDstIdx);
 | 
						|
  unsigned NewReg = NewDstMO.getReg();
 | 
						|
  if (NewReg != IntB.reg || !LiveRangeQuery(IntB, AValNo->def).isKill())
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Make sure there are no other definitions of IntB that would reach the
 | 
						|
  // uses which the new definition can reach.
 | 
						|
  if (hasOtherReachingDefs(IntA, IntB, AValNo, BValNo))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If some of the uses of IntA.reg is already coalesced away, return false.
 | 
						|
  // It's not possible to determine whether it's safe to perform the coalescing.
 | 
						|
  for (MachineRegisterInfo::use_nodbg_iterator UI =
 | 
						|
         MRI->use_nodbg_begin(IntA.reg),
 | 
						|
       UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
 | 
						|
    MachineInstr *UseMI = &*UI;
 | 
						|
    SlotIndex UseIdx = LIS->getInstructionIndex(UseMI);
 | 
						|
    LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
 | 
						|
    if (ULR == IntA.end() || ULR->valno != AValNo)
 | 
						|
      continue;
 | 
						|
    // If this use is tied to a def, we can't rewrite the register.
 | 
						|
    if (UseMI->isRegTiedToDefOperand(UI.getOperandNo()))
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo->def << '\t'
 | 
						|
               << *DefMI);
 | 
						|
 | 
						|
  // At this point we have decided that it is legal to do this
 | 
						|
  // transformation.  Start by commuting the instruction.
 | 
						|
  MachineBasicBlock *MBB = DefMI->getParent();
 | 
						|
  MachineInstr *NewMI = TII->commuteInstruction(DefMI);
 | 
						|
  if (!NewMI)
 | 
						|
    return false;
 | 
						|
  if (TargetRegisterInfo::isVirtualRegister(IntA.reg) &&
 | 
						|
      TargetRegisterInfo::isVirtualRegister(IntB.reg) &&
 | 
						|
      !MRI->constrainRegClass(IntB.reg, MRI->getRegClass(IntA.reg)))
 | 
						|
    return false;
 | 
						|
  if (NewMI != DefMI) {
 | 
						|
    LIS->ReplaceMachineInstrInMaps(DefMI, NewMI);
 | 
						|
    MachineBasicBlock::iterator Pos = DefMI;
 | 
						|
    MBB->insert(Pos, NewMI);
 | 
						|
    MBB->erase(DefMI);
 | 
						|
  }
 | 
						|
  unsigned OpIdx = NewMI->findRegisterUseOperandIdx(IntA.reg, false);
 | 
						|
  NewMI->getOperand(OpIdx).setIsKill();
 | 
						|
 | 
						|
  // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
 | 
						|
  // A = or A, B
 | 
						|
  // ...
 | 
						|
  // B = A
 | 
						|
  // ...
 | 
						|
  // C = A<kill>
 | 
						|
  // ...
 | 
						|
  //   = B
 | 
						|
 | 
						|
  // Update uses of IntA of the specific Val# with IntB.
 | 
						|
  for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(IntA.reg),
 | 
						|
         UE = MRI->use_end(); UI != UE;) {
 | 
						|
    MachineOperand &UseMO = UI.getOperand();
 | 
						|
    MachineInstr *UseMI = &*UI;
 | 
						|
    ++UI;
 | 
						|
    if (UseMI->isDebugValue()) {
 | 
						|
      // FIXME These don't have an instruction index.  Not clear we have enough
 | 
						|
      // info to decide whether to do this replacement or not.  For now do it.
 | 
						|
      UseMO.setReg(NewReg);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    SlotIndex UseIdx = LIS->getInstructionIndex(UseMI).getRegSlot(true);
 | 
						|
    LiveInterval::iterator ULR = IntA.FindLiveRangeContaining(UseIdx);
 | 
						|
    if (ULR == IntA.end() || ULR->valno != AValNo)
 | 
						|
      continue;
 | 
						|
    // Kill flags are no longer accurate. They are recomputed after RA.
 | 
						|
    UseMO.setIsKill(false);
 | 
						|
    if (TargetRegisterInfo::isPhysicalRegister(NewReg))
 | 
						|
      UseMO.substPhysReg(NewReg, *TRI);
 | 
						|
    else
 | 
						|
      UseMO.setReg(NewReg);
 | 
						|
    if (UseMI == CopyMI)
 | 
						|
      continue;
 | 
						|
    if (!UseMI->isCopy())
 | 
						|
      continue;
 | 
						|
    if (UseMI->getOperand(0).getReg() != IntB.reg ||
 | 
						|
        UseMI->getOperand(0).getSubReg())
 | 
						|
      continue;
 | 
						|
 | 
						|
    // This copy will become a noop. If it's defining a new val#, merge it into
 | 
						|
    // BValNo.
 | 
						|
    SlotIndex DefIdx = UseIdx.getRegSlot();
 | 
						|
    VNInfo *DVNI = IntB.getVNInfoAt(DefIdx);
 | 
						|
    if (!DVNI)
 | 
						|
      continue;
 | 
						|
    DEBUG(dbgs() << "\t\tnoop: " << DefIdx << '\t' << *UseMI);
 | 
						|
    assert(DVNI->def == DefIdx);
 | 
						|
    BValNo = IntB.MergeValueNumberInto(BValNo, DVNI);
 | 
						|
    ErasedInstrs.insert(UseMI);
 | 
						|
    LIS->RemoveMachineInstrFromMaps(UseMI);
 | 
						|
    UseMI->eraseFromParent();
 | 
						|
  }
 | 
						|
 | 
						|
  // Extend BValNo by merging in IntA live ranges of AValNo. Val# definition
 | 
						|
  // is updated.
 | 
						|
  VNInfo *ValNo = BValNo;
 | 
						|
  ValNo->def = AValNo->def;
 | 
						|
  for (LiveInterval::iterator AI = IntA.begin(), AE = IntA.end();
 | 
						|
       AI != AE; ++AI) {
 | 
						|
    if (AI->valno != AValNo) continue;
 | 
						|
    IntB.addRange(LiveRange(AI->start, AI->end, ValNo));
 | 
						|
  }
 | 
						|
  DEBUG(dbgs() << "\t\textended: " << IntB << '\n');
 | 
						|
 | 
						|
  IntA.removeValNo(AValNo);
 | 
						|
  DEBUG(dbgs() << "\t\ttrimmed:  " << IntA << '\n');
 | 
						|
  ++numCommutes;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// reMaterializeTrivialDef - If the source of a copy is defined by a trivial
 | 
						|
/// computation, replace the copy by rematerialize the definition.
 | 
						|
bool RegisterCoalescer::reMaterializeTrivialDef(CoalescerPair &CP,
 | 
						|
                                                MachineInstr *CopyMI,
 | 
						|
                                                bool &IsDefCopy) {
 | 
						|
  IsDefCopy = false;
 | 
						|
  unsigned SrcReg = CP.isFlipped() ? CP.getDstReg() : CP.getSrcReg();
 | 
						|
  unsigned SrcIdx = CP.isFlipped() ? CP.getDstIdx() : CP.getSrcIdx();
 | 
						|
  unsigned DstReg = CP.isFlipped() ? CP.getSrcReg() : CP.getDstReg();
 | 
						|
  unsigned DstIdx = CP.isFlipped() ? CP.getSrcIdx() : CP.getDstIdx();
 | 
						|
  if (TargetRegisterInfo::isPhysicalRegister(SrcReg))
 | 
						|
    return false;
 | 
						|
 | 
						|
  LiveInterval &SrcInt = LIS->getInterval(SrcReg);
 | 
						|
  SlotIndex CopyIdx = LIS->getInstructionIndex(CopyMI).getRegSlot(true);
 | 
						|
  LiveInterval::iterator SrcLR = SrcInt.FindLiveRangeContaining(CopyIdx);
 | 
						|
  assert(SrcLR != SrcInt.end() && "Live range not found!");
 | 
						|
  VNInfo *ValNo = SrcLR->valno;
 | 
						|
  if (ValNo->isPHIDef() || ValNo->isUnused())
 | 
						|
    return false;
 | 
						|
  MachineInstr *DefMI = LIS->getInstructionFromIndex(ValNo->def);
 | 
						|
  if (!DefMI)
 | 
						|
    return false;
 | 
						|
  assert(DefMI && "Defining instruction disappeared");
 | 
						|
  if (DefMI->isCopyLike()) {
 | 
						|
    IsDefCopy = true;
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
  if (!DefMI->isAsCheapAsAMove())
 | 
						|
    return false;
 | 
						|
  if (!TII->isTriviallyReMaterializable(DefMI, AA))
 | 
						|
    return false;
 | 
						|
  bool SawStore = false;
 | 
						|
  if (!DefMI->isSafeToMove(TII, AA, SawStore))
 | 
						|
    return false;
 | 
						|
  const MCInstrDesc &MCID = DefMI->getDesc();
 | 
						|
  if (MCID.getNumDefs() != 1)
 | 
						|
    return false;
 | 
						|
  // Only support subregister destinations when the def is read-undef.
 | 
						|
  MachineOperand &DstOperand = CopyMI->getOperand(0);
 | 
						|
  unsigned CopyDstReg = DstOperand.getReg();
 | 
						|
  if (DstOperand.getSubReg() && !DstOperand.isUndef())
 | 
						|
    return false;
 | 
						|
 | 
						|
  const TargetRegisterClass *DefRC = TII->getRegClass(MCID, 0, TRI, *MF);
 | 
						|
  if (!DefMI->isImplicitDef()) {
 | 
						|
    if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
 | 
						|
      unsigned NewDstReg = DstReg;
 | 
						|
 | 
						|
      unsigned NewDstIdx = TRI->composeSubRegIndices(CP.getSrcIdx(),
 | 
						|
                                              DefMI->getOperand(0).getSubReg());
 | 
						|
      if (NewDstIdx)
 | 
						|
        NewDstReg = TRI->getSubReg(DstReg, NewDstIdx);
 | 
						|
 | 
						|
      // Finally, make sure that the physical subregister that will be
 | 
						|
      // constructed later is permitted for the instruction.
 | 
						|
      if (!DefRC->contains(NewDstReg))
 | 
						|
        return false;
 | 
						|
    } else {
 | 
						|
      // Theoretically, some stack frame reference could exist. Just make sure
 | 
						|
      // it hasn't actually happened.
 | 
						|
      assert(TargetRegisterInfo::isVirtualRegister(DstReg) &&
 | 
						|
             "Only expect to deal with virtual or physical registers");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  MachineBasicBlock *MBB = CopyMI->getParent();
 | 
						|
  MachineBasicBlock::iterator MII =
 | 
						|
    llvm::next(MachineBasicBlock::iterator(CopyMI));
 | 
						|
  TII->reMaterialize(*MBB, MII, DstReg, SrcIdx, DefMI, *TRI);
 | 
						|
  MachineInstr *NewMI = prior(MII);
 | 
						|
 | 
						|
  LIS->ReplaceMachineInstrInMaps(CopyMI, NewMI);
 | 
						|
  CopyMI->eraseFromParent();
 | 
						|
  ErasedInstrs.insert(CopyMI);
 | 
						|
 | 
						|
  // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
 | 
						|
  // We need to remember these so we can add intervals once we insert
 | 
						|
  // NewMI into SlotIndexes.
 | 
						|
  SmallVector<unsigned, 4> NewMIImplDefs;
 | 
						|
  for (unsigned i = NewMI->getDesc().getNumOperands(),
 | 
						|
         e = NewMI->getNumOperands(); i != e; ++i) {
 | 
						|
    MachineOperand &MO = NewMI->getOperand(i);
 | 
						|
    if (MO.isReg()) {
 | 
						|
      assert(MO.isDef() && MO.isImplicit() && MO.isDead() &&
 | 
						|
             TargetRegisterInfo::isPhysicalRegister(MO.getReg()));
 | 
						|
      NewMIImplDefs.push_back(MO.getReg());
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
 | 
						|
    unsigned NewIdx = NewMI->getOperand(0).getSubReg();
 | 
						|
    const TargetRegisterClass *RCForInst;
 | 
						|
    if (NewIdx)
 | 
						|
      RCForInst = TRI->getMatchingSuperRegClass(MRI->getRegClass(DstReg), DefRC,
 | 
						|
                                                NewIdx);
 | 
						|
 | 
						|
    if (MRI->constrainRegClass(DstReg, DefRC)) {
 | 
						|
      // The materialized instruction is quite capable of setting DstReg
 | 
						|
      // directly, but it may still have a now-trivial subregister index which
 | 
						|
      // we should clear.
 | 
						|
      NewMI->getOperand(0).setSubReg(0);
 | 
						|
    } else if (NewIdx && RCForInst) {
 | 
						|
      // The subreg index on NewMI is essential; we still have to make sure
 | 
						|
      // DstReg:idx is in a class that NewMI can use.
 | 
						|
      MRI->constrainRegClass(DstReg, RCForInst);
 | 
						|
    } else {
 | 
						|
      // DstReg is actually incompatible with NewMI, we have to move to a
 | 
						|
      // super-reg's class. This could come from a sequence like:
 | 
						|
      //     GR32 = MOV32r0
 | 
						|
      //     GR8 = COPY GR32:sub_8
 | 
						|
      MRI->setRegClass(DstReg, CP.getNewRC());
 | 
						|
      updateRegDefsUses(DstReg, DstReg, DstIdx);
 | 
						|
      NewMI->getOperand(0).setSubReg(
 | 
						|
          TRI->composeSubRegIndices(SrcIdx, DefMI->getOperand(0).getSubReg()));
 | 
						|
    }
 | 
						|
  } else if (NewMI->getOperand(0).getReg() != CopyDstReg) {
 | 
						|
    // The New instruction may be defining a sub-register of what's actually
 | 
						|
    // been asked for. If so it must implicitly define the whole thing.
 | 
						|
    assert(TargetRegisterInfo::isPhysicalRegister(DstReg) &&
 | 
						|
           "Only expect virtual or physical registers in remat");
 | 
						|
    NewMI->getOperand(0).setIsDead(true);
 | 
						|
    NewMI->addOperand(MachineOperand::CreateReg(CopyDstReg,
 | 
						|
                                                true  /*IsDef*/,
 | 
						|
                                                true  /*IsImp*/,
 | 
						|
                                                false /*IsKill*/));
 | 
						|
  }
 | 
						|
 | 
						|
  if (NewMI->getOperand(0).getSubReg())
 | 
						|
    NewMI->getOperand(0).setIsUndef();
 | 
						|
 | 
						|
  // CopyMI may have implicit operands, transfer them over to the newly
 | 
						|
  // rematerialized instruction. And update implicit def interval valnos.
 | 
						|
  for (unsigned i = CopyMI->getDesc().getNumOperands(),
 | 
						|
         e = CopyMI->getNumOperands(); i != e; ++i) {
 | 
						|
    MachineOperand &MO = CopyMI->getOperand(i);
 | 
						|
    if (MO.isReg()) {
 | 
						|
      assert(MO.isImplicit() && "No explicit operands after implict operands.");
 | 
						|
      // Discard VReg implicit defs.
 | 
						|
      if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
 | 
						|
        NewMI->addOperand(MO);
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  SlotIndex NewMIIdx = LIS->getInstructionIndex(NewMI);
 | 
						|
  for (unsigned i = 0, e = NewMIImplDefs.size(); i != e; ++i) {
 | 
						|
    unsigned Reg = NewMIImplDefs[i];
 | 
						|
    for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
 | 
						|
      if (LiveInterval *LI = LIS->getCachedRegUnit(*Units))
 | 
						|
        LI->createDeadDef(NewMIIdx.getRegSlot(), LIS->getVNInfoAllocator());
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Remat: " << *NewMI);
 | 
						|
  ++NumReMats;
 | 
						|
 | 
						|
  // The source interval can become smaller because we removed a use.
 | 
						|
  LIS->shrinkToUses(&SrcInt, &DeadDefs);
 | 
						|
  if (!DeadDefs.empty())
 | 
						|
    eliminateDeadDefs();
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// eliminateUndefCopy - ProcessImpicitDefs may leave some copies of <undef>
 | 
						|
/// values, it only removes local variables. When we have a copy like:
 | 
						|
///
 | 
						|
///   %vreg1 = COPY %vreg2<undef>
 | 
						|
///
 | 
						|
/// We delete the copy and remove the corresponding value number from %vreg1.
 | 
						|
/// Any uses of that value number are marked as <undef>.
 | 
						|
bool RegisterCoalescer::eliminateUndefCopy(MachineInstr *CopyMI,
 | 
						|
                                           const CoalescerPair &CP) {
 | 
						|
  SlotIndex Idx = LIS->getInstructionIndex(CopyMI);
 | 
						|
  LiveInterval *SrcInt = &LIS->getInterval(CP.getSrcReg());
 | 
						|
  if (SrcInt->liveAt(Idx))
 | 
						|
    return false;
 | 
						|
  LiveInterval *DstInt = &LIS->getInterval(CP.getDstReg());
 | 
						|
  if (DstInt->liveAt(Idx))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // No intervals are live-in to CopyMI - it is undef.
 | 
						|
  if (CP.isFlipped())
 | 
						|
    DstInt = SrcInt;
 | 
						|
  SrcInt = 0;
 | 
						|
 | 
						|
  VNInfo *DeadVNI = DstInt->getVNInfoAt(Idx.getRegSlot());
 | 
						|
  assert(DeadVNI && "No value defined in DstInt");
 | 
						|
  DstInt->removeValNo(DeadVNI);
 | 
						|
 | 
						|
  // Find new undef uses.
 | 
						|
  for (MachineRegisterInfo::reg_nodbg_iterator
 | 
						|
         I = MRI->reg_nodbg_begin(DstInt->reg), E = MRI->reg_nodbg_end();
 | 
						|
       I != E; ++I) {
 | 
						|
    MachineOperand &MO = I.getOperand();
 | 
						|
    if (MO.isDef() || MO.isUndef())
 | 
						|
      continue;
 | 
						|
    MachineInstr *MI = MO.getParent();
 | 
						|
    SlotIndex Idx = LIS->getInstructionIndex(MI);
 | 
						|
    if (DstInt->liveAt(Idx))
 | 
						|
      continue;
 | 
						|
    MO.setIsUndef(true);
 | 
						|
    DEBUG(dbgs() << "\tnew undef: " << Idx << '\t' << *MI);
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// updateRegDefsUses - Replace all defs and uses of SrcReg to DstReg and
 | 
						|
/// update the subregister number if it is not zero. If DstReg is a
 | 
						|
/// physical register and the existing subregister number of the def / use
 | 
						|
/// being updated is not zero, make sure to set it to the correct physical
 | 
						|
/// subregister.
 | 
						|
void RegisterCoalescer::updateRegDefsUses(unsigned SrcReg,
 | 
						|
                                          unsigned DstReg,
 | 
						|
                                          unsigned SubIdx) {
 | 
						|
  bool DstIsPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
 | 
						|
  LiveInterval *DstInt = DstIsPhys ? 0 : &LIS->getInterval(DstReg);
 | 
						|
 | 
						|
  SmallPtrSet<MachineInstr*, 8> Visited;
 | 
						|
  for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(SrcReg);
 | 
						|
       MachineInstr *UseMI = I.skipInstruction();) {
 | 
						|
    // Each instruction can only be rewritten once because sub-register
 | 
						|
    // composition is not always idempotent. When SrcReg != DstReg, rewriting
 | 
						|
    // the UseMI operands removes them from the SrcReg use-def chain, but when
 | 
						|
    // SrcReg is DstReg we could encounter UseMI twice if it has multiple
 | 
						|
    // operands mentioning the virtual register.
 | 
						|
    if (SrcReg == DstReg && !Visited.insert(UseMI))
 | 
						|
      continue;
 | 
						|
 | 
						|
    SmallVector<unsigned,8> Ops;
 | 
						|
    bool Reads, Writes;
 | 
						|
    tie(Reads, Writes) = UseMI->readsWritesVirtualRegister(SrcReg, &Ops);
 | 
						|
 | 
						|
    // If SrcReg wasn't read, it may still be the case that DstReg is live-in
 | 
						|
    // because SrcReg is a sub-register.
 | 
						|
    if (DstInt && !Reads && SubIdx)
 | 
						|
      Reads = DstInt->liveAt(LIS->getInstructionIndex(UseMI));
 | 
						|
 | 
						|
    // Replace SrcReg with DstReg in all UseMI operands.
 | 
						|
    for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
 | 
						|
      MachineOperand &MO = UseMI->getOperand(Ops[i]);
 | 
						|
 | 
						|
      // Adjust <undef> flags in case of sub-register joins. We don't want to
 | 
						|
      // turn a full def into a read-modify-write sub-register def and vice
 | 
						|
      // versa.
 | 
						|
      if (SubIdx && MO.isDef())
 | 
						|
        MO.setIsUndef(!Reads);
 | 
						|
 | 
						|
      if (DstIsPhys)
 | 
						|
        MO.substPhysReg(DstReg, *TRI);
 | 
						|
      else
 | 
						|
        MO.substVirtReg(DstReg, SubIdx, *TRI);
 | 
						|
    }
 | 
						|
 | 
						|
    DEBUG({
 | 
						|
        dbgs() << "\t\tupdated: ";
 | 
						|
        if (!UseMI->isDebugValue())
 | 
						|
          dbgs() << LIS->getInstructionIndex(UseMI) << "\t";
 | 
						|
        dbgs() << *UseMI;
 | 
						|
      });
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// canJoinPhys - Return true if a copy involving a physreg should be joined.
 | 
						|
bool RegisterCoalescer::canJoinPhys(const CoalescerPair &CP) {
 | 
						|
  /// Always join simple intervals that are defined by a single copy from a
 | 
						|
  /// reserved register. This doesn't increase register pressure, so it is
 | 
						|
  /// always beneficial.
 | 
						|
  if (!MRI->isReserved(CP.getDstReg())) {
 | 
						|
    DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  LiveInterval &JoinVInt = LIS->getInterval(CP.getSrcReg());
 | 
						|
  if (CP.isFlipped() && JoinVInt.containsOneValue())
 | 
						|
    return true;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "\tCannot join defs into reserved register.\n");
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// joinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
 | 
						|
/// which are the src/dst of the copy instruction CopyMI.  This returns true
 | 
						|
/// if the copy was successfully coalesced away. If it is not currently
 | 
						|
/// possible to coalesce this interval, but it may be possible if other
 | 
						|
/// things get coalesced, then it returns true by reference in 'Again'.
 | 
						|
bool RegisterCoalescer::joinCopy(MachineInstr *CopyMI, bool &Again) {
 | 
						|
 | 
						|
  Again = false;
 | 
						|
  DEBUG(dbgs() << LIS->getInstructionIndex(CopyMI) << '\t' << *CopyMI);
 | 
						|
 | 
						|
  CoalescerPair CP(*TRI);
 | 
						|
  if (!CP.setRegisters(CopyMI)) {
 | 
						|
    DEBUG(dbgs() << "\tNot coalescable.\n");
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Dead code elimination. This really should be handled by MachineDCE, but
 | 
						|
  // sometimes dead copies slip through, and we can't generate invalid live
 | 
						|
  // ranges.
 | 
						|
  if (!CP.isPhys() && CopyMI->allDefsAreDead()) {
 | 
						|
    DEBUG(dbgs() << "\tCopy is dead.\n");
 | 
						|
    DeadDefs.push_back(CopyMI);
 | 
						|
    eliminateDeadDefs();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Eliminate undefs.
 | 
						|
  if (!CP.isPhys() && eliminateUndefCopy(CopyMI, CP)) {
 | 
						|
    DEBUG(dbgs() << "\tEliminated copy of <undef> value.\n");
 | 
						|
    LIS->RemoveMachineInstrFromMaps(CopyMI);
 | 
						|
    CopyMI->eraseFromParent();
 | 
						|
    return false;  // Not coalescable.
 | 
						|
  }
 | 
						|
 | 
						|
  // Coalesced copies are normally removed immediately, but transformations
 | 
						|
  // like removeCopyByCommutingDef() can inadvertently create identity copies.
 | 
						|
  // When that happens, just join the values and remove the copy.
 | 
						|
  if (CP.getSrcReg() == CP.getDstReg()) {
 | 
						|
    LiveInterval &LI = LIS->getInterval(CP.getSrcReg());
 | 
						|
    DEBUG(dbgs() << "\tCopy already coalesced: " << LI << '\n');
 | 
						|
    LiveRangeQuery LRQ(LI, LIS->getInstructionIndex(CopyMI));
 | 
						|
    if (VNInfo *DefVNI = LRQ.valueDefined()) {
 | 
						|
      VNInfo *ReadVNI = LRQ.valueIn();
 | 
						|
      assert(ReadVNI && "No value before copy and no <undef> flag.");
 | 
						|
      assert(ReadVNI != DefVNI && "Cannot read and define the same value.");
 | 
						|
      LI.MergeValueNumberInto(DefVNI, ReadVNI);
 | 
						|
      DEBUG(dbgs() << "\tMerged values:          " << LI << '\n');
 | 
						|
    }
 | 
						|
    LIS->RemoveMachineInstrFromMaps(CopyMI);
 | 
						|
    CopyMI->eraseFromParent();
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
 | 
						|
  // Enforce policies.
 | 
						|
  if (CP.isPhys()) {
 | 
						|
    DEBUG(dbgs() << "\tConsidering merging " << PrintReg(CP.getSrcReg(), TRI)
 | 
						|
                 << " with " << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx())
 | 
						|
                 << '\n');
 | 
						|
    if (!canJoinPhys(CP)) {
 | 
						|
      // Before giving up coalescing, if definition of source is defined by
 | 
						|
      // trivial computation, try rematerializing it.
 | 
						|
      bool IsDefCopy;
 | 
						|
      if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
 | 
						|
        return true;
 | 
						|
      if (IsDefCopy)
 | 
						|
        Again = true;  // May be possible to coalesce later.
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    DEBUG({
 | 
						|
      dbgs() << "\tConsidering merging to " << CP.getNewRC()->getName()
 | 
						|
             << " with ";
 | 
						|
      if (CP.getDstIdx() && CP.getSrcIdx())
 | 
						|
        dbgs() << PrintReg(CP.getDstReg()) << " in "
 | 
						|
               << TRI->getSubRegIndexName(CP.getDstIdx()) << " and "
 | 
						|
               << PrintReg(CP.getSrcReg()) << " in "
 | 
						|
               << TRI->getSubRegIndexName(CP.getSrcIdx()) << '\n';
 | 
						|
      else
 | 
						|
        dbgs() << PrintReg(CP.getSrcReg(), TRI) << " in "
 | 
						|
               << PrintReg(CP.getDstReg(), TRI, CP.getSrcIdx()) << '\n';
 | 
						|
    });
 | 
						|
 | 
						|
    // When possible, let DstReg be the larger interval.
 | 
						|
    if (!CP.isPartial() && LIS->getInterval(CP.getSrcReg()).ranges.size() >
 | 
						|
                           LIS->getInterval(CP.getDstReg()).ranges.size())
 | 
						|
      CP.flip();
 | 
						|
  }
 | 
						|
 | 
						|
  // Okay, attempt to join these two intervals.  On failure, this returns false.
 | 
						|
  // Otherwise, if one of the intervals being joined is a physreg, this method
 | 
						|
  // always canonicalizes DstInt to be it.  The output "SrcInt" will not have
 | 
						|
  // been modified, so we can use this information below to update aliases.
 | 
						|
  if (!joinIntervals(CP)) {
 | 
						|
    // Coalescing failed.
 | 
						|
 | 
						|
    // If definition of source is defined by trivial computation, try
 | 
						|
    // rematerializing it.
 | 
						|
    bool IsDefCopy;
 | 
						|
    if (reMaterializeTrivialDef(CP, CopyMI, IsDefCopy))
 | 
						|
      return true;
 | 
						|
 | 
						|
    // If we can eliminate the copy without merging the live ranges, do so now.
 | 
						|
    if (!CP.isPartial() && !CP.isPhys()) {
 | 
						|
      if (adjustCopiesBackFrom(CP, CopyMI) ||
 | 
						|
          removeCopyByCommutingDef(CP, CopyMI)) {
 | 
						|
        LIS->RemoveMachineInstrFromMaps(CopyMI);
 | 
						|
        CopyMI->eraseFromParent();
 | 
						|
        DEBUG(dbgs() << "\tTrivial!\n");
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Otherwise, we are unable to join the intervals.
 | 
						|
    DEBUG(dbgs() << "\tInterference!\n");
 | 
						|
    Again = true;  // May be possible to coalesce later.
 | 
						|
    return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Coalescing to a virtual register that is of a sub-register class of the
 | 
						|
  // other. Make sure the resulting register is set to the right register class.
 | 
						|
  if (CP.isCrossClass()) {
 | 
						|
    ++numCrossRCs;
 | 
						|
    MRI->setRegClass(CP.getDstReg(), CP.getNewRC());
 | 
						|
  }
 | 
						|
 | 
						|
  // Removing sub-register copies can ease the register class constraints.
 | 
						|
  // Make sure we attempt to inflate the register class of DstReg.
 | 
						|
  if (!CP.isPhys() && RegClassInfo.isProperSubClass(CP.getNewRC()))
 | 
						|
    InflateRegs.push_back(CP.getDstReg());
 | 
						|
 | 
						|
  // CopyMI has been erased by joinIntervals at this point. Remove it from
 | 
						|
  // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
 | 
						|
  // to the work list. This keeps ErasedInstrs from growing needlessly.
 | 
						|
  ErasedInstrs.erase(CopyMI);
 | 
						|
 | 
						|
  // Rewrite all SrcReg operands to DstReg.
 | 
						|
  // Also update DstReg operands to include DstIdx if it is set.
 | 
						|
  if (CP.getDstIdx())
 | 
						|
    updateRegDefsUses(CP.getDstReg(), CP.getDstReg(), CP.getDstIdx());
 | 
						|
  updateRegDefsUses(CP.getSrcReg(), CP.getDstReg(), CP.getSrcIdx());
 | 
						|
 | 
						|
  // SrcReg is guaranteed to be the register whose live interval that is
 | 
						|
  // being merged.
 | 
						|
  LIS->removeInterval(CP.getSrcReg());
 | 
						|
 | 
						|
  // Update regalloc hint.
 | 
						|
  TRI->UpdateRegAllocHint(CP.getSrcReg(), CP.getDstReg(), *MF);
 | 
						|
 | 
						|
  DEBUG({
 | 
						|
    dbgs() << "\tJoined. Result = " << PrintReg(CP.getDstReg(), TRI);
 | 
						|
    if (!CP.isPhys())
 | 
						|
      dbgs() << LIS->getInterval(CP.getDstReg());
 | 
						|
     dbgs() << '\n';
 | 
						|
  });
 | 
						|
 | 
						|
  ++numJoins;
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Attempt joining with a reserved physreg.
 | 
						|
bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair &CP) {
 | 
						|
  assert(CP.isPhys() && "Must be a physreg copy");
 | 
						|
  assert(MRI->isReserved(CP.getDstReg()) && "Not a reserved register");
 | 
						|
  LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
 | 
						|
  DEBUG(dbgs() << "\t\tRHS = " << PrintReg(CP.getSrcReg()) << ' ' << RHS
 | 
						|
               << '\n');
 | 
						|
 | 
						|
  assert(CP.isFlipped() && RHS.containsOneValue() &&
 | 
						|
         "Invalid join with reserved register");
 | 
						|
 | 
						|
  // Optimization for reserved registers like ESP. We can only merge with a
 | 
						|
  // reserved physreg if RHS has a single value that is a copy of CP.DstReg().
 | 
						|
  // The live range of the reserved register will look like a set of dead defs
 | 
						|
  // - we don't properly track the live range of reserved registers.
 | 
						|
 | 
						|
  // Deny any overlapping intervals.  This depends on all the reserved
 | 
						|
  // register live ranges to look like dead defs.
 | 
						|
  for (MCRegUnitIterator UI(CP.getDstReg(), TRI); UI.isValid(); ++UI)
 | 
						|
    if (RHS.overlaps(LIS->getRegUnit(*UI))) {
 | 
						|
      DEBUG(dbgs() << "\t\tInterference: " << PrintRegUnit(*UI, TRI) << '\n');
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
 | 
						|
  // Skip any value computations, we are not adding new values to the
 | 
						|
  // reserved register.  Also skip merging the live ranges, the reserved
 | 
						|
  // register live range doesn't need to be accurate as long as all the
 | 
						|
  // defs are there.
 | 
						|
 | 
						|
  // Delete the identity copy.
 | 
						|
  MachineInstr *CopyMI = MRI->getVRegDef(RHS.reg);
 | 
						|
  LIS->RemoveMachineInstrFromMaps(CopyMI);
 | 
						|
  CopyMI->eraseFromParent();
 | 
						|
 | 
						|
  // We don't track kills for reserved registers.
 | 
						|
  MRI->clearKillFlags(CP.getSrcReg());
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//                 Interference checking and interval joining
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// In the easiest case, the two live ranges being joined are disjoint, and
 | 
						|
// there is no interference to consider. It is quite common, though, to have
 | 
						|
// overlapping live ranges, and we need to check if the interference can be
 | 
						|
// resolved.
 | 
						|
//
 | 
						|
// The live range of a single SSA value forms a sub-tree of the dominator tree.
 | 
						|
// This means that two SSA values overlap if and only if the def of one value
 | 
						|
// is contained in the live range of the other value. As a special case, the
 | 
						|
// overlapping values can be defined at the same index.
 | 
						|
//
 | 
						|
// The interference from an overlapping def can be resolved in these cases:
 | 
						|
//
 | 
						|
// 1. Coalescable copies. The value is defined by a copy that would become an
 | 
						|
//    identity copy after joining SrcReg and DstReg. The copy instruction will
 | 
						|
//    be removed, and the value will be merged with the source value.
 | 
						|
//
 | 
						|
//    There can be several copies back and forth, causing many values to be
 | 
						|
//    merged into one. We compute a list of ultimate values in the joined live
 | 
						|
//    range as well as a mappings from the old value numbers.
 | 
						|
//
 | 
						|
// 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
 | 
						|
//    predecessors have a live out value. It doesn't cause real interference,
 | 
						|
//    and can be merged into the value it overlaps. Like a coalescable copy, it
 | 
						|
//    can be erased after joining.
 | 
						|
//
 | 
						|
// 3. Copy of external value. The overlapping def may be a copy of a value that
 | 
						|
//    is already in the other register. This is like a coalescable copy, but
 | 
						|
//    the live range of the source register must be trimmed after erasing the
 | 
						|
//    copy instruction:
 | 
						|
//
 | 
						|
//      %src = COPY %ext
 | 
						|
//      %dst = COPY %ext  <-- Remove this COPY, trim the live range of %ext.
 | 
						|
//
 | 
						|
// 4. Clobbering undefined lanes. Vector registers are sometimes built by
 | 
						|
//    defining one lane at a time:
 | 
						|
//
 | 
						|
//      %dst:ssub0<def,read-undef> = FOO
 | 
						|
//      %src = BAR
 | 
						|
//      %dst:ssub1<def> = COPY %src
 | 
						|
//
 | 
						|
//    The live range of %src overlaps the %dst value defined by FOO, but
 | 
						|
//    merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
 | 
						|
//    which was undef anyway.
 | 
						|
//
 | 
						|
//    The value mapping is more complicated in this case. The final live range
 | 
						|
//    will have different value numbers for both FOO and BAR, but there is no
 | 
						|
//    simple mapping from old to new values. It may even be necessary to add
 | 
						|
//    new PHI values.
 | 
						|
//
 | 
						|
// 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
 | 
						|
//    is live, but never read. This can happen because we don't compute
 | 
						|
//    individual live ranges per lane.
 | 
						|
//
 | 
						|
//      %dst<def> = FOO
 | 
						|
//      %src = BAR
 | 
						|
//      %dst:ssub1<def> = COPY %src
 | 
						|
//
 | 
						|
//    This kind of interference is only resolved locally. If the clobbered
 | 
						|
//    lane value escapes the block, the join is aborted.
 | 
						|
 | 
						|
namespace {
 | 
						|
/// Track information about values in a single virtual register about to be
 | 
						|
/// joined. Objects of this class are always created in pairs - one for each
 | 
						|
/// side of the CoalescerPair.
 | 
						|
class JoinVals {
 | 
						|
  LiveInterval &LI;
 | 
						|
 | 
						|
  // Location of this register in the final joined register.
 | 
						|
  // Either CP.DstIdx or CP.SrcIdx.
 | 
						|
  unsigned SubIdx;
 | 
						|
 | 
						|
  // Values that will be present in the final live range.
 | 
						|
  SmallVectorImpl<VNInfo*> &NewVNInfo;
 | 
						|
 | 
						|
  const CoalescerPair &CP;
 | 
						|
  LiveIntervals *LIS;
 | 
						|
  SlotIndexes *Indexes;
 | 
						|
  const TargetRegisterInfo *TRI;
 | 
						|
 | 
						|
  // Value number assignments. Maps value numbers in LI to entries in NewVNInfo.
 | 
						|
  // This is suitable for passing to LiveInterval::join().
 | 
						|
  SmallVector<int, 8> Assignments;
 | 
						|
 | 
						|
  // Conflict resolution for overlapping values.
 | 
						|
  enum ConflictResolution {
 | 
						|
    // No overlap, simply keep this value.
 | 
						|
    CR_Keep,
 | 
						|
 | 
						|
    // Merge this value into OtherVNI and erase the defining instruction.
 | 
						|
    // Used for IMPLICIT_DEF, coalescable copies, and copies from external
 | 
						|
    // values.
 | 
						|
    CR_Erase,
 | 
						|
 | 
						|
    // Merge this value into OtherVNI but keep the defining instruction.
 | 
						|
    // This is for the special case where OtherVNI is defined by the same
 | 
						|
    // instruction.
 | 
						|
    CR_Merge,
 | 
						|
 | 
						|
    // Keep this value, and have it replace OtherVNI where possible. This
 | 
						|
    // complicates value mapping since OtherVNI maps to two different values
 | 
						|
    // before and after this def.
 | 
						|
    // Used when clobbering undefined or dead lanes.
 | 
						|
    CR_Replace,
 | 
						|
 | 
						|
    // Unresolved conflict. Visit later when all values have been mapped.
 | 
						|
    CR_Unresolved,
 | 
						|
 | 
						|
    // Unresolvable conflict. Abort the join.
 | 
						|
    CR_Impossible
 | 
						|
  };
 | 
						|
 | 
						|
  // Per-value info for LI. The lane bit masks are all relative to the final
 | 
						|
  // joined register, so they can be compared directly between SrcReg and
 | 
						|
  // DstReg.
 | 
						|
  struct Val {
 | 
						|
    ConflictResolution Resolution;
 | 
						|
 | 
						|
    // Lanes written by this def, 0 for unanalyzed values.
 | 
						|
    unsigned WriteLanes;
 | 
						|
 | 
						|
    // Lanes with defined values in this register. Other lanes are undef and
 | 
						|
    // safe to clobber.
 | 
						|
    unsigned ValidLanes;
 | 
						|
 | 
						|
    // Value in LI being redefined by this def.
 | 
						|
    VNInfo *RedefVNI;
 | 
						|
 | 
						|
    // Value in the other live range that overlaps this def, if any.
 | 
						|
    VNInfo *OtherVNI;
 | 
						|
 | 
						|
    // Is this value an IMPLICIT_DEF that can be erased?
 | 
						|
    //
 | 
						|
    // IMPLICIT_DEF values should only exist at the end of a basic block that
 | 
						|
    // is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
 | 
						|
    // safely erased if they are overlapping a live value in the other live
 | 
						|
    // interval.
 | 
						|
    //
 | 
						|
    // Weird control flow graphs and incomplete PHI handling in
 | 
						|
    // ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
 | 
						|
    // longer live ranges. Such IMPLICIT_DEF values should be treated like
 | 
						|
    // normal values.
 | 
						|
    bool ErasableImplicitDef;
 | 
						|
 | 
						|
    // True when the live range of this value will be pruned because of an
 | 
						|
    // overlapping CR_Replace value in the other live range.
 | 
						|
    bool Pruned;
 | 
						|
 | 
						|
    // True once Pruned above has been computed.
 | 
						|
    bool PrunedComputed;
 | 
						|
 | 
						|
    Val() : Resolution(CR_Keep), WriteLanes(0), ValidLanes(0),
 | 
						|
            RedefVNI(0), OtherVNI(0), ErasableImplicitDef(false),
 | 
						|
            Pruned(false), PrunedComputed(false) {}
 | 
						|
 | 
						|
    bool isAnalyzed() const { return WriteLanes != 0; }
 | 
						|
  };
 | 
						|
 | 
						|
  // One entry per value number in LI.
 | 
						|
  SmallVector<Val, 8> Vals;
 | 
						|
 | 
						|
  unsigned computeWriteLanes(const MachineInstr *DefMI, bool &Redef);
 | 
						|
  VNInfo *stripCopies(VNInfo *VNI);
 | 
						|
  ConflictResolution analyzeValue(unsigned ValNo, JoinVals &Other);
 | 
						|
  void computeAssignment(unsigned ValNo, JoinVals &Other);
 | 
						|
  bool taintExtent(unsigned, unsigned, JoinVals&,
 | 
						|
                   SmallVectorImpl<std::pair<SlotIndex, unsigned> >&);
 | 
						|
  bool usesLanes(MachineInstr *MI, unsigned, unsigned, unsigned);
 | 
						|
  bool isPrunedValue(unsigned ValNo, JoinVals &Other);
 | 
						|
 | 
						|
public:
 | 
						|
  JoinVals(LiveInterval &li, unsigned subIdx,
 | 
						|
           SmallVectorImpl<VNInfo*> &newVNInfo,
 | 
						|
           const CoalescerPair &cp,
 | 
						|
           LiveIntervals *lis,
 | 
						|
           const TargetRegisterInfo *tri)
 | 
						|
    : LI(li), SubIdx(subIdx), NewVNInfo(newVNInfo), CP(cp), LIS(lis),
 | 
						|
      Indexes(LIS->getSlotIndexes()), TRI(tri),
 | 
						|
      Assignments(LI.getNumValNums(), -1), Vals(LI.getNumValNums())
 | 
						|
  {}
 | 
						|
 | 
						|
  /// Analyze defs in LI and compute a value mapping in NewVNInfo.
 | 
						|
  /// Returns false if any conflicts were impossible to resolve.
 | 
						|
  bool mapValues(JoinVals &Other);
 | 
						|
 | 
						|
  /// Try to resolve conflicts that require all values to be mapped.
 | 
						|
  /// Returns false if any conflicts were impossible to resolve.
 | 
						|
  bool resolveConflicts(JoinVals &Other);
 | 
						|
 | 
						|
  /// Prune the live range of values in Other.LI where they would conflict with
 | 
						|
  /// CR_Replace values in LI. Collect end points for restoring the live range
 | 
						|
  /// after joining.
 | 
						|
  void pruneValues(JoinVals &Other, SmallVectorImpl<SlotIndex> &EndPoints);
 | 
						|
 | 
						|
  /// Erase any machine instructions that have been coalesced away.
 | 
						|
  /// Add erased instructions to ErasedInstrs.
 | 
						|
  /// Add foreign virtual registers to ShrinkRegs if their live range ended at
 | 
						|
  /// the erased instrs.
 | 
						|
  void eraseInstrs(SmallPtrSet<MachineInstr*, 8> &ErasedInstrs,
 | 
						|
                   SmallVectorImpl<unsigned> &ShrinkRegs);
 | 
						|
 | 
						|
  /// Get the value assignments suitable for passing to LiveInterval::join.
 | 
						|
  const int *getAssignments() const { return Assignments.data(); }
 | 
						|
};
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
/// Compute the bitmask of lanes actually written by DefMI.
 | 
						|
/// Set Redef if there are any partial register definitions that depend on the
 | 
						|
/// previous value of the register.
 | 
						|
unsigned JoinVals::computeWriteLanes(const MachineInstr *DefMI, bool &Redef) {
 | 
						|
  unsigned L = 0;
 | 
						|
  for (ConstMIOperands MO(DefMI); MO.isValid(); ++MO) {
 | 
						|
    if (!MO->isReg() || MO->getReg() != LI.reg || !MO->isDef())
 | 
						|
      continue;
 | 
						|
    L |= TRI->getSubRegIndexLaneMask(
 | 
						|
           TRI->composeSubRegIndices(SubIdx, MO->getSubReg()));
 | 
						|
    if (MO->readsReg())
 | 
						|
      Redef = true;
 | 
						|
  }
 | 
						|
  return L;
 | 
						|
}
 | 
						|
 | 
						|
/// Find the ultimate value that VNI was copied from.
 | 
						|
VNInfo *JoinVals::stripCopies(VNInfo *VNI) {
 | 
						|
  while (!VNI->isPHIDef()) {
 | 
						|
    MachineInstr *MI = Indexes->getInstructionFromIndex(VNI->def);
 | 
						|
    assert(MI && "No defining instruction");
 | 
						|
    if (!MI->isFullCopy())
 | 
						|
      break;
 | 
						|
    unsigned Reg = MI->getOperand(1).getReg();
 | 
						|
    if (!TargetRegisterInfo::isVirtualRegister(Reg))
 | 
						|
      break;
 | 
						|
    LiveRangeQuery LRQ(LIS->getInterval(Reg), VNI->def);
 | 
						|
    if (!LRQ.valueIn())
 | 
						|
      break;
 | 
						|
    VNI = LRQ.valueIn();
 | 
						|
  }
 | 
						|
  return VNI;
 | 
						|
}
 | 
						|
 | 
						|
/// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
 | 
						|
/// Return a conflict resolution when possible, but leave the hard cases as
 | 
						|
/// CR_Unresolved.
 | 
						|
/// Recursively calls computeAssignment() on this and Other, guaranteeing that
 | 
						|
/// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
 | 
						|
/// The recursion always goes upwards in the dominator tree, making loops
 | 
						|
/// impossible.
 | 
						|
JoinVals::ConflictResolution
 | 
						|
JoinVals::analyzeValue(unsigned ValNo, JoinVals &Other) {
 | 
						|
  Val &V = Vals[ValNo];
 | 
						|
  assert(!V.isAnalyzed() && "Value has already been analyzed!");
 | 
						|
  VNInfo *VNI = LI.getValNumInfo(ValNo);
 | 
						|
  if (VNI->isUnused()) {
 | 
						|
    V.WriteLanes = ~0u;
 | 
						|
    return CR_Keep;
 | 
						|
  }
 | 
						|
 | 
						|
  // Get the instruction defining this value, compute the lanes written.
 | 
						|
  const MachineInstr *DefMI = 0;
 | 
						|
  if (VNI->isPHIDef()) {
 | 
						|
    // Conservatively assume that all lanes in a PHI are valid.
 | 
						|
    V.ValidLanes = V.WriteLanes = TRI->getSubRegIndexLaneMask(SubIdx);
 | 
						|
  } else {
 | 
						|
    DefMI = Indexes->getInstructionFromIndex(VNI->def);
 | 
						|
    bool Redef = false;
 | 
						|
    V.ValidLanes = V.WriteLanes = computeWriteLanes(DefMI, Redef);
 | 
						|
 | 
						|
    // If this is a read-modify-write instruction, there may be more valid
 | 
						|
    // lanes than the ones written by this instruction.
 | 
						|
    // This only covers partial redef operands. DefMI may have normal use
 | 
						|
    // operands reading the register. They don't contribute valid lanes.
 | 
						|
    //
 | 
						|
    // This adds ssub1 to the set of valid lanes in %src:
 | 
						|
    //
 | 
						|
    //   %src:ssub1<def> = FOO
 | 
						|
    //
 | 
						|
    // This leaves only ssub1 valid, making any other lanes undef:
 | 
						|
    //
 | 
						|
    //   %src:ssub1<def,read-undef> = FOO %src:ssub2
 | 
						|
    //
 | 
						|
    // The <read-undef> flag on the def operand means that old lane values are
 | 
						|
    // not important.
 | 
						|
    if (Redef) {
 | 
						|
      V.RedefVNI = LiveRangeQuery(LI, VNI->def).valueIn();
 | 
						|
      assert(V.RedefVNI && "Instruction is reading nonexistent value");
 | 
						|
      computeAssignment(V.RedefVNI->id, Other);
 | 
						|
      V.ValidLanes |= Vals[V.RedefVNI->id].ValidLanes;
 | 
						|
    }
 | 
						|
 | 
						|
    // An IMPLICIT_DEF writes undef values.
 | 
						|
    if (DefMI->isImplicitDef()) {
 | 
						|
      // We normally expect IMPLICIT_DEF values to be live only until the end
 | 
						|
      // of their block. If the value is really live longer and gets pruned in
 | 
						|
      // another block, this flag is cleared again.
 | 
						|
      V.ErasableImplicitDef = true;
 | 
						|
      V.ValidLanes &= ~V.WriteLanes;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Find the value in Other that overlaps VNI->def, if any.
 | 
						|
  LiveRangeQuery OtherLRQ(Other.LI, VNI->def);
 | 
						|
 | 
						|
  // It is possible that both values are defined by the same instruction, or
 | 
						|
  // the values are PHIs defined in the same block. When that happens, the two
 | 
						|
  // values should be merged into one, but not into any preceding value.
 | 
						|
  // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
 | 
						|
  if (VNInfo *OtherVNI = OtherLRQ.valueDefined()) {
 | 
						|
    assert(SlotIndex::isSameInstr(VNI->def, OtherVNI->def) && "Broken LRQ");
 | 
						|
 | 
						|
    // One value stays, the other is merged. Keep the earlier one, or the first
 | 
						|
    // one we see.
 | 
						|
    if (OtherVNI->def < VNI->def)
 | 
						|
      Other.computeAssignment(OtherVNI->id, *this);
 | 
						|
    else if (VNI->def < OtherVNI->def && OtherLRQ.valueIn()) {
 | 
						|
      // This is an early-clobber def overlapping a live-in value in the other
 | 
						|
      // register. Not mergeable.
 | 
						|
      V.OtherVNI = OtherLRQ.valueIn();
 | 
						|
      return CR_Impossible;
 | 
						|
    }
 | 
						|
    V.OtherVNI = OtherVNI;
 | 
						|
    Val &OtherV = Other.Vals[OtherVNI->id];
 | 
						|
    // Keep this value, check for conflicts when analyzing OtherVNI.
 | 
						|
    if (!OtherV.isAnalyzed())
 | 
						|
      return CR_Keep;
 | 
						|
    // Both sides have been analyzed now.
 | 
						|
    // Allow overlapping PHI values. Any real interference would show up in a
 | 
						|
    // predecessor, the PHI itself can't introduce any conflicts.
 | 
						|
    if (VNI->isPHIDef())
 | 
						|
      return CR_Merge;
 | 
						|
    if (V.ValidLanes & OtherV.ValidLanes)
 | 
						|
      // Overlapping lanes can't be resolved.
 | 
						|
      return CR_Impossible;
 | 
						|
    else
 | 
						|
      return CR_Merge;
 | 
						|
  }
 | 
						|
 | 
						|
  // No simultaneous def. Is Other live at the def?
 | 
						|
  V.OtherVNI = OtherLRQ.valueIn();
 | 
						|
  if (!V.OtherVNI)
 | 
						|
    // No overlap, no conflict.
 | 
						|
    return CR_Keep;
 | 
						|
 | 
						|
  assert(!SlotIndex::isSameInstr(VNI->def, V.OtherVNI->def) && "Broken LRQ");
 | 
						|
 | 
						|
  // We have overlapping values, or possibly a kill of Other.
 | 
						|
  // Recursively compute assignments up the dominator tree.
 | 
						|
  Other.computeAssignment(V.OtherVNI->id, *this);
 | 
						|
  Val &OtherV = Other.Vals[V.OtherVNI->id];
 | 
						|
 | 
						|
  // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
 | 
						|
  // This shouldn't normally happen, but ProcessImplicitDefs can leave such
 | 
						|
  // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
 | 
						|
  // technically.
 | 
						|
  //
 | 
						|
  // WHen it happens, treat that IMPLICIT_DEF as a normal value, and don't try
 | 
						|
  // to erase the IMPLICIT_DEF instruction.
 | 
						|
  if (OtherV.ErasableImplicitDef && DefMI &&
 | 
						|
      DefMI->getParent() != Indexes->getMBBFromIndex(V.OtherVNI->def)) {
 | 
						|
    DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V.OtherVNI->def
 | 
						|
                 << " extends into BB#" << DefMI->getParent()->getNumber()
 | 
						|
                 << ", keeping it.\n");
 | 
						|
    OtherV.ErasableImplicitDef = false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Allow overlapping PHI values. Any real interference would show up in a
 | 
						|
  // predecessor, the PHI itself can't introduce any conflicts.
 | 
						|
  if (VNI->isPHIDef())
 | 
						|
    return CR_Replace;
 | 
						|
 | 
						|
  // Check for simple erasable conflicts.
 | 
						|
  if (DefMI->isImplicitDef())
 | 
						|
    return CR_Erase;
 | 
						|
 | 
						|
  // Include the non-conflict where DefMI is a coalescable copy that kills
 | 
						|
  // OtherVNI. We still want the copy erased and value numbers merged.
 | 
						|
  if (CP.isCoalescable(DefMI)) {
 | 
						|
    // Some of the lanes copied from OtherVNI may be undef, making them undef
 | 
						|
    // here too.
 | 
						|
    V.ValidLanes &= ~V.WriteLanes | OtherV.ValidLanes;
 | 
						|
    return CR_Erase;
 | 
						|
  }
 | 
						|
 | 
						|
  // This may not be a real conflict if DefMI simply kills Other and defines
 | 
						|
  // VNI.
 | 
						|
  if (OtherLRQ.isKill() && OtherLRQ.endPoint() <= VNI->def)
 | 
						|
    return CR_Keep;
 | 
						|
 | 
						|
  // Handle the case where VNI and OtherVNI can be proven to be identical:
 | 
						|
  //
 | 
						|
  //   %other = COPY %ext
 | 
						|
  //   %this  = COPY %ext <-- Erase this copy
 | 
						|
  //
 | 
						|
  if (DefMI->isFullCopy() && !CP.isPartial() &&
 | 
						|
      stripCopies(VNI) == stripCopies(V.OtherVNI))
 | 
						|
    return CR_Erase;
 | 
						|
 | 
						|
  // If the lanes written by this instruction were all undef in OtherVNI, it is
 | 
						|
  // still safe to join the live ranges. This can't be done with a simple value
 | 
						|
  // mapping, though - OtherVNI will map to multiple values:
 | 
						|
  //
 | 
						|
  //   1 %dst:ssub0 = FOO                <-- OtherVNI
 | 
						|
  //   2 %src = BAR                      <-- VNI
 | 
						|
  //   3 %dst:ssub1 = COPY %src<kill>    <-- Eliminate this copy.
 | 
						|
  //   4 BAZ %dst<kill>
 | 
						|
  //   5 QUUX %src<kill>
 | 
						|
  //
 | 
						|
  // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
 | 
						|
  // handles this complex value mapping.
 | 
						|
  if ((V.WriteLanes & OtherV.ValidLanes) == 0)
 | 
						|
    return CR_Replace;
 | 
						|
 | 
						|
  // If the other live range is killed by DefMI and the live ranges are still
 | 
						|
  // overlapping, it must be because we're looking at an early clobber def:
 | 
						|
  //
 | 
						|
  //   %dst<def,early-clobber> = ASM %src<kill>
 | 
						|
  //
 | 
						|
  // In this case, it is illegal to merge the two live ranges since the early
 | 
						|
  // clobber def would clobber %src before it was read.
 | 
						|
  if (OtherLRQ.isKill()) {
 | 
						|
    // This case where the def doesn't overlap the kill is handled above.
 | 
						|
    assert(VNI->def.isEarlyClobber() &&
 | 
						|
           "Only early clobber defs can overlap a kill");
 | 
						|
    return CR_Impossible;
 | 
						|
  }
 | 
						|
 | 
						|
  // VNI is clobbering live lanes in OtherVNI, but there is still the
 | 
						|
  // possibility that no instructions actually read the clobbered lanes.
 | 
						|
  // If we're clobbering all the lanes in OtherVNI, at least one must be read.
 | 
						|
  // Otherwise Other.LI wouldn't be live here.
 | 
						|
  if ((TRI->getSubRegIndexLaneMask(Other.SubIdx) & ~V.WriteLanes) == 0)
 | 
						|
    return CR_Impossible;
 | 
						|
 | 
						|
  // We need to verify that no instructions are reading the clobbered lanes. To
 | 
						|
  // save compile time, we'll only check that locally. Don't allow the tainted
 | 
						|
  // value to escape the basic block.
 | 
						|
  MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
 | 
						|
  if (OtherLRQ.endPoint() >= Indexes->getMBBEndIdx(MBB))
 | 
						|
    return CR_Impossible;
 | 
						|
 | 
						|
  // There are still some things that could go wrong besides clobbered lanes
 | 
						|
  // being read, for example OtherVNI may be only partially redefined in MBB,
 | 
						|
  // and some clobbered lanes could escape the block. Save this analysis for
 | 
						|
  // resolveConflicts() when all values have been mapped. We need to know
 | 
						|
  // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
 | 
						|
  // that now - the recursive analyzeValue() calls must go upwards in the
 | 
						|
  // dominator tree.
 | 
						|
  return CR_Unresolved;
 | 
						|
}
 | 
						|
 | 
						|
/// Compute the value assignment for ValNo in LI.
 | 
						|
/// This may be called recursively by analyzeValue(), but never for a ValNo on
 | 
						|
/// the stack.
 | 
						|
void JoinVals::computeAssignment(unsigned ValNo, JoinVals &Other) {
 | 
						|
  Val &V = Vals[ValNo];
 | 
						|
  if (V.isAnalyzed()) {
 | 
						|
    // Recursion should always move up the dominator tree, so ValNo is not
 | 
						|
    // supposed to reappear before it has been assigned.
 | 
						|
    assert(Assignments[ValNo] != -1 && "Bad recursion?");
 | 
						|
    return;
 | 
						|
  }
 | 
						|
  switch ((V.Resolution = analyzeValue(ValNo, Other))) {
 | 
						|
  case CR_Erase:
 | 
						|
  case CR_Merge:
 | 
						|
    // Merge this ValNo into OtherVNI.
 | 
						|
    assert(V.OtherVNI && "OtherVNI not assigned, can't merge.");
 | 
						|
    assert(Other.Vals[V.OtherVNI->id].isAnalyzed() && "Missing recursion");
 | 
						|
    Assignments[ValNo] = Other.Assignments[V.OtherVNI->id];
 | 
						|
    DEBUG(dbgs() << "\t\tmerge " << PrintReg(LI.reg) << ':' << ValNo << '@'
 | 
						|
                 << LI.getValNumInfo(ValNo)->def << " into "
 | 
						|
                 << PrintReg(Other.LI.reg) << ':' << V.OtherVNI->id << '@'
 | 
						|
                 << V.OtherVNI->def << " --> @"
 | 
						|
                 << NewVNInfo[Assignments[ValNo]]->def << '\n');
 | 
						|
    break;
 | 
						|
  case CR_Replace:
 | 
						|
  case CR_Unresolved:
 | 
						|
    // The other value is going to be pruned if this join is successful.
 | 
						|
    assert(V.OtherVNI && "OtherVNI not assigned, can't prune");
 | 
						|
    Other.Vals[V.OtherVNI->id].Pruned = true;
 | 
						|
    // Fall through.
 | 
						|
  default:
 | 
						|
    // This value number needs to go in the final joined live range.
 | 
						|
    Assignments[ValNo] = NewVNInfo.size();
 | 
						|
    NewVNInfo.push_back(LI.getValNumInfo(ValNo));
 | 
						|
    break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool JoinVals::mapValues(JoinVals &Other) {
 | 
						|
  for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
 | 
						|
    computeAssignment(i, Other);
 | 
						|
    if (Vals[i].Resolution == CR_Impossible) {
 | 
						|
      DEBUG(dbgs() << "\t\tinterference at " << PrintReg(LI.reg) << ':' << i
 | 
						|
                   << '@' << LI.getValNumInfo(i)->def << '\n');
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Assuming ValNo is going to clobber some valid lanes in Other.LI, compute
 | 
						|
/// the extent of the tainted lanes in the block.
 | 
						|
///
 | 
						|
/// Multiple values in Other.LI can be affected since partial redefinitions can
 | 
						|
/// preserve previously tainted lanes.
 | 
						|
///
 | 
						|
///   1 %dst = VLOAD           <-- Define all lanes in %dst
 | 
						|
///   2 %src = FOO             <-- ValNo to be joined with %dst:ssub0
 | 
						|
///   3 %dst:ssub1 = BAR       <-- Partial redef doesn't clear taint in ssub0
 | 
						|
///   4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
 | 
						|
///
 | 
						|
/// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
 | 
						|
/// entry to TaintedVals.
 | 
						|
///
 | 
						|
/// Returns false if the tainted lanes extend beyond the basic block.
 | 
						|
bool JoinVals::
 | 
						|
taintExtent(unsigned ValNo, unsigned TaintedLanes, JoinVals &Other,
 | 
						|
            SmallVectorImpl<std::pair<SlotIndex, unsigned> > &TaintExtent) {
 | 
						|
  VNInfo *VNI = LI.getValNumInfo(ValNo);
 | 
						|
  MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
 | 
						|
  SlotIndex MBBEnd = Indexes->getMBBEndIdx(MBB);
 | 
						|
 | 
						|
  // Scan Other.LI from VNI.def to MBBEnd.
 | 
						|
  LiveInterval::iterator OtherI = Other.LI.find(VNI->def);
 | 
						|
  assert(OtherI != Other.LI.end() && "No conflict?");
 | 
						|
  do {
 | 
						|
    // OtherI is pointing to a tainted value. Abort the join if the tainted
 | 
						|
    // lanes escape the block.
 | 
						|
    SlotIndex End = OtherI->end;
 | 
						|
    if (End >= MBBEnd) {
 | 
						|
      DEBUG(dbgs() << "\t\ttaints global " << PrintReg(Other.LI.reg) << ':'
 | 
						|
                   << OtherI->valno->id << '@' << OtherI->start << '\n');
 | 
						|
      return false;
 | 
						|
    }
 | 
						|
    DEBUG(dbgs() << "\t\ttaints local " << PrintReg(Other.LI.reg) << ':'
 | 
						|
                 << OtherI->valno->id << '@' << OtherI->start
 | 
						|
                 << " to " << End << '\n');
 | 
						|
    // A dead def is not a problem.
 | 
						|
    if (End.isDead())
 | 
						|
      break;
 | 
						|
    TaintExtent.push_back(std::make_pair(End, TaintedLanes));
 | 
						|
 | 
						|
    // Check for another def in the MBB.
 | 
						|
    if (++OtherI == Other.LI.end() || OtherI->start >= MBBEnd)
 | 
						|
      break;
 | 
						|
 | 
						|
    // Lanes written by the new def are no longer tainted.
 | 
						|
    const Val &OV = Other.Vals[OtherI->valno->id];
 | 
						|
    TaintedLanes &= ~OV.WriteLanes;
 | 
						|
    if (!OV.RedefVNI)
 | 
						|
      break;
 | 
						|
  } while (TaintedLanes);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Return true if MI uses any of the given Lanes from Reg.
 | 
						|
/// This does not include partial redefinitions of Reg.
 | 
						|
bool JoinVals::usesLanes(MachineInstr *MI, unsigned Reg, unsigned SubIdx,
 | 
						|
                         unsigned Lanes) {
 | 
						|
  if (MI->isDebugValue())
 | 
						|
    return false;
 | 
						|
  for (ConstMIOperands MO(MI); MO.isValid(); ++MO) {
 | 
						|
    if (!MO->isReg() || MO->isDef() || MO->getReg() != Reg)
 | 
						|
      continue;
 | 
						|
    if (!MO->readsReg())
 | 
						|
      continue;
 | 
						|
    if (Lanes & TRI->getSubRegIndexLaneMask(
 | 
						|
                  TRI->composeSubRegIndices(SubIdx, MO->getSubReg())))
 | 
						|
      return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool JoinVals::resolveConflicts(JoinVals &Other) {
 | 
						|
  for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
 | 
						|
    Val &V = Vals[i];
 | 
						|
    assert (V.Resolution != CR_Impossible && "Unresolvable conflict");
 | 
						|
    if (V.Resolution != CR_Unresolved)
 | 
						|
      continue;
 | 
						|
    DEBUG(dbgs() << "\t\tconflict at " << PrintReg(LI.reg) << ':' << i
 | 
						|
                 << '@' << LI.getValNumInfo(i)->def << '\n');
 | 
						|
    ++NumLaneConflicts;
 | 
						|
    assert(V.OtherVNI && "Inconsistent conflict resolution.");
 | 
						|
    VNInfo *VNI = LI.getValNumInfo(i);
 | 
						|
    const Val &OtherV = Other.Vals[V.OtherVNI->id];
 | 
						|
 | 
						|
    // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
 | 
						|
    // join, those lanes will be tainted with a wrong value. Get the extent of
 | 
						|
    // the tainted lanes.
 | 
						|
    unsigned TaintedLanes = V.WriteLanes & OtherV.ValidLanes;
 | 
						|
    SmallVector<std::pair<SlotIndex, unsigned>, 8> TaintExtent;
 | 
						|
    if (!taintExtent(i, TaintedLanes, Other, TaintExtent))
 | 
						|
      // Tainted lanes would extend beyond the basic block.
 | 
						|
      return false;
 | 
						|
 | 
						|
    assert(!TaintExtent.empty() && "There should be at least one conflict.");
 | 
						|
 | 
						|
    // Now look at the instructions from VNI->def to TaintExtent (inclusive).
 | 
						|
    MachineBasicBlock *MBB = Indexes->getMBBFromIndex(VNI->def);
 | 
						|
    MachineBasicBlock::iterator MI = MBB->begin();
 | 
						|
    if (!VNI->isPHIDef()) {
 | 
						|
      MI = Indexes->getInstructionFromIndex(VNI->def);
 | 
						|
      // No need to check the instruction defining VNI for reads.
 | 
						|
      ++MI;
 | 
						|
    }
 | 
						|
    assert(!SlotIndex::isSameInstr(VNI->def, TaintExtent.front().first) &&
 | 
						|
           "Interference ends on VNI->def. Should have been handled earlier");
 | 
						|
    MachineInstr *LastMI =
 | 
						|
      Indexes->getInstructionFromIndex(TaintExtent.front().first);
 | 
						|
    assert(LastMI && "Range must end at a proper instruction");
 | 
						|
    unsigned TaintNum = 0;
 | 
						|
    for(;;) {
 | 
						|
      assert(MI != MBB->end() && "Bad LastMI");
 | 
						|
      if (usesLanes(MI, Other.LI.reg, Other.SubIdx, TaintedLanes)) {
 | 
						|
        DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI);
 | 
						|
        return false;
 | 
						|
      }
 | 
						|
      // LastMI is the last instruction to use the current value.
 | 
						|
      if (&*MI == LastMI) {
 | 
						|
        if (++TaintNum == TaintExtent.size())
 | 
						|
          break;
 | 
						|
        LastMI = Indexes->getInstructionFromIndex(TaintExtent[TaintNum].first);
 | 
						|
        assert(LastMI && "Range must end at a proper instruction");
 | 
						|
        TaintedLanes = TaintExtent[TaintNum].second;
 | 
						|
      }
 | 
						|
      ++MI;
 | 
						|
    }
 | 
						|
 | 
						|
    // The tainted lanes are unused.
 | 
						|
    V.Resolution = CR_Replace;
 | 
						|
    ++NumLaneResolves;
 | 
						|
  }
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
// Determine if ValNo is a copy of a value number in LI or Other.LI that will
 | 
						|
// be pruned:
 | 
						|
//
 | 
						|
//   %dst = COPY %src
 | 
						|
//   %src = COPY %dst  <-- This value to be pruned.
 | 
						|
//   %dst = COPY %src  <-- This value is a copy of a pruned value.
 | 
						|
//
 | 
						|
bool JoinVals::isPrunedValue(unsigned ValNo, JoinVals &Other) {
 | 
						|
  Val &V = Vals[ValNo];
 | 
						|
  if (V.Pruned || V.PrunedComputed)
 | 
						|
    return V.Pruned;
 | 
						|
 | 
						|
  if (V.Resolution != CR_Erase && V.Resolution != CR_Merge)
 | 
						|
    return V.Pruned;
 | 
						|
 | 
						|
  // Follow copies up the dominator tree and check if any intermediate value
 | 
						|
  // has been pruned.
 | 
						|
  V.PrunedComputed = true;
 | 
						|
  V.Pruned = Other.isPrunedValue(V.OtherVNI->id, *this);
 | 
						|
  return V.Pruned;
 | 
						|
}
 | 
						|
 | 
						|
void JoinVals::pruneValues(JoinVals &Other,
 | 
						|
                           SmallVectorImpl<SlotIndex> &EndPoints) {
 | 
						|
  for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
 | 
						|
    SlotIndex Def = LI.getValNumInfo(i)->def;
 | 
						|
    switch (Vals[i].Resolution) {
 | 
						|
    case CR_Keep:
 | 
						|
      break;
 | 
						|
    case CR_Replace: {
 | 
						|
      // This value takes precedence over the value in Other.LI.
 | 
						|
      LIS->pruneValue(&Other.LI, Def, &EndPoints);
 | 
						|
      // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
 | 
						|
      // instructions are only inserted to provide a live-out value for PHI
 | 
						|
      // predecessors, so the instruction should simply go away once its value
 | 
						|
      // has been replaced.
 | 
						|
      Val &OtherV = Other.Vals[Vals[i].OtherVNI->id];
 | 
						|
      bool EraseImpDef = OtherV.ErasableImplicitDef &&
 | 
						|
                         OtherV.Resolution == CR_Keep;
 | 
						|
      if (!Def.isBlock()) {
 | 
						|
        // Remove <def,read-undef> flags. This def is now a partial redef.
 | 
						|
        // Also remove <def,dead> flags since the joined live range will
 | 
						|
        // continue past this instruction.
 | 
						|
        for (MIOperands MO(Indexes->getInstructionFromIndex(Def));
 | 
						|
             MO.isValid(); ++MO)
 | 
						|
          if (MO->isReg() && MO->isDef() && MO->getReg() == LI.reg) {
 | 
						|
            MO->setIsUndef(EraseImpDef);
 | 
						|
            MO->setIsDead(false);
 | 
						|
          }
 | 
						|
        // This value will reach instructions below, but we need to make sure
 | 
						|
        // the live range also reaches the instruction at Def.
 | 
						|
        if (!EraseImpDef)
 | 
						|
          EndPoints.push_back(Def);
 | 
						|
      }
 | 
						|
      DEBUG(dbgs() << "\t\tpruned " << PrintReg(Other.LI.reg) << " at " << Def
 | 
						|
                   << ": " << Other.LI << '\n');
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case CR_Erase:
 | 
						|
    case CR_Merge:
 | 
						|
      if (isPrunedValue(i, Other)) {
 | 
						|
        // This value is ultimately a copy of a pruned value in LI or Other.LI.
 | 
						|
        // We can no longer trust the value mapping computed by
 | 
						|
        // computeAssignment(), the value that was originally copied could have
 | 
						|
        // been replaced.
 | 
						|
        LIS->pruneValue(&LI, Def, &EndPoints);
 | 
						|
        DEBUG(dbgs() << "\t\tpruned all of " << PrintReg(LI.reg) << " at "
 | 
						|
                     << Def << ": " << LI << '\n');
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case CR_Unresolved:
 | 
						|
    case CR_Impossible:
 | 
						|
      llvm_unreachable("Unresolved conflicts");
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void JoinVals::eraseInstrs(SmallPtrSet<MachineInstr*, 8> &ErasedInstrs,
 | 
						|
                           SmallVectorImpl<unsigned> &ShrinkRegs) {
 | 
						|
  for (unsigned i = 0, e = LI.getNumValNums(); i != e; ++i) {
 | 
						|
    // Get the def location before markUnused() below invalidates it.
 | 
						|
    SlotIndex Def = LI.getValNumInfo(i)->def;
 | 
						|
    switch (Vals[i].Resolution) {
 | 
						|
    case CR_Keep:
 | 
						|
      // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
 | 
						|
      // longer. The IMPLICIT_DEF instructions are only inserted by
 | 
						|
      // PHIElimination to guarantee that all PHI predecessors have a value.
 | 
						|
      if (!Vals[i].ErasableImplicitDef || !Vals[i].Pruned)
 | 
						|
        break;
 | 
						|
      // Remove value number i from LI. Note that this VNInfo is still present
 | 
						|
      // in NewVNInfo, so it will appear as an unused value number in the final
 | 
						|
      // joined interval.
 | 
						|
      LI.getValNumInfo(i)->markUnused();
 | 
						|
      LI.removeValNo(LI.getValNumInfo(i));
 | 
						|
      DEBUG(dbgs() << "\t\tremoved " << i << '@' << Def << ": " << LI << '\n');
 | 
						|
      // FALL THROUGH.
 | 
						|
 | 
						|
    case CR_Erase: {
 | 
						|
      MachineInstr *MI = Indexes->getInstructionFromIndex(Def);
 | 
						|
      assert(MI && "No instruction to erase");
 | 
						|
      if (MI->isCopy()) {
 | 
						|
        unsigned Reg = MI->getOperand(1).getReg();
 | 
						|
        if (TargetRegisterInfo::isVirtualRegister(Reg) &&
 | 
						|
            Reg != CP.getSrcReg() && Reg != CP.getDstReg())
 | 
						|
          ShrinkRegs.push_back(Reg);
 | 
						|
      }
 | 
						|
      ErasedInstrs.insert(MI);
 | 
						|
      DEBUG(dbgs() << "\t\terased:\t" << Def << '\t' << *MI);
 | 
						|
      LIS->RemoveMachineInstrFromMaps(MI);
 | 
						|
      MI->eraseFromParent();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool RegisterCoalescer::joinVirtRegs(CoalescerPair &CP) {
 | 
						|
  SmallVector<VNInfo*, 16> NewVNInfo;
 | 
						|
  LiveInterval &RHS = LIS->getInterval(CP.getSrcReg());
 | 
						|
  LiveInterval &LHS = LIS->getInterval(CP.getDstReg());
 | 
						|
  JoinVals RHSVals(RHS, CP.getSrcIdx(), NewVNInfo, CP, LIS, TRI);
 | 
						|
  JoinVals LHSVals(LHS, CP.getDstIdx(), NewVNInfo, CP, LIS, TRI);
 | 
						|
 | 
						|
  DEBUG(dbgs() << "\t\tRHS = " << PrintReg(CP.getSrcReg()) << ' ' << RHS
 | 
						|
               << "\n\t\tLHS = " << PrintReg(CP.getDstReg()) << ' ' << LHS
 | 
						|
               << '\n');
 | 
						|
 | 
						|
  // First compute NewVNInfo and the simple value mappings.
 | 
						|
  // Detect impossible conflicts early.
 | 
						|
  if (!LHSVals.mapValues(RHSVals) || !RHSVals.mapValues(LHSVals))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Some conflicts can only be resolved after all values have been mapped.
 | 
						|
  if (!LHSVals.resolveConflicts(RHSVals) || !RHSVals.resolveConflicts(LHSVals))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // All clear, the live ranges can be merged.
 | 
						|
 | 
						|
  // The merging algorithm in LiveInterval::join() can't handle conflicting
 | 
						|
  // value mappings, so we need to remove any live ranges that overlap a
 | 
						|
  // CR_Replace resolution. Collect a set of end points that can be used to
 | 
						|
  // restore the live range after joining.
 | 
						|
  SmallVector<SlotIndex, 8> EndPoints;
 | 
						|
  LHSVals.pruneValues(RHSVals, EndPoints);
 | 
						|
  RHSVals.pruneValues(LHSVals, EndPoints);
 | 
						|
 | 
						|
  // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
 | 
						|
  // registers to require trimming.
 | 
						|
  SmallVector<unsigned, 8> ShrinkRegs;
 | 
						|
  LHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
 | 
						|
  RHSVals.eraseInstrs(ErasedInstrs, ShrinkRegs);
 | 
						|
  while (!ShrinkRegs.empty())
 | 
						|
    LIS->shrinkToUses(&LIS->getInterval(ShrinkRegs.pop_back_val()));
 | 
						|
 | 
						|
  // Join RHS into LHS.
 | 
						|
  LHS.join(RHS, LHSVals.getAssignments(), RHSVals.getAssignments(), NewVNInfo,
 | 
						|
           MRI);
 | 
						|
 | 
						|
  // Kill flags are going to be wrong if the live ranges were overlapping.
 | 
						|
  // Eventually, we should simply clear all kill flags when computing live
 | 
						|
  // ranges. They are reinserted after register allocation.
 | 
						|
  MRI->clearKillFlags(LHS.reg);
 | 
						|
  MRI->clearKillFlags(RHS.reg);
 | 
						|
 | 
						|
  if (EndPoints.empty())
 | 
						|
    return true;
 | 
						|
 | 
						|
  // Recompute the parts of the live range we had to remove because of
 | 
						|
  // CR_Replace conflicts.
 | 
						|
  DEBUG(dbgs() << "\t\trestoring liveness to " << EndPoints.size()
 | 
						|
               << " points: " << LHS << '\n');
 | 
						|
  LIS->extendToIndices(&LHS, EndPoints);
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// joinIntervals - Attempt to join these two intervals.  On failure, this
 | 
						|
/// returns false.
 | 
						|
bool RegisterCoalescer::joinIntervals(CoalescerPair &CP) {
 | 
						|
  return CP.isPhys() ? joinReservedPhysReg(CP) : joinVirtRegs(CP);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
// Information concerning MBB coalescing priority.
 | 
						|
struct MBBPriorityInfo {
 | 
						|
  MachineBasicBlock *MBB;
 | 
						|
  unsigned Depth;
 | 
						|
  bool IsSplit;
 | 
						|
 | 
						|
  MBBPriorityInfo(MachineBasicBlock *mbb, unsigned depth, bool issplit)
 | 
						|
    : MBB(mbb), Depth(depth), IsSplit(issplit) {}
 | 
						|
};
 | 
						|
}
 | 
						|
 | 
						|
// C-style comparator that sorts first based on the loop depth of the basic
 | 
						|
// block (the unsigned), and then on the MBB number.
 | 
						|
//
 | 
						|
// EnableGlobalCopies assumes that the primary sort key is loop depth.
 | 
						|
static int compareMBBPriority(const void *L, const void *R) {
 | 
						|
  const MBBPriorityInfo *LHS = static_cast<const MBBPriorityInfo*>(L);
 | 
						|
  const MBBPriorityInfo *RHS = static_cast<const MBBPriorityInfo*>(R);
 | 
						|
  // Deeper loops first
 | 
						|
  if (LHS->Depth != RHS->Depth)
 | 
						|
    return LHS->Depth > RHS->Depth ? -1 : 1;
 | 
						|
 | 
						|
  // Try to unsplit critical edges next.
 | 
						|
  if (LHS->IsSplit != RHS->IsSplit)
 | 
						|
    return LHS->IsSplit ? -1 : 1;
 | 
						|
 | 
						|
  // Prefer blocks that are more connected in the CFG. This takes care of
 | 
						|
  // the most difficult copies first while intervals are short.
 | 
						|
  unsigned cl = LHS->MBB->pred_size() + LHS->MBB->succ_size();
 | 
						|
  unsigned cr = RHS->MBB->pred_size() + RHS->MBB->succ_size();
 | 
						|
  if (cl != cr)
 | 
						|
    return cl > cr ? -1 : 1;
 | 
						|
 | 
						|
  // As a last resort, sort by block number.
 | 
						|
  return LHS->MBB->getNumber() < RHS->MBB->getNumber() ? -1 : 1;
 | 
						|
}
 | 
						|
 | 
						|
/// \returns true if the given copy uses or defines a local live range.
 | 
						|
static bool isLocalCopy(MachineInstr *Copy, const LiveIntervals *LIS) {
 | 
						|
  if (!Copy->isCopy())
 | 
						|
    return false;
 | 
						|
 | 
						|
  if (Copy->getOperand(1).isUndef())
 | 
						|
    return false;
 | 
						|
 | 
						|
  unsigned SrcReg = Copy->getOperand(1).getReg();
 | 
						|
  unsigned DstReg = Copy->getOperand(0).getReg();
 | 
						|
  if (TargetRegisterInfo::isPhysicalRegister(SrcReg)
 | 
						|
      || TargetRegisterInfo::isPhysicalRegister(DstReg))
 | 
						|
    return false;
 | 
						|
 | 
						|
  return LIS->intervalIsInOneMBB(LIS->getInterval(SrcReg))
 | 
						|
    || LIS->intervalIsInOneMBB(LIS->getInterval(DstReg));
 | 
						|
}
 | 
						|
 | 
						|
// Try joining WorkList copies starting from index From.
 | 
						|
// Null out any successful joins.
 | 
						|
bool RegisterCoalescer::
 | 
						|
copyCoalesceWorkList(MutableArrayRef<MachineInstr*> CurrList) {
 | 
						|
  bool Progress = false;
 | 
						|
  for (unsigned i = 0, e = CurrList.size(); i != e; ++i) {
 | 
						|
    if (!CurrList[i])
 | 
						|
      continue;
 | 
						|
    // Skip instruction pointers that have already been erased, for example by
 | 
						|
    // dead code elimination.
 | 
						|
    if (ErasedInstrs.erase(CurrList[i])) {
 | 
						|
      CurrList[i] = 0;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
    bool Again = false;
 | 
						|
    bool Success = joinCopy(CurrList[i], Again);
 | 
						|
    Progress |= Success;
 | 
						|
    if (Success || !Again)
 | 
						|
      CurrList[i] = 0;
 | 
						|
  }
 | 
						|
  return Progress;
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock *MBB) {
 | 
						|
  DEBUG(dbgs() << MBB->getName() << ":\n");
 | 
						|
 | 
						|
  // Collect all copy-like instructions in MBB. Don't start coalescing anything
 | 
						|
  // yet, it might invalidate the iterator.
 | 
						|
  const unsigned PrevSize = WorkList.size();
 | 
						|
  if (JoinGlobalCopies) {
 | 
						|
    // Coalesce copies bottom-up to coalesce local defs before local uses. They
 | 
						|
    // are not inherently easier to resolve, but slightly preferable until we
 | 
						|
    // have local live range splitting. In particular this is required by
 | 
						|
    // cmp+jmp macro fusion.
 | 
						|
    for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
 | 
						|
         MII != E; ++MII) {
 | 
						|
      if (!MII->isCopyLike())
 | 
						|
        continue;
 | 
						|
      if (isLocalCopy(&(*MII), LIS))
 | 
						|
        LocalWorkList.push_back(&(*MII));
 | 
						|
      else
 | 
						|
        WorkList.push_back(&(*MII));
 | 
						|
    }
 | 
						|
  }
 | 
						|
  else {
 | 
						|
     for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
 | 
						|
          MII != E; ++MII)
 | 
						|
       if (MII->isCopyLike())
 | 
						|
         WorkList.push_back(MII);
 | 
						|
  }
 | 
						|
  // Try coalescing the collected copies immediately, and remove the nulls.
 | 
						|
  // This prevents the WorkList from getting too large since most copies are
 | 
						|
  // joinable on the first attempt.
 | 
						|
  MutableArrayRef<MachineInstr*>
 | 
						|
    CurrList(WorkList.begin() + PrevSize, WorkList.end());
 | 
						|
  if (copyCoalesceWorkList(CurrList))
 | 
						|
    WorkList.erase(std::remove(WorkList.begin() + PrevSize, WorkList.end(),
 | 
						|
                               (MachineInstr*)0), WorkList.end());
 | 
						|
}
 | 
						|
 | 
						|
void RegisterCoalescer::coalesceLocals() {
 | 
						|
  copyCoalesceWorkList(LocalWorkList);
 | 
						|
  for (unsigned j = 0, je = LocalWorkList.size(); j != je; ++j) {
 | 
						|
    if (LocalWorkList[j])
 | 
						|
      WorkList.push_back(LocalWorkList[j]);
 | 
						|
  }
 | 
						|
  LocalWorkList.clear();
 | 
						|
}
 | 
						|
 | 
						|
void RegisterCoalescer::joinAllIntervals() {
 | 
						|
  DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
 | 
						|
  assert(WorkList.empty() && LocalWorkList.empty() && "Old data still around.");
 | 
						|
 | 
						|
  std::vector<MBBPriorityInfo> MBBs;
 | 
						|
  MBBs.reserve(MF->size());
 | 
						|
  for (MachineFunction::iterator I = MF->begin(), E = MF->end();I != E;++I){
 | 
						|
    MachineBasicBlock *MBB = I;
 | 
						|
    MBBs.push_back(MBBPriorityInfo(MBB, Loops->getLoopDepth(MBB),
 | 
						|
                                   JoinSplitEdges && isSplitEdge(MBB)));
 | 
						|
  }
 | 
						|
  array_pod_sort(MBBs.begin(), MBBs.end(), compareMBBPriority);
 | 
						|
 | 
						|
  // Coalesce intervals in MBB priority order.
 | 
						|
  unsigned CurrDepth = UINT_MAX;
 | 
						|
  for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
 | 
						|
    // Try coalescing the collected local copies for deeper loops.
 | 
						|
    if (JoinGlobalCopies && MBBs[i].Depth < CurrDepth) {
 | 
						|
      coalesceLocals();
 | 
						|
      CurrDepth = MBBs[i].Depth;
 | 
						|
    }
 | 
						|
    copyCoalesceInMBB(MBBs[i].MBB);
 | 
						|
  }
 | 
						|
  coalesceLocals();
 | 
						|
 | 
						|
  // Joining intervals can allow other intervals to be joined.  Iteratively join
 | 
						|
  // until we make no progress.
 | 
						|
  while (copyCoalesceWorkList(WorkList))
 | 
						|
    /* empty */ ;
 | 
						|
}
 | 
						|
 | 
						|
void RegisterCoalescer::releaseMemory() {
 | 
						|
  ErasedInstrs.clear();
 | 
						|
  WorkList.clear();
 | 
						|
  DeadDefs.clear();
 | 
						|
  InflateRegs.clear();
 | 
						|
}
 | 
						|
 | 
						|
bool RegisterCoalescer::runOnMachineFunction(MachineFunction &fn) {
 | 
						|
  MF = &fn;
 | 
						|
  MRI = &fn.getRegInfo();
 | 
						|
  TM = &fn.getTarget();
 | 
						|
  TRI = TM->getRegisterInfo();
 | 
						|
  TII = TM->getInstrInfo();
 | 
						|
  LIS = &getAnalysis<LiveIntervals>();
 | 
						|
  AA = &getAnalysis<AliasAnalysis>();
 | 
						|
  Loops = &getAnalysis<MachineLoopInfo>();
 | 
						|
 | 
						|
  const TargetSubtargetInfo &ST = TM->getSubtarget<TargetSubtargetInfo>();
 | 
						|
  if (EnableGlobalCopies == cl::BOU_UNSET)
 | 
						|
    JoinGlobalCopies = ST.enableMachineScheduler();
 | 
						|
  else
 | 
						|
    JoinGlobalCopies = (EnableGlobalCopies == cl::BOU_TRUE);
 | 
						|
 | 
						|
  // The MachineScheduler does not currently require JoinSplitEdges. This will
 | 
						|
  // either be enabled unconditionally or replaced by a more general live range
 | 
						|
  // splitting optimization.
 | 
						|
  JoinSplitEdges = EnableJoinSplits;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "********** SIMPLE REGISTER COALESCING **********\n"
 | 
						|
               << "********** Function: " << MF->getName() << '\n');
 | 
						|
 | 
						|
  if (VerifyCoalescing)
 | 
						|
    MF->verify(this, "Before register coalescing");
 | 
						|
 | 
						|
  RegClassInfo.runOnMachineFunction(fn);
 | 
						|
 | 
						|
  // Join (coalesce) intervals if requested.
 | 
						|
  if (EnableJoining)
 | 
						|
    joinAllIntervals();
 | 
						|
 | 
						|
  // After deleting a lot of copies, register classes may be less constrained.
 | 
						|
  // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
 | 
						|
  // DPR inflation.
 | 
						|
  array_pod_sort(InflateRegs.begin(), InflateRegs.end());
 | 
						|
  InflateRegs.erase(std::unique(InflateRegs.begin(), InflateRegs.end()),
 | 
						|
                    InflateRegs.end());
 | 
						|
  DEBUG(dbgs() << "Trying to inflate " << InflateRegs.size() << " regs.\n");
 | 
						|
  for (unsigned i = 0, e = InflateRegs.size(); i != e; ++i) {
 | 
						|
    unsigned Reg = InflateRegs[i];
 | 
						|
    if (MRI->reg_nodbg_empty(Reg))
 | 
						|
      continue;
 | 
						|
    if (MRI->recomputeRegClass(Reg, *TM)) {
 | 
						|
      DEBUG(dbgs() << PrintReg(Reg) << " inflated to "
 | 
						|
                   << MRI->getRegClass(Reg)->getName() << '\n');
 | 
						|
      ++NumInflated;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  DEBUG(dump());
 | 
						|
  if (VerifyCoalescing)
 | 
						|
    MF->verify(this, "After register coalescing");
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// print - Implement the dump method.
 | 
						|
void RegisterCoalescer::print(raw_ostream &O, const Module* m) const {
 | 
						|
   LIS->print(O, m);
 | 
						|
}
 |