mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@20776 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			2191 lines
		
	
	
		
			78 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			2191 lines
		
	
	
		
			78 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| //===-- llvmAsmParser.y - Parser for llvm assembly files --------*- C++ -*-===//
 | |
| // 
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| // 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| //  This file implements the bison parser for LLVM assembly languages files.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| %{
 | |
| #include "ParserInternals.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/Module.h"
 | |
| #include "llvm/SymbolTable.h"
 | |
| #include "llvm/Support/GetElementPtrTypeIterator.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| #include <algorithm>
 | |
| #include <iostream>
 | |
| #include <list>
 | |
| #include <utility>
 | |
| 
 | |
| int yyerror(const char *ErrorMsg); // Forward declarations to prevent "implicit
 | |
| int yylex();                       // declaration" of xxx warnings.
 | |
| int yyparse();
 | |
| 
 | |
| namespace llvm {
 | |
|   std::string CurFilename;
 | |
| }
 | |
| using namespace llvm;
 | |
| 
 | |
| static Module *ParserResult;
 | |
| 
 | |
| // DEBUG_UPREFS - Define this symbol if you want to enable debugging output
 | |
| // relating to upreferences in the input stream.
 | |
| //
 | |
| //#define DEBUG_UPREFS 1
 | |
| #ifdef DEBUG_UPREFS
 | |
| #define UR_OUT(X) std::cerr << X
 | |
| #else
 | |
| #define UR_OUT(X)
 | |
| #endif
 | |
| 
 | |
| #define YYERROR_VERBOSE 1
 | |
| 
 | |
| // HACK ALERT: This variable is used to implement the automatic conversion of
 | |
| // variable argument instructions from their old to new forms.  When this
 | |
| // compatiblity "Feature" is removed, this should be too.
 | |
| //
 | |
| static BasicBlock *CurBB;
 | |
| static bool ObsoleteVarArgs;
 | |
| 
 | |
| 
 | |
| // This contains info used when building the body of a function.  It is
 | |
| // destroyed when the function is completed.
 | |
| //
 | |
| typedef std::vector<Value *> ValueList;           // Numbered defs
 | |
| static void ResolveDefinitions(std::map<const Type *,ValueList> &LateResolvers,
 | |
|                                std::map<const Type *,ValueList> *FutureLateResolvers = 0);
 | |
| 
 | |
| static struct PerModuleInfo {
 | |
|   Module *CurrentModule;
 | |
|   std::map<const Type *, ValueList> Values; // Module level numbered definitions
 | |
|   std::map<const Type *,ValueList> LateResolveValues;
 | |
|   std::vector<PATypeHolder>    Types;
 | |
|   std::map<ValID, PATypeHolder> LateResolveTypes;
 | |
| 
 | |
|   /// PlaceHolderInfo - When temporary placeholder objects are created, remember
 | |
|   /// how they were referenced and one which line of the input they came from so
 | |
|   /// that we can resolve them later and print error messages as appropriate.
 | |
|   std::map<Value*, std::pair<ValID, int> > PlaceHolderInfo;
 | |
| 
 | |
|   // GlobalRefs - This maintains a mapping between <Type, ValID>'s and forward
 | |
|   // references to global values.  Global values may be referenced before they
 | |
|   // are defined, and if so, the temporary object that they represent is held
 | |
|   // here.  This is used for forward references of GlobalValues.
 | |
|   //
 | |
|   typedef std::map<std::pair<const PointerType *,
 | |
|                              ValID>, GlobalValue*> GlobalRefsType;
 | |
|   GlobalRefsType GlobalRefs;
 | |
| 
 | |
|   void ModuleDone() {
 | |
|     // If we could not resolve some functions at function compilation time
 | |
|     // (calls to functions before they are defined), resolve them now...  Types
 | |
|     // are resolved when the constant pool has been completely parsed.
 | |
|     //
 | |
|     ResolveDefinitions(LateResolveValues);
 | |
| 
 | |
|     // Check to make sure that all global value forward references have been
 | |
|     // resolved!
 | |
|     //
 | |
|     if (!GlobalRefs.empty()) {
 | |
|       std::string UndefinedReferences = "Unresolved global references exist:\n";
 | |
|       
 | |
|       for (GlobalRefsType::iterator I = GlobalRefs.begin(), E =GlobalRefs.end();
 | |
|            I != E; ++I) {
 | |
|         UndefinedReferences += "  " + I->first.first->getDescription() + " " +
 | |
|                                I->first.second.getName() + "\n";
 | |
|       }
 | |
|       ThrowException(UndefinedReferences);
 | |
|     }
 | |
| 
 | |
|     Values.clear();         // Clear out function local definitions
 | |
|     Types.clear();
 | |
|     CurrentModule = 0;
 | |
|   }
 | |
| 
 | |
| 
 | |
|   // GetForwardRefForGlobal - Check to see if there is a forward reference
 | |
|   // for this global.  If so, remove it from the GlobalRefs map and return it.
 | |
|   // If not, just return null.
 | |
|   GlobalValue *GetForwardRefForGlobal(const PointerType *PTy, ValID ID) {
 | |
|     // Check to see if there is a forward reference to this global variable...
 | |
|     // if there is, eliminate it and patch the reference to use the new def'n.
 | |
|     GlobalRefsType::iterator I = GlobalRefs.find(std::make_pair(PTy, ID));
 | |
|     GlobalValue *Ret = 0;
 | |
|     if (I != GlobalRefs.end()) {
 | |
|       Ret = I->second;
 | |
|       GlobalRefs.erase(I);
 | |
|     }
 | |
|     return Ret;
 | |
|   }
 | |
| } CurModule;
 | |
| 
 | |
| static struct PerFunctionInfo {
 | |
|   Function *CurrentFunction;     // Pointer to current function being created
 | |
| 
 | |
|   std::map<const Type*, ValueList> Values;   // Keep track of #'d definitions
 | |
|   std::map<const Type*, ValueList> LateResolveValues;
 | |
|   bool isDeclare;                // Is this function a forward declararation?
 | |
| 
 | |
|   /// BBForwardRefs - When we see forward references to basic blocks, keep
 | |
|   /// track of them here.
 | |
|   std::map<BasicBlock*, std::pair<ValID, int> > BBForwardRefs;
 | |
|   std::vector<BasicBlock*> NumberedBlocks;
 | |
|   unsigned NextBBNum;
 | |
| 
 | |
|   inline PerFunctionInfo() {
 | |
|     CurrentFunction = 0;
 | |
|     isDeclare = false;
 | |
|   }
 | |
| 
 | |
|   inline void FunctionStart(Function *M) {
 | |
|     CurrentFunction = M;
 | |
|     NextBBNum = 0;
 | |
|   }
 | |
| 
 | |
|   void FunctionDone() {
 | |
|     NumberedBlocks.clear();
 | |
| 
 | |
|     // Any forward referenced blocks left?
 | |
|     if (!BBForwardRefs.empty())
 | |
|       ThrowException("Undefined reference to label " +
 | |
|                      BBForwardRefs.begin()->first->getName());
 | |
| 
 | |
|     // Resolve all forward references now.
 | |
|     ResolveDefinitions(LateResolveValues, &CurModule.LateResolveValues);
 | |
| 
 | |
|     Values.clear();         // Clear out function local definitions
 | |
|     CurrentFunction = 0;
 | |
|     isDeclare = false;
 | |
|   }
 | |
| } CurFun;  // Info for the current function...
 | |
| 
 | |
| static bool inFunctionScope() { return CurFun.CurrentFunction != 0; }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //               Code to handle definitions of all the types
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| static int InsertValue(Value *V,
 | |
|                   std::map<const Type*,ValueList> &ValueTab = CurFun.Values) {
 | |
|   if (V->hasName()) return -1;           // Is this a numbered definition?
 | |
| 
 | |
|   // Yes, insert the value into the value table...
 | |
|   ValueList &List = ValueTab[V->getType()];
 | |
|   List.push_back(V);
 | |
|   return List.size()-1;
 | |
| }
 | |
| 
 | |
| static const Type *getTypeVal(const ValID &D, bool DoNotImprovise = false) {
 | |
|   switch (D.Type) {
 | |
|   case ValID::NumberVal:               // Is it a numbered definition?
 | |
|     // Module constants occupy the lowest numbered slots...
 | |
|     if ((unsigned)D.Num < CurModule.Types.size()) 
 | |
|       return CurModule.Types[(unsigned)D.Num];
 | |
|     break;
 | |
|   case ValID::NameVal:                 // Is it a named definition?
 | |
|     if (const Type *N = CurModule.CurrentModule->getTypeByName(D.Name)) {
 | |
|       D.destroy();  // Free old strdup'd memory...
 | |
|       return N;
 | |
|     }
 | |
|     break;
 | |
|   default:
 | |
|     ThrowException("Internal parser error: Invalid symbol type reference!");
 | |
|   }
 | |
| 
 | |
|   // If we reached here, we referenced either a symbol that we don't know about
 | |
|   // or an id number that hasn't been read yet.  We may be referencing something
 | |
|   // forward, so just create an entry to be resolved later and get to it...
 | |
|   //
 | |
|   if (DoNotImprovise) return 0;  // Do we just want a null to be returned?
 | |
| 
 | |
| 
 | |
|   if (inFunctionScope()) {
 | |
|     if (D.Type == ValID::NameVal)
 | |
|       ThrowException("Reference to an undefined type: '" + D.getName() + "'");
 | |
|     else
 | |
|       ThrowException("Reference to an undefined type: #" + itostr(D.Num));
 | |
|   }
 | |
| 
 | |
|   std::map<ValID, PATypeHolder>::iterator I =CurModule.LateResolveTypes.find(D);
 | |
|   if (I != CurModule.LateResolveTypes.end())
 | |
|     return I->second;
 | |
| 
 | |
|   Type *Typ = OpaqueType::get();
 | |
|   CurModule.LateResolveTypes.insert(std::make_pair(D, Typ));
 | |
|   return Typ;
 | |
|  }
 | |
| 
 | |
| static Value *lookupInSymbolTable(const Type *Ty, const std::string &Name) {
 | |
|   SymbolTable &SymTab = 
 | |
|     inFunctionScope() ? CurFun.CurrentFunction->getSymbolTable() :
 | |
|                         CurModule.CurrentModule->getSymbolTable();
 | |
|   return SymTab.lookup(Ty, Name);
 | |
| }
 | |
| 
 | |
| // getValNonImprovising - Look up the value specified by the provided type and
 | |
| // the provided ValID.  If the value exists and has already been defined, return
 | |
| // it.  Otherwise return null.
 | |
| //
 | |
| static Value *getValNonImprovising(const Type *Ty, const ValID &D) {
 | |
|   if (isa<FunctionType>(Ty))
 | |
|     ThrowException("Functions are not values and "
 | |
|                    "must be referenced as pointers");
 | |
| 
 | |
|   switch (D.Type) {
 | |
|   case ValID::NumberVal: {                 // Is it a numbered definition?
 | |
|     unsigned Num = (unsigned)D.Num;
 | |
| 
 | |
|     // Module constants occupy the lowest numbered slots...
 | |
|     std::map<const Type*,ValueList>::iterator VI = CurModule.Values.find(Ty);
 | |
|     if (VI != CurModule.Values.end()) {
 | |
|       if (Num < VI->second.size()) 
 | |
|         return VI->second[Num];
 | |
|       Num -= VI->second.size();
 | |
|     }
 | |
| 
 | |
|     // Make sure that our type is within bounds
 | |
|     VI = CurFun.Values.find(Ty);
 | |
|     if (VI == CurFun.Values.end()) return 0;
 | |
| 
 | |
|     // Check that the number is within bounds...
 | |
|     if (VI->second.size() <= Num) return 0;
 | |
|   
 | |
|     return VI->second[Num];
 | |
|   }
 | |
| 
 | |
|   case ValID::NameVal: {                // Is it a named definition?
 | |
|     Value *N = lookupInSymbolTable(Ty, std::string(D.Name));
 | |
|     if (N == 0) return 0;
 | |
| 
 | |
|     D.destroy();  // Free old strdup'd memory...
 | |
|     return N;
 | |
|   }
 | |
| 
 | |
|   // Check to make sure that "Ty" is an integral type, and that our 
 | |
|   // value will fit into the specified type...
 | |
|   case ValID::ConstSIntVal:    // Is it a constant pool reference??
 | |
|     if (!ConstantSInt::isValueValidForType(Ty, D.ConstPool64))
 | |
|       ThrowException("Signed integral constant '" +
 | |
|                      itostr(D.ConstPool64) + "' is invalid for type '" + 
 | |
|                      Ty->getDescription() + "'!");
 | |
|     return ConstantSInt::get(Ty, D.ConstPool64);
 | |
| 
 | |
|   case ValID::ConstUIntVal:     // Is it an unsigned const pool reference?
 | |
|     if (!ConstantUInt::isValueValidForType(Ty, D.UConstPool64)) {
 | |
|       if (!ConstantSInt::isValueValidForType(Ty, D.ConstPool64)) {
 | |
|         ThrowException("Integral constant '" + utostr(D.UConstPool64) +
 | |
|                        "' is invalid or out of range!");
 | |
|       } else {     // This is really a signed reference.  Transmogrify.
 | |
|         return ConstantSInt::get(Ty, D.ConstPool64);
 | |
|       }
 | |
|     } else {
 | |
|       return ConstantUInt::get(Ty, D.UConstPool64);
 | |
|     }
 | |
| 
 | |
|   case ValID::ConstFPVal:        // Is it a floating point const pool reference?
 | |
|     if (!ConstantFP::isValueValidForType(Ty, D.ConstPoolFP))
 | |
|       ThrowException("FP constant invalid for type!!");
 | |
|     return ConstantFP::get(Ty, D.ConstPoolFP);
 | |
|     
 | |
|   case ValID::ConstNullVal:      // Is it a null value?
 | |
|     if (!isa<PointerType>(Ty))
 | |
|       ThrowException("Cannot create a a non pointer null!");
 | |
|     return ConstantPointerNull::get(cast<PointerType>(Ty));
 | |
|     
 | |
|   case ValID::ConstUndefVal:      // Is it an undef value?
 | |
|     return UndefValue::get(Ty);
 | |
|     
 | |
|   case ValID::ConstantVal:       // Fully resolved constant?
 | |
|     if (D.ConstantValue->getType() != Ty)
 | |
|       ThrowException("Constant expression type different from required type!");
 | |
|     return D.ConstantValue;
 | |
| 
 | |
|   default:
 | |
|     assert(0 && "Unhandled case!");
 | |
|     return 0;
 | |
|   }   // End of switch
 | |
| 
 | |
|   assert(0 && "Unhandled case!");
 | |
|   return 0;
 | |
| }
 | |
| 
 | |
| // getVal - This function is identical to getValNonImprovising, except that if a
 | |
| // value is not already defined, it "improvises" by creating a placeholder var
 | |
| // that looks and acts just like the requested variable.  When the value is
 | |
| // defined later, all uses of the placeholder variable are replaced with the
 | |
| // real thing.
 | |
| //
 | |
| static Value *getVal(const Type *Ty, const ValID &ID) {
 | |
|   if (Ty == Type::LabelTy)
 | |
|     ThrowException("Cannot use a basic block here");
 | |
| 
 | |
|   // See if the value has already been defined.
 | |
|   Value *V = getValNonImprovising(Ty, ID);
 | |
|   if (V) return V;
 | |
| 
 | |
|   if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty))
 | |
|     ThrowException("Invalid use of a composite type!");
 | |
| 
 | |
|   // If we reached here, we referenced either a symbol that we don't know about
 | |
|   // or an id number that hasn't been read yet.  We may be referencing something
 | |
|   // forward, so just create an entry to be resolved later and get to it...
 | |
|   //
 | |
|   V = new Argument(Ty);
 | |
| 
 | |
|   // Remember where this forward reference came from.  FIXME, shouldn't we try
 | |
|   // to recycle these things??
 | |
|   CurModule.PlaceHolderInfo.insert(std::make_pair(V, std::make_pair(ID,
 | |
|                                                                llvmAsmlineno)));
 | |
| 
 | |
|   if (inFunctionScope())
 | |
|     InsertValue(V, CurFun.LateResolveValues);
 | |
|   else 
 | |
|     InsertValue(V, CurModule.LateResolveValues);
 | |
|   return V;
 | |
| }
 | |
| 
 | |
| /// getBBVal - This is used for two purposes:
 | |
| ///  * If isDefinition is true, a new basic block with the specified ID is being
 | |
| ///    defined.
 | |
| ///  * If isDefinition is true, this is a reference to a basic block, which may
 | |
| ///    or may not be a forward reference.
 | |
| ///
 | |
| static BasicBlock *getBBVal(const ValID &ID, bool isDefinition = false) {
 | |
|   assert(inFunctionScope() && "Can't get basic block at global scope!");
 | |
| 
 | |
|   std::string Name;
 | |
|   BasicBlock *BB = 0;
 | |
|   switch (ID.Type) {
 | |
|   default: ThrowException("Illegal label reference " + ID.getName());
 | |
|   case ValID::NumberVal:                // Is it a numbered definition?
 | |
|     if (unsigned(ID.Num) >= CurFun.NumberedBlocks.size())
 | |
|       CurFun.NumberedBlocks.resize(ID.Num+1);
 | |
|     BB = CurFun.NumberedBlocks[ID.Num];
 | |
|     break;
 | |
|   case ValID::NameVal:                  // Is it a named definition?
 | |
|     Name = ID.Name;
 | |
|     if (Value *N = CurFun.CurrentFunction->
 | |
|                    getSymbolTable().lookup(Type::LabelTy, Name))
 | |
|       BB = cast<BasicBlock>(N);
 | |
|     break;
 | |
|   }
 | |
| 
 | |
|   // See if the block has already been defined.
 | |
|   if (BB) {
 | |
|     // If this is the definition of the block, make sure the existing value was
 | |
|     // just a forward reference.  If it was a forward reference, there will be
 | |
|     // an entry for it in the PlaceHolderInfo map.
 | |
|     if (isDefinition && !CurFun.BBForwardRefs.erase(BB))
 | |
|       // The existing value was a definition, not a forward reference.
 | |
|       ThrowException("Redefinition of label " + ID.getName());
 | |
| 
 | |
|     ID.destroy();                       // Free strdup'd memory.
 | |
|     return BB;
 | |
|   }
 | |
| 
 | |
|   // Otherwise this block has not been seen before.
 | |
|   BB = new BasicBlock("", CurFun.CurrentFunction);
 | |
|   if (ID.Type == ValID::NameVal) {
 | |
|     BB->setName(ID.Name);
 | |
|   } else {
 | |
|     CurFun.NumberedBlocks[ID.Num] = BB;
 | |
|   }
 | |
| 
 | |
|   // If this is not a definition, keep track of it so we can use it as a forward
 | |
|   // reference.
 | |
|   if (!isDefinition) {
 | |
|     // Remember where this forward reference came from.
 | |
|     CurFun.BBForwardRefs[BB] = std::make_pair(ID, llvmAsmlineno);
 | |
|   } else {
 | |
|     // The forward declaration could have been inserted anywhere in the
 | |
|     // function: insert it into the correct place now.
 | |
|     CurFun.CurrentFunction->getBasicBlockList().remove(BB);
 | |
|     CurFun.CurrentFunction->getBasicBlockList().push_back(BB);
 | |
|   }
 | |
|   ID.destroy();
 | |
|   return BB;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //              Code to handle forward references in instructions
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This code handles the late binding needed with statements that reference
 | |
| // values not defined yet... for example, a forward branch, or the PHI node for
 | |
| // a loop body.
 | |
| //
 | |
| // This keeps a table (CurFun.LateResolveValues) of all such forward references
 | |
| // and back patchs after we are done.
 | |
| //
 | |
| 
 | |
| // ResolveDefinitions - If we could not resolve some defs at parsing 
 | |
| // time (forward branches, phi functions for loops, etc...) resolve the 
 | |
| // defs now...
 | |
| //
 | |
| static void ResolveDefinitions(std::map<const Type*,ValueList> &LateResolvers,
 | |
|                                std::map<const Type*,ValueList> *FutureLateResolvers) {
 | |
|   // Loop over LateResolveDefs fixing up stuff that couldn't be resolved
 | |
|   for (std::map<const Type*,ValueList>::iterator LRI = LateResolvers.begin(),
 | |
|          E = LateResolvers.end(); LRI != E; ++LRI) {
 | |
|     ValueList &List = LRI->second;
 | |
|     while (!List.empty()) {
 | |
|       Value *V = List.back();
 | |
|       List.pop_back();
 | |
| 
 | |
|       std::map<Value*, std::pair<ValID, int> >::iterator PHI =
 | |
|         CurModule.PlaceHolderInfo.find(V);
 | |
|       assert(PHI != CurModule.PlaceHolderInfo.end() && "Placeholder error!");
 | |
| 
 | |
|       ValID &DID = PHI->second.first;
 | |
| 
 | |
|       Value *TheRealValue = getValNonImprovising(LRI->first, DID);
 | |
|       if (TheRealValue) {
 | |
|         V->replaceAllUsesWith(TheRealValue);
 | |
|         delete V;
 | |
|         CurModule.PlaceHolderInfo.erase(PHI);
 | |
|       } else if (FutureLateResolvers) {
 | |
|         // Functions have their unresolved items forwarded to the module late
 | |
|         // resolver table
 | |
|         InsertValue(V, *FutureLateResolvers);
 | |
|       } else {
 | |
|         if (DID.Type == ValID::NameVal)
 | |
|           ThrowException("Reference to an invalid definition: '" +DID.getName()+
 | |
|                          "' of type '" + V->getType()->getDescription() + "'",
 | |
|                          PHI->second.second);
 | |
|         else
 | |
|           ThrowException("Reference to an invalid definition: #" +
 | |
|                          itostr(DID.Num) + " of type '" + 
 | |
|                          V->getType()->getDescription() + "'",
 | |
|                          PHI->second.second);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   LateResolvers.clear();
 | |
| }
 | |
| 
 | |
| // ResolveTypeTo - A brand new type was just declared.  This means that (if
 | |
| // name is not null) things referencing Name can be resolved.  Otherwise, things
 | |
| // refering to the number can be resolved.  Do this now.
 | |
| //
 | |
| static void ResolveTypeTo(char *Name, const Type *ToTy) {
 | |
|   ValID D;
 | |
|   if (Name) D = ValID::create(Name);
 | |
|   else      D = ValID::create((int)CurModule.Types.size());
 | |
| 
 | |
|   std::map<ValID, PATypeHolder>::iterator I =
 | |
|     CurModule.LateResolveTypes.find(D);
 | |
|   if (I != CurModule.LateResolveTypes.end()) {
 | |
|     ((DerivedType*)I->second.get())->refineAbstractTypeTo(ToTy);
 | |
|     CurModule.LateResolveTypes.erase(I);
 | |
|   }
 | |
| }
 | |
| 
 | |
| // setValueName - Set the specified value to the name given.  The name may be
 | |
| // null potentially, in which case this is a noop.  The string passed in is
 | |
| // assumed to be a malloc'd string buffer, and is free'd by this function.
 | |
| //
 | |
| static void setValueName(Value *V, char *NameStr) {
 | |
|   if (NameStr) {
 | |
|     std::string Name(NameStr);      // Copy string
 | |
|     free(NameStr);                  // Free old string
 | |
| 
 | |
|     if (V->getType() == Type::VoidTy) 
 | |
|       ThrowException("Can't assign name '" + Name+"' to value with void type!");
 | |
|     
 | |
|     assert(inFunctionScope() && "Must be in function scope!");
 | |
|     SymbolTable &ST = CurFun.CurrentFunction->getSymbolTable();
 | |
|     if (ST.lookup(V->getType(), Name))
 | |
|       ThrowException("Redefinition of value named '" + Name + "' in the '" +
 | |
|                      V->getType()->getDescription() + "' type plane!");
 | |
|     
 | |
|     // Set the name.
 | |
|     V->setName(Name);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// ParseGlobalVariable - Handle parsing of a global.  If Initializer is null,
 | |
| /// this is a declaration, otherwise it is a definition.
 | |
| static void ParseGlobalVariable(char *NameStr,GlobalValue::LinkageTypes Linkage,
 | |
|                                 bool isConstantGlobal, const Type *Ty,
 | |
|                                 Constant *Initializer) {
 | |
|   if (isa<FunctionType>(Ty))
 | |
|     ThrowException("Cannot declare global vars of function type!");
 | |
| 
 | |
|   const PointerType *PTy = PointerType::get(Ty); 
 | |
| 
 | |
|   std::string Name;
 | |
|   if (NameStr) {
 | |
|     Name = NameStr;      // Copy string
 | |
|     free(NameStr);       // Free old string
 | |
|   }
 | |
| 
 | |
|   // See if this global value was forward referenced.  If so, recycle the
 | |
|   // object.
 | |
|   ValID ID; 
 | |
|   if (!Name.empty()) {
 | |
|     ID = ValID::create((char*)Name.c_str());
 | |
|   } else {
 | |
|     ID = ValID::create((int)CurModule.Values[PTy].size());
 | |
|   }
 | |
| 
 | |
|   if (GlobalValue *FWGV = CurModule.GetForwardRefForGlobal(PTy, ID)) {
 | |
|     // Move the global to the end of the list, from whereever it was 
 | |
|     // previously inserted.
 | |
|     GlobalVariable *GV = cast<GlobalVariable>(FWGV);
 | |
|     CurModule.CurrentModule->getGlobalList().remove(GV);
 | |
|     CurModule.CurrentModule->getGlobalList().push_back(GV);
 | |
|     GV->setInitializer(Initializer);
 | |
|     GV->setLinkage(Linkage);
 | |
|     GV->setConstant(isConstantGlobal);
 | |
|     InsertValue(GV, CurModule.Values);
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   // If this global has a name, check to see if there is already a definition
 | |
|   // of this global in the module.  If so, merge as appropriate.  Note that
 | |
|   // this is really just a hack around problems in the CFE.  :(
 | |
|   if (!Name.empty()) {
 | |
|     // We are a simple redefinition of a value, check to see if it is defined
 | |
|     // the same as the old one.
 | |
|     if (GlobalVariable *EGV = 
 | |
|                 CurModule.CurrentModule->getGlobalVariable(Name, Ty)) {
 | |
|       // We are allowed to redefine a global variable in two circumstances:
 | |
|       // 1. If at least one of the globals is uninitialized or 
 | |
|       // 2. If both initializers have the same value.
 | |
|       //
 | |
|       if (!EGV->hasInitializer() || !Initializer ||
 | |
|           EGV->getInitializer() == Initializer) {
 | |
| 
 | |
|         // Make sure the existing global version gets the initializer!  Make
 | |
|         // sure that it also gets marked const if the new version is.
 | |
|         if (Initializer && !EGV->hasInitializer())
 | |
|           EGV->setInitializer(Initializer);
 | |
|         if (isConstantGlobal)
 | |
|           EGV->setConstant(true);
 | |
|         EGV->setLinkage(Linkage);
 | |
|         return;
 | |
|       }
 | |
| 
 | |
|       ThrowException("Redefinition of global variable named '" + Name + 
 | |
|                      "' in the '" + Ty->getDescription() + "' type plane!");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Otherwise there is no existing GV to use, create one now.
 | |
|   GlobalVariable *GV =
 | |
|     new GlobalVariable(Ty, isConstantGlobal, Linkage, Initializer, Name, 
 | |
|                        CurModule.CurrentModule);
 | |
|   InsertValue(GV, CurModule.Values);
 | |
| }
 | |
| 
 | |
| // setTypeName - Set the specified type to the name given.  The name may be
 | |
| // null potentially, in which case this is a noop.  The string passed in is
 | |
| // assumed to be a malloc'd string buffer, and is freed by this function.
 | |
| //
 | |
| // This function returns true if the type has already been defined, but is
 | |
| // allowed to be redefined in the specified context.  If the name is a new name
 | |
| // for the type plane, it is inserted and false is returned.
 | |
| static bool setTypeName(const Type *T, char *NameStr) {
 | |
|   assert(!inFunctionScope() && "Can't give types function-local names!");
 | |
|   if (NameStr == 0) return false;
 | |
|   
 | |
|   std::string Name(NameStr);      // Copy string
 | |
|   free(NameStr);                  // Free old string
 | |
| 
 | |
|   // We don't allow assigning names to void type
 | |
|   if (T == Type::VoidTy) 
 | |
|     ThrowException("Can't assign name '" + Name + "' to the void type!");
 | |
| 
 | |
|   // Set the type name, checking for conflicts as we do so.
 | |
|   bool AlreadyExists = CurModule.CurrentModule->addTypeName(Name, T);
 | |
| 
 | |
|   if (AlreadyExists) {   // Inserting a name that is already defined???
 | |
|     const Type *Existing = CurModule.CurrentModule->getTypeByName(Name);
 | |
|     assert(Existing && "Conflict but no matching type?");
 | |
| 
 | |
|     // There is only one case where this is allowed: when we are refining an
 | |
|     // opaque type.  In this case, Existing will be an opaque type.
 | |
|     if (const OpaqueType *OpTy = dyn_cast<OpaqueType>(Existing)) {
 | |
|       // We ARE replacing an opaque type!
 | |
|       const_cast<OpaqueType*>(OpTy)->refineAbstractTypeTo(T);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     // Otherwise, this is an attempt to redefine a type. That's okay if
 | |
|     // the redefinition is identical to the original. This will be so if
 | |
|     // Existing and T point to the same Type object. In this one case we
 | |
|     // allow the equivalent redefinition.
 | |
|     if (Existing == T) return true;  // Yes, it's equal.
 | |
| 
 | |
|     // Any other kind of (non-equivalent) redefinition is an error.
 | |
|     ThrowException("Redefinition of type named '" + Name + "' in the '" +
 | |
|                    T->getDescription() + "' type plane!");
 | |
|   }
 | |
| 
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Code for handling upreferences in type names...
 | |
| //
 | |
| 
 | |
| // TypeContains - Returns true if Ty directly contains E in it.
 | |
| //
 | |
| static bool TypeContains(const Type *Ty, const Type *E) {
 | |
|   return std::find(Ty->subtype_begin(), Ty->subtype_end(), 
 | |
|                    E) != Ty->subtype_end();
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   struct UpRefRecord {
 | |
|     // NestingLevel - The number of nesting levels that need to be popped before
 | |
|     // this type is resolved.
 | |
|     unsigned NestingLevel;
 | |
|     
 | |
|     // LastContainedTy - This is the type at the current binding level for the
 | |
|     // type.  Every time we reduce the nesting level, this gets updated.
 | |
|     const Type *LastContainedTy;
 | |
| 
 | |
|     // UpRefTy - This is the actual opaque type that the upreference is
 | |
|     // represented with.
 | |
|     OpaqueType *UpRefTy;
 | |
| 
 | |
|     UpRefRecord(unsigned NL, OpaqueType *URTy)
 | |
|       : NestingLevel(NL), LastContainedTy(URTy), UpRefTy(URTy) {}
 | |
|   };
 | |
| }
 | |
| 
 | |
| // UpRefs - A list of the outstanding upreferences that need to be resolved.
 | |
| static std::vector<UpRefRecord> UpRefs;
 | |
| 
 | |
| /// HandleUpRefs - Every time we finish a new layer of types, this function is
 | |
| /// called.  It loops through the UpRefs vector, which is a list of the
 | |
| /// currently active types.  For each type, if the up reference is contained in
 | |
| /// the newly completed type, we decrement the level count.  When the level
 | |
| /// count reaches zero, the upreferenced type is the type that is passed in:
 | |
| /// thus we can complete the cycle.
 | |
| ///
 | |
| static PATypeHolder HandleUpRefs(const Type *ty) {
 | |
|   if (!ty->isAbstract()) return ty;
 | |
|   PATypeHolder Ty(ty);
 | |
|   UR_OUT("Type '" << Ty->getDescription() << 
 | |
|          "' newly formed.  Resolving upreferences.\n" <<
 | |
|          UpRefs.size() << " upreferences active!\n");
 | |
| 
 | |
|   // If we find any resolvable upreferences (i.e., those whose NestingLevel goes
 | |
|   // to zero), we resolve them all together before we resolve them to Ty.  At
 | |
|   // the end of the loop, if there is anything to resolve to Ty, it will be in
 | |
|   // this variable.
 | |
|   OpaqueType *TypeToResolve = 0;
 | |
| 
 | |
|   for (unsigned i = 0; i != UpRefs.size(); ++i) {
 | |
|     UR_OUT("  UR#" << i << " - TypeContains(" << Ty->getDescription() << ", " 
 | |
|            << UpRefs[i].second->getDescription() << ") = " 
 | |
|            << (TypeContains(Ty, UpRefs[i].second) ? "true" : "false") << "\n");
 | |
|     if (TypeContains(Ty, UpRefs[i].LastContainedTy)) {
 | |
|       // Decrement level of upreference
 | |
|       unsigned Level = --UpRefs[i].NestingLevel;
 | |
|       UpRefs[i].LastContainedTy = Ty;
 | |
|       UR_OUT("  Uplevel Ref Level = " << Level << "\n");
 | |
|       if (Level == 0) {                     // Upreference should be resolved! 
 | |
|         if (!TypeToResolve) {
 | |
|           TypeToResolve = UpRefs[i].UpRefTy;
 | |
|         } else {
 | |
|           UR_OUT("  * Resolving upreference for "
 | |
|                  << UpRefs[i].second->getDescription() << "\n";
 | |
|                  std::string OldName = UpRefs[i].UpRefTy->getDescription());
 | |
|           UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
 | |
|           UR_OUT("  * Type '" << OldName << "' refined upreference to: "
 | |
|                  << (const void*)Ty << ", " << Ty->getDescription() << "\n");
 | |
|         }
 | |
|         UpRefs.erase(UpRefs.begin()+i);     // Remove from upreference list...
 | |
|         --i;                                // Do not skip the next element...
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (TypeToResolve) {
 | |
|     UR_OUT("  * Resolving upreference for "
 | |
|            << UpRefs[i].second->getDescription() << "\n";
 | |
|            std::string OldName = TypeToResolve->getDescription());
 | |
|     TypeToResolve->refineAbstractTypeTo(Ty);
 | |
|   }
 | |
| 
 | |
|   return Ty;
 | |
| }
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //            RunVMAsmParser - Define an interface to this parser
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| Module *llvm::RunVMAsmParser(const std::string &Filename, FILE *F) {
 | |
|   llvmAsmin = F;
 | |
|   CurFilename = Filename;
 | |
|   llvmAsmlineno = 1;      // Reset the current line number...
 | |
|   ObsoleteVarArgs = false;
 | |
| 
 | |
|   // Allocate a new module to read
 | |
|   CurModule.CurrentModule = new Module(Filename);
 | |
| 
 | |
|   yyparse();       // Parse the file, potentially throwing exception
 | |
| 
 | |
|   Module *Result = ParserResult;
 | |
| 
 | |
|   // Check to see if they called va_start but not va_arg..
 | |
|   if (!ObsoleteVarArgs)
 | |
|     if (Function *F = Result->getNamedFunction("llvm.va_start"))
 | |
|       if (F->arg_size() == 1) {
 | |
|         std::cerr << "WARNING: this file uses obsolete features.  "
 | |
|                   << "Assemble and disassemble to update it.\n";
 | |
|         ObsoleteVarArgs = true;
 | |
|       }
 | |
| 
 | |
|   if (ObsoleteVarArgs) {
 | |
|     // If the user is making use of obsolete varargs intrinsics, adjust them for
 | |
|     // the user.
 | |
|     if (Function *F = Result->getNamedFunction("llvm.va_start")) {
 | |
|       assert(F->arg_size() == 1 && "Obsolete va_start takes 1 argument!");
 | |
| 
 | |
|       const Type *RetTy = F->getFunctionType()->getParamType(0);
 | |
|       RetTy = cast<PointerType>(RetTy)->getElementType();
 | |
|       Function *NF = Result->getOrInsertFunction("llvm.va_start", RetTy, 0);
 | |
|       
 | |
|       while (!F->use_empty()) {
 | |
|         CallInst *CI = cast<CallInst>(F->use_back());
 | |
|         Value *V = new CallInst(NF, "", CI);
 | |
|         new StoreInst(V, CI->getOperand(1), CI);
 | |
|         CI->getParent()->getInstList().erase(CI);
 | |
|       }
 | |
|       Result->getFunctionList().erase(F);
 | |
|     }
 | |
|     
 | |
|     if (Function *F = Result->getNamedFunction("llvm.va_end")) {
 | |
|       assert(F->arg_size() == 1 && "Obsolete va_end takes 1 argument!");
 | |
|       const Type *ArgTy = F->getFunctionType()->getParamType(0);
 | |
|       ArgTy = cast<PointerType>(ArgTy)->getElementType();
 | |
|       Function *NF = Result->getOrInsertFunction("llvm.va_end", Type::VoidTy,
 | |
|                                                  ArgTy, 0);
 | |
| 
 | |
|       while (!F->use_empty()) {
 | |
|         CallInst *CI = cast<CallInst>(F->use_back());
 | |
|         Value *V = new LoadInst(CI->getOperand(1), "", CI);
 | |
|         new CallInst(NF, V, "", CI);
 | |
|         CI->getParent()->getInstList().erase(CI);
 | |
|       }
 | |
|       Result->getFunctionList().erase(F);
 | |
|     }
 | |
| 
 | |
|     if (Function *F = Result->getNamedFunction("llvm.va_copy")) {
 | |
|       assert(F->arg_size() == 2 && "Obsolete va_copy takes 2 argument!");
 | |
|       const Type *ArgTy = F->getFunctionType()->getParamType(0);
 | |
|       ArgTy = cast<PointerType>(ArgTy)->getElementType();
 | |
|       Function *NF = Result->getOrInsertFunction("llvm.va_copy", ArgTy,
 | |
|                                                  ArgTy, 0);
 | |
| 
 | |
|       while (!F->use_empty()) {
 | |
|         CallInst *CI = cast<CallInst>(F->use_back());
 | |
|         Value *V = new CallInst(NF, CI->getOperand(2), "", CI);
 | |
|         new StoreInst(V, CI->getOperand(1), CI);
 | |
|         CI->getParent()->getInstList().erase(CI);
 | |
|       }
 | |
|       Result->getFunctionList().erase(F);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   llvmAsmin = stdin;    // F is about to go away, don't use it anymore...
 | |
|   ParserResult = 0;
 | |
| 
 | |
|   return Result;
 | |
| }
 | |
| 
 | |
| %}
 | |
| 
 | |
| %union {
 | |
|   llvm::Module                           *ModuleVal;
 | |
|   llvm::Function                         *FunctionVal;
 | |
|   std::pair<llvm::PATypeHolder*, char*>  *ArgVal;
 | |
|   llvm::BasicBlock                       *BasicBlockVal;
 | |
|   llvm::TerminatorInst                   *TermInstVal;
 | |
|   llvm::Instruction                      *InstVal;
 | |
|   llvm::Constant                         *ConstVal;
 | |
| 
 | |
|   const llvm::Type                       *PrimType;
 | |
|   llvm::PATypeHolder                     *TypeVal;
 | |
|   llvm::Value                            *ValueVal;
 | |
| 
 | |
|   std::vector<std::pair<llvm::PATypeHolder*,char*> > *ArgList;
 | |
|   std::vector<llvm::Value*>              *ValueList;
 | |
|   std::list<llvm::PATypeHolder>          *TypeList;
 | |
|   std::list<std::pair<llvm::Value*,
 | |
|                       llvm::BasicBlock*> > *PHIList; // Represent the RHS of PHI node
 | |
|   std::vector<std::pair<llvm::Constant*, llvm::BasicBlock*> > *JumpTable;
 | |
|   std::vector<llvm::Constant*>           *ConstVector;
 | |
| 
 | |
|   llvm::GlobalValue::LinkageTypes         Linkage;
 | |
|   int64_t                           SInt64Val;
 | |
|   uint64_t                          UInt64Val;
 | |
|   int                               SIntVal;
 | |
|   unsigned                          UIntVal;
 | |
|   double                            FPVal;
 | |
|   bool                              BoolVal;
 | |
| 
 | |
|   char                             *StrVal;   // This memory is strdup'd!
 | |
|   llvm::ValID                             ValIDVal; // strdup'd memory maybe!
 | |
| 
 | |
|   llvm::Instruction::BinaryOps            BinaryOpVal;
 | |
|   llvm::Instruction::TermOps              TermOpVal;
 | |
|   llvm::Instruction::MemoryOps            MemOpVal;
 | |
|   llvm::Instruction::OtherOps             OtherOpVal;
 | |
|   llvm::Module::Endianness                Endianness;
 | |
| }
 | |
| 
 | |
| %type <ModuleVal>     Module FunctionList
 | |
| %type <FunctionVal>   Function FunctionProto FunctionHeader BasicBlockList
 | |
| %type <BasicBlockVal> BasicBlock InstructionList
 | |
| %type <TermInstVal>   BBTerminatorInst
 | |
| %type <InstVal>       Inst InstVal MemoryInst
 | |
| %type <ConstVal>      ConstVal ConstExpr
 | |
| %type <ConstVector>   ConstVector
 | |
| %type <ArgList>       ArgList ArgListH
 | |
| %type <ArgVal>        ArgVal
 | |
| %type <PHIList>       PHIList
 | |
| %type <ValueList>     ValueRefList ValueRefListE  // For call param lists
 | |
| %type <ValueList>     IndexList                   // For GEP derived indices
 | |
| %type <TypeList>      TypeListI ArgTypeListI
 | |
| %type <JumpTable>     JumpTable
 | |
| %type <BoolVal>       GlobalType                  // GLOBAL or CONSTANT?
 | |
| %type <BoolVal>       OptVolatile                 // 'volatile' or not
 | |
| %type <Linkage>       OptLinkage
 | |
| %type <Endianness>    BigOrLittle
 | |
| 
 | |
| // ValueRef - Unresolved reference to a definition or BB
 | |
| %type <ValIDVal>      ValueRef ConstValueRef SymbolicValueRef
 | |
| %type <ValueVal>      ResolvedVal            // <type> <valref> pair
 | |
| // Tokens and types for handling constant integer values
 | |
| //
 | |
| // ESINT64VAL - A negative number within long long range
 | |
| %token <SInt64Val> ESINT64VAL
 | |
| 
 | |
| // EUINT64VAL - A positive number within uns. long long range
 | |
| %token <UInt64Val> EUINT64VAL
 | |
| %type  <SInt64Val> EINT64VAL
 | |
| 
 | |
| %token  <SIntVal>   SINTVAL   // Signed 32 bit ints...
 | |
| %token  <UIntVal>   UINTVAL   // Unsigned 32 bit ints...
 | |
| %type   <SIntVal>   INTVAL
 | |
| %token  <FPVal>     FPVAL     // Float or Double constant
 | |
| 
 | |
| // Built in types...
 | |
| %type  <TypeVal> Types TypesV UpRTypes UpRTypesV
 | |
| %type  <PrimType> SIntType UIntType IntType FPType PrimType   // Classifications
 | |
| %token <PrimType> VOID BOOL SBYTE UBYTE SHORT USHORT INT UINT LONG ULONG
 | |
| %token <PrimType> FLOAT DOUBLE TYPE LABEL
 | |
| 
 | |
| %token <StrVal> VAR_ID LABELSTR STRINGCONSTANT
 | |
| %type  <StrVal> Name OptName OptAssign
 | |
| 
 | |
| 
 | |
| %token IMPLEMENTATION ZEROINITIALIZER TRUETOK FALSETOK BEGINTOK ENDTOK
 | |
| %token DECLARE GLOBAL CONSTANT VOLATILE
 | |
| %token TO DOTDOTDOT NULL_TOK UNDEF CONST INTERNAL LINKONCE WEAK  APPENDING
 | |
| %token OPAQUE NOT EXTERNAL TARGET TRIPLE ENDIAN POINTERSIZE LITTLE BIG
 | |
| %token DEPLIBS 
 | |
| 
 | |
| // Basic Block Terminating Operators 
 | |
| %token <TermOpVal> RET BR SWITCH INVOKE UNWIND UNREACHABLE
 | |
| 
 | |
| // Binary Operators 
 | |
| %type  <BinaryOpVal> ArithmeticOps LogicalOps SetCondOps // Binops Subcatagories
 | |
| %token <BinaryOpVal> ADD SUB MUL DIV REM AND OR XOR
 | |
| %token <BinaryOpVal> SETLE SETGE SETLT SETGT SETEQ SETNE  // Binary Comarators
 | |
| 
 | |
| // Memory Instructions
 | |
| %token <MemOpVal> MALLOC ALLOCA FREE LOAD STORE GETELEMENTPTR
 | |
| 
 | |
| // Other Operators
 | |
| %type  <OtherOpVal> ShiftOps
 | |
| %token <OtherOpVal> PHI_TOK CALL CAST SELECT SHL SHR VAARG VANEXT
 | |
| %token VA_ARG // FIXME: OBSOLETE
 | |
| 
 | |
| %start Module
 | |
| %%
 | |
| 
 | |
| // Handle constant integer size restriction and conversion...
 | |
| //
 | |
| INTVAL : SINTVAL;
 | |
| INTVAL : UINTVAL {
 | |
|   if ($1 > (uint32_t)INT32_MAX)     // Outside of my range!
 | |
|     ThrowException("Value too large for type!");
 | |
|   $$ = (int32_t)$1;
 | |
| };
 | |
| 
 | |
| 
 | |
| EINT64VAL : ESINT64VAL;      // These have same type and can't cause problems...
 | |
| EINT64VAL : EUINT64VAL {
 | |
|   if ($1 > (uint64_t)INT64_MAX)     // Outside of my range!
 | |
|     ThrowException("Value too large for type!");
 | |
|   $$ = (int64_t)$1;
 | |
| };
 | |
| 
 | |
| // Operations that are notably excluded from this list include: 
 | |
| // RET, BR, & SWITCH because they end basic blocks and are treated specially.
 | |
| //
 | |
| ArithmeticOps: ADD | SUB | MUL | DIV | REM;
 | |
| LogicalOps   : AND | OR | XOR;
 | |
| SetCondOps   : SETLE | SETGE | SETLT | SETGT | SETEQ | SETNE;
 | |
| 
 | |
| ShiftOps  : SHL | SHR;
 | |
| 
 | |
| // These are some types that allow classification if we only want a particular 
 | |
| // thing... for example, only a signed, unsigned, or integral type.
 | |
| SIntType :  LONG |  INT |  SHORT | SBYTE;
 | |
| UIntType : ULONG | UINT | USHORT | UBYTE;
 | |
| IntType  : SIntType | UIntType;
 | |
| FPType   : FLOAT | DOUBLE;
 | |
| 
 | |
| // OptAssign - Value producing statements have an optional assignment component
 | |
| OptAssign : Name '=' {
 | |
|     $$ = $1;
 | |
|   }
 | |
|   | /*empty*/ { 
 | |
|     $$ = 0; 
 | |
|   };
 | |
| 
 | |
| OptLinkage : INTERNAL  { $$ = GlobalValue::InternalLinkage; } |
 | |
|              LINKONCE  { $$ = GlobalValue::LinkOnceLinkage; } |
 | |
|              WEAK      { $$ = GlobalValue::WeakLinkage; } |
 | |
|              APPENDING { $$ = GlobalValue::AppendingLinkage; } |
 | |
|              /*empty*/ { $$ = GlobalValue::ExternalLinkage; };
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| // Types includes all predefined types... except void, because it can only be
 | |
| // used in specific contexts (function returning void for example).  To have
 | |
| // access to it, a user must explicitly use TypesV.
 | |
| //
 | |
| 
 | |
| // TypesV includes all of 'Types', but it also includes the void type.
 | |
| TypesV    : Types    | VOID { $$ = new PATypeHolder($1); };
 | |
| UpRTypesV : UpRTypes | VOID { $$ = new PATypeHolder($1); };
 | |
| 
 | |
| Types     : UpRTypes {
 | |
|     if (!UpRefs.empty())
 | |
|       ThrowException("Invalid upreference in type: " + (*$1)->getDescription());
 | |
|     $$ = $1;
 | |
|   };
 | |
| 
 | |
| 
 | |
| // Derived types are added later...
 | |
| //
 | |
| PrimType : BOOL | SBYTE | UBYTE | SHORT  | USHORT | INT   | UINT ;
 | |
| PrimType : LONG | ULONG | FLOAT | DOUBLE | TYPE   | LABEL;
 | |
| UpRTypes : OPAQUE {
 | |
|     $$ = new PATypeHolder(OpaqueType::get());
 | |
|   }
 | |
|   | PrimType {
 | |
|     $$ = new PATypeHolder($1);
 | |
|   };
 | |
| UpRTypes : SymbolicValueRef {            // Named types are also simple types...
 | |
|   $$ = new PATypeHolder(getTypeVal($1));
 | |
| };
 | |
| 
 | |
| // Include derived types in the Types production.
 | |
| //
 | |
| UpRTypes : '\\' EUINT64VAL {                   // Type UpReference
 | |
|     if ($2 > (uint64_t)~0U) ThrowException("Value out of range!");
 | |
|     OpaqueType *OT = OpaqueType::get();        // Use temporary placeholder
 | |
|     UpRefs.push_back(UpRefRecord((unsigned)$2, OT));  // Add to vector...
 | |
|     $$ = new PATypeHolder(OT);
 | |
|     UR_OUT("New Upreference!\n");
 | |
|   }
 | |
|   | UpRTypesV '(' ArgTypeListI ')' {           // Function derived type?
 | |
|     std::vector<const Type*> Params;
 | |
|     for (std::list<llvm::PATypeHolder>::iterator I = $3->begin(),
 | |
|            E = $3->end(); I != E; ++I)
 | |
|       Params.push_back(*I);
 | |
|     bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
 | |
|     if (isVarArg) Params.pop_back();
 | |
| 
 | |
|     $$ = new PATypeHolder(HandleUpRefs(FunctionType::get(*$1,Params,isVarArg)));
 | |
|     delete $3;      // Delete the argument list
 | |
|     delete $1;      // Delete the return type handle
 | |
|   }
 | |
|   | '[' EUINT64VAL 'x' UpRTypes ']' {          // Sized array type?
 | |
|     $$ = new PATypeHolder(HandleUpRefs(ArrayType::get(*$4, (unsigned)$2)));
 | |
|     delete $4;
 | |
|   }
 | |
|   | '<' EUINT64VAL 'x' UpRTypes '>' {          // Packed array type?
 | |
|      const llvm::Type* ElemTy = $4->get();
 | |
|      if ((unsigned)$2 != $2) {
 | |
|         ThrowException("Unsigned result not equal to signed result");
 | |
|      }
 | |
|      if(!ElemTy->isPrimitiveType()) {
 | |
|         ThrowException("Elemental type of a PackedType must be primitive");
 | |
|      }
 | |
|      $$ = new PATypeHolder(HandleUpRefs(PackedType::get(*$4, (unsigned)$2)));
 | |
|      delete $4;
 | |
|   }
 | |
|   | '{' TypeListI '}' {                        // Structure type?
 | |
|     std::vector<const Type*> Elements;
 | |
|     for (std::list<llvm::PATypeHolder>::iterator I = $2->begin(),
 | |
|            E = $2->end(); I != E; ++I)
 | |
|       Elements.push_back(*I);
 | |
|     
 | |
|     $$ = new PATypeHolder(HandleUpRefs(StructType::get(Elements)));
 | |
|     delete $2;
 | |
|   }
 | |
|   | '{' '}' {                                  // Empty structure type?
 | |
|     $$ = new PATypeHolder(StructType::get(std::vector<const Type*>()));
 | |
|   }
 | |
|   | UpRTypes '*' {                             // Pointer type?
 | |
|     $$ = new PATypeHolder(HandleUpRefs(PointerType::get(*$1)));
 | |
|     delete $1;
 | |
|   };
 | |
| 
 | |
| // TypeList - Used for struct declarations and as a basis for function type 
 | |
| // declaration type lists
 | |
| //
 | |
| TypeListI : UpRTypes {
 | |
|     $$ = new std::list<PATypeHolder>();
 | |
|     $$->push_back(*$1); delete $1;
 | |
|   }
 | |
|   | TypeListI ',' UpRTypes {
 | |
|     ($$=$1)->push_back(*$3); delete $3;
 | |
|   };
 | |
| 
 | |
| // ArgTypeList - List of types for a function type declaration...
 | |
| ArgTypeListI : TypeListI
 | |
|   | TypeListI ',' DOTDOTDOT {
 | |
|     ($$=$1)->push_back(Type::VoidTy);
 | |
|   }
 | |
|   | DOTDOTDOT {
 | |
|     ($$ = new std::list<PATypeHolder>())->push_back(Type::VoidTy);
 | |
|   }
 | |
|   | /*empty*/ {
 | |
|     $$ = new std::list<PATypeHolder>();
 | |
|   };
 | |
| 
 | |
| // ConstVal - The various declarations that go into the constant pool.  This
 | |
| // production is used ONLY to represent constants that show up AFTER a 'const',
 | |
| // 'constant' or 'global' token at global scope.  Constants that can be inlined
 | |
| // into other expressions (such as integers and constexprs) are handled by the
 | |
| // ResolvedVal, ValueRef and ConstValueRef productions.
 | |
| //
 | |
| ConstVal: Types '[' ConstVector ']' { // Nonempty unsized arr
 | |
|     const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
 | |
|     if (ATy == 0)
 | |
|       ThrowException("Cannot make array constant with type: '" + 
 | |
|                      (*$1)->getDescription() + "'!");
 | |
|     const Type *ETy = ATy->getElementType();
 | |
|     int NumElements = ATy->getNumElements();
 | |
| 
 | |
|     // Verify that we have the correct size...
 | |
|     if (NumElements != -1 && NumElements != (int)$3->size())
 | |
|       ThrowException("Type mismatch: constant sized array initialized with " +
 | |
|                      utostr($3->size()) +  " arguments, but has size of " + 
 | |
|                      itostr(NumElements) + "!");
 | |
| 
 | |
|     // Verify all elements are correct type!
 | |
|     for (unsigned i = 0; i < $3->size(); i++) {
 | |
|       if (ETy != (*$3)[i]->getType())
 | |
|         ThrowException("Element #" + utostr(i) + " is not of type '" + 
 | |
|                        ETy->getDescription() +"' as required!\nIt is of type '"+
 | |
|                        (*$3)[i]->getType()->getDescription() + "'.");
 | |
|     }
 | |
| 
 | |
|     $$ = ConstantArray::get(ATy, *$3);
 | |
|     delete $1; delete $3;
 | |
|   }
 | |
|   | Types '[' ']' {
 | |
|     const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
 | |
|     if (ATy == 0)
 | |
|       ThrowException("Cannot make array constant with type: '" + 
 | |
|                      (*$1)->getDescription() + "'!");
 | |
| 
 | |
|     int NumElements = ATy->getNumElements();
 | |
|     if (NumElements != -1 && NumElements != 0) 
 | |
|       ThrowException("Type mismatch: constant sized array initialized with 0"
 | |
|                      " arguments, but has size of " + itostr(NumElements) +"!");
 | |
|     $$ = ConstantArray::get(ATy, std::vector<Constant*>());
 | |
|     delete $1;
 | |
|   }
 | |
|   | Types 'c' STRINGCONSTANT {
 | |
|     const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
 | |
|     if (ATy == 0)
 | |
|       ThrowException("Cannot make array constant with type: '" + 
 | |
|                      (*$1)->getDescription() + "'!");
 | |
| 
 | |
|     int NumElements = ATy->getNumElements();
 | |
|     const Type *ETy = ATy->getElementType();
 | |
|     char *EndStr = UnEscapeLexed($3, true);
 | |
|     if (NumElements != -1 && NumElements != (EndStr-$3))
 | |
|       ThrowException("Can't build string constant of size " + 
 | |
|                      itostr((int)(EndStr-$3)) +
 | |
|                      " when array has size " + itostr(NumElements) + "!");
 | |
|     std::vector<Constant*> Vals;
 | |
|     if (ETy == Type::SByteTy) {
 | |
|       for (char *C = $3; C != EndStr; ++C)
 | |
|         Vals.push_back(ConstantSInt::get(ETy, *C));
 | |
|     } else if (ETy == Type::UByteTy) {
 | |
|       for (char *C = $3; C != EndStr; ++C)
 | |
|         Vals.push_back(ConstantUInt::get(ETy, (unsigned char)*C));
 | |
|     } else {
 | |
|       free($3);
 | |
|       ThrowException("Cannot build string arrays of non byte sized elements!");
 | |
|     }
 | |
|     free($3);
 | |
|     $$ = ConstantArray::get(ATy, Vals);
 | |
|     delete $1;
 | |
|   }
 | |
|   | Types '<' ConstVector '>' { // Nonempty unsized arr
 | |
|     const PackedType *PTy = dyn_cast<PackedType>($1->get());
 | |
|     if (PTy == 0)
 | |
|       ThrowException("Cannot make packed constant with type: '" + 
 | |
|                      (*$1)->getDescription() + "'!");
 | |
|     const Type *ETy = PTy->getElementType();
 | |
|     int NumElements = PTy->getNumElements();
 | |
| 
 | |
|     // Verify that we have the correct size...
 | |
|     if (NumElements != -1 && NumElements != (int)$3->size())
 | |
|       ThrowException("Type mismatch: constant sized packed initialized with " +
 | |
|                      utostr($3->size()) +  " arguments, but has size of " + 
 | |
|                      itostr(NumElements) + "!");
 | |
| 
 | |
|     // Verify all elements are correct type!
 | |
|     for (unsigned i = 0; i < $3->size(); i++) {
 | |
|       if (ETy != (*$3)[i]->getType())
 | |
|         ThrowException("Element #" + utostr(i) + " is not of type '" + 
 | |
|            ETy->getDescription() +"' as required!\nIt is of type '"+
 | |
|            (*$3)[i]->getType()->getDescription() + "'.");
 | |
|     }
 | |
| 
 | |
|     $$ = ConstantPacked::get(PTy, *$3);
 | |
|     delete $1; delete $3;
 | |
|   }
 | |
|   | Types '{' ConstVector '}' {
 | |
|     const StructType *STy = dyn_cast<StructType>($1->get());
 | |
|     if (STy == 0)
 | |
|       ThrowException("Cannot make struct constant with type: '" + 
 | |
|                      (*$1)->getDescription() + "'!");
 | |
| 
 | |
|     if ($3->size() != STy->getNumContainedTypes())
 | |
|       ThrowException("Illegal number of initializers for structure type!");
 | |
| 
 | |
|     // Check to ensure that constants are compatible with the type initializer!
 | |
|     for (unsigned i = 0, e = $3->size(); i != e; ++i)
 | |
|       if ((*$3)[i]->getType() != STy->getElementType(i))
 | |
|         ThrowException("Expected type '" +
 | |
|                        STy->getElementType(i)->getDescription() +
 | |
|                        "' for element #" + utostr(i) +
 | |
|                        " of structure initializer!");
 | |
| 
 | |
|     $$ = ConstantStruct::get(STy, *$3);
 | |
|     delete $1; delete $3;
 | |
|   }
 | |
|   | Types '{' '}' {
 | |
|     const StructType *STy = dyn_cast<StructType>($1->get());
 | |
|     if (STy == 0)
 | |
|       ThrowException("Cannot make struct constant with type: '" + 
 | |
|                      (*$1)->getDescription() + "'!");
 | |
| 
 | |
|     if (STy->getNumContainedTypes() != 0)
 | |
|       ThrowException("Illegal number of initializers for structure type!");
 | |
| 
 | |
|     $$ = ConstantStruct::get(STy, std::vector<Constant*>());
 | |
|     delete $1;
 | |
|   }
 | |
|   | Types NULL_TOK {
 | |
|     const PointerType *PTy = dyn_cast<PointerType>($1->get());
 | |
|     if (PTy == 0)
 | |
|       ThrowException("Cannot make null pointer constant with type: '" + 
 | |
|                      (*$1)->getDescription() + "'!");
 | |
| 
 | |
|     $$ = ConstantPointerNull::get(PTy);
 | |
|     delete $1;
 | |
|   }
 | |
|   | Types UNDEF {
 | |
|     $$ = UndefValue::get($1->get());
 | |
|     delete $1;
 | |
|   }
 | |
|   | Types SymbolicValueRef {
 | |
|     const PointerType *Ty = dyn_cast<PointerType>($1->get());
 | |
|     if (Ty == 0)
 | |
|       ThrowException("Global const reference must be a pointer type!");
 | |
| 
 | |
|     // ConstExprs can exist in the body of a function, thus creating
 | |
|     // GlobalValues whenever they refer to a variable.  Because we are in
 | |
|     // the context of a function, getValNonImprovising will search the functions
 | |
|     // symbol table instead of the module symbol table for the global symbol,
 | |
|     // which throws things all off.  To get around this, we just tell
 | |
|     // getValNonImprovising that we are at global scope here.
 | |
|     //
 | |
|     Function *SavedCurFn = CurFun.CurrentFunction;
 | |
|     CurFun.CurrentFunction = 0;
 | |
| 
 | |
|     Value *V = getValNonImprovising(Ty, $2);
 | |
| 
 | |
|     CurFun.CurrentFunction = SavedCurFn;
 | |
| 
 | |
|     // If this is an initializer for a constant pointer, which is referencing a
 | |
|     // (currently) undefined variable, create a stub now that shall be replaced
 | |
|     // in the future with the right type of variable.
 | |
|     //
 | |
|     if (V == 0) {
 | |
|       assert(isa<PointerType>(Ty) && "Globals may only be used as pointers!");
 | |
|       const PointerType *PT = cast<PointerType>(Ty);
 | |
| 
 | |
|       // First check to see if the forward references value is already created!
 | |
|       PerModuleInfo::GlobalRefsType::iterator I =
 | |
|         CurModule.GlobalRefs.find(std::make_pair(PT, $2));
 | |
|     
 | |
|       if (I != CurModule.GlobalRefs.end()) {
 | |
|         V = I->second;             // Placeholder already exists, use it...
 | |
|         $2.destroy();
 | |
|       } else {
 | |
|         std::string Name;
 | |
|         if ($2.Type == ValID::NameVal) Name = $2.Name;
 | |
| 
 | |
|         // Create the forward referenced global.
 | |
|         GlobalValue *GV;
 | |
|         if (const FunctionType *FTy = 
 | |
|                  dyn_cast<FunctionType>(PT->getElementType())) {
 | |
|           GV = new Function(FTy, GlobalValue::ExternalLinkage, Name,
 | |
|                             CurModule.CurrentModule);
 | |
|         } else {
 | |
|           GV = new GlobalVariable(PT->getElementType(), false,
 | |
|                                   GlobalValue::ExternalLinkage, 0,
 | |
|                                   Name, CurModule.CurrentModule);
 | |
|         }
 | |
| 
 | |
|         // Keep track of the fact that we have a forward ref to recycle it
 | |
|         CurModule.GlobalRefs.insert(std::make_pair(std::make_pair(PT, $2), GV));
 | |
|         V = GV;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     $$ = cast<GlobalValue>(V);
 | |
|     delete $1;            // Free the type handle
 | |
|   }
 | |
|   | Types ConstExpr {
 | |
|     if ($1->get() != $2->getType())
 | |
|       ThrowException("Mismatched types for constant expression!");
 | |
|     $$ = $2;
 | |
|     delete $1;
 | |
|   }
 | |
|   | Types ZEROINITIALIZER {
 | |
|     const Type *Ty = $1->get();
 | |
|     if (isa<FunctionType>(Ty) || Ty == Type::LabelTy || isa<OpaqueType>(Ty))
 | |
|       ThrowException("Cannot create a null initialized value of this type!");
 | |
|     $$ = Constant::getNullValue(Ty);
 | |
|     delete $1;
 | |
|   };
 | |
| 
 | |
| ConstVal : SIntType EINT64VAL {      // integral constants
 | |
|     if (!ConstantSInt::isValueValidForType($1, $2))
 | |
|       ThrowException("Constant value doesn't fit in type!");
 | |
|     $$ = ConstantSInt::get($1, $2);
 | |
|   }
 | |
|   | UIntType EUINT64VAL {            // integral constants
 | |
|     if (!ConstantUInt::isValueValidForType($1, $2))
 | |
|       ThrowException("Constant value doesn't fit in type!");
 | |
|     $$ = ConstantUInt::get($1, $2);
 | |
|   }
 | |
|   | BOOL TRUETOK {                      // Boolean constants
 | |
|     $$ = ConstantBool::True;
 | |
|   }
 | |
|   | BOOL FALSETOK {                     // Boolean constants
 | |
|     $$ = ConstantBool::False;
 | |
|   }
 | |
|   | FPType FPVAL {                   // Float & Double constants
 | |
|     if (!ConstantFP::isValueValidForType($1, $2))
 | |
|       ThrowException("Floating point constant invalid for type!!");
 | |
|     $$ = ConstantFP::get($1, $2);
 | |
|   };
 | |
| 
 | |
| 
 | |
| ConstExpr: CAST '(' ConstVal TO Types ')' {
 | |
|     if (!$3->getType()->isFirstClassType())
 | |
|       ThrowException("cast constant expression from a non-primitive type: '" +
 | |
|                      $3->getType()->getDescription() + "'!");
 | |
|     if (!$5->get()->isFirstClassType())
 | |
|       ThrowException("cast constant expression to a non-primitive type: '" +
 | |
|                      $5->get()->getDescription() + "'!");
 | |
|     $$ = ConstantExpr::getCast($3, $5->get());
 | |
|     delete $5;
 | |
|   }
 | |
|   | GETELEMENTPTR '(' ConstVal IndexList ')' {
 | |
|     if (!isa<PointerType>($3->getType()))
 | |
|       ThrowException("GetElementPtr requires a pointer operand!");
 | |
| 
 | |
|     // LLVM 1.2 and earlier used ubyte struct indices.  Convert any ubyte struct
 | |
|     // indices to uint struct indices for compatibility.
 | |
|     generic_gep_type_iterator<std::vector<Value*>::iterator>
 | |
|       GTI = gep_type_begin($3->getType(), $4->begin(), $4->end()),
 | |
|       GTE = gep_type_end($3->getType(), $4->begin(), $4->end());
 | |
|     for (unsigned i = 0, e = $4->size(); i != e && GTI != GTE; ++i, ++GTI)
 | |
|       if (isa<StructType>(*GTI))        // Only change struct indices
 | |
|         if (ConstantUInt *CUI = dyn_cast<ConstantUInt>((*$4)[i]))
 | |
|           if (CUI->getType() == Type::UByteTy)
 | |
|             (*$4)[i] = ConstantExpr::getCast(CUI, Type::UIntTy);
 | |
| 
 | |
|     const Type *IdxTy =
 | |
|       GetElementPtrInst::getIndexedType($3->getType(), *$4, true);
 | |
|     if (!IdxTy)
 | |
|       ThrowException("Index list invalid for constant getelementptr!");
 | |
| 
 | |
|     std::vector<Constant*> IdxVec;
 | |
|     for (unsigned i = 0, e = $4->size(); i != e; ++i)
 | |
|       if (Constant *C = dyn_cast<Constant>((*$4)[i]))
 | |
|         IdxVec.push_back(C);
 | |
|       else
 | |
|         ThrowException("Indices to constant getelementptr must be constants!");
 | |
| 
 | |
|     delete $4;
 | |
| 
 | |
|     $$ = ConstantExpr::getGetElementPtr($3, IdxVec);
 | |
|   }
 | |
|   | SELECT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
 | |
|     if ($3->getType() != Type::BoolTy)
 | |
|       ThrowException("Select condition must be of boolean type!");
 | |
|     if ($5->getType() != $7->getType())
 | |
|       ThrowException("Select operand types must match!");
 | |
|     $$ = ConstantExpr::getSelect($3, $5, $7);
 | |
|   }
 | |
|   | ArithmeticOps '(' ConstVal ',' ConstVal ')' {
 | |
|     if ($3->getType() != $5->getType())
 | |
|       ThrowException("Binary operator types must match!");
 | |
|     // HACK: llvm 1.3 and earlier used to emit invalid pointer constant exprs.
 | |
|     // To retain backward compatibility with these early compilers, we emit a
 | |
|     // cast to the appropriate integer type automatically if we are in the
 | |
|     // broken case.  See PR424 for more information.
 | |
|     if (!isa<PointerType>($3->getType())) {
 | |
|       $$ = ConstantExpr::get($1, $3, $5);
 | |
|     } else {
 | |
|       const Type *IntPtrTy = 0;
 | |
|       switch (CurModule.CurrentModule->getPointerSize()) {
 | |
|       case Module::Pointer32: IntPtrTy = Type::IntTy; break;
 | |
|       case Module::Pointer64: IntPtrTy = Type::LongTy; break;
 | |
|       default: ThrowException("invalid pointer binary constant expr!");
 | |
|       }
 | |
|       $$ = ConstantExpr::get($1, ConstantExpr::getCast($3, IntPtrTy),
 | |
|                              ConstantExpr::getCast($5, IntPtrTy));
 | |
|       $$ = ConstantExpr::getCast($$, $3->getType());
 | |
|     }
 | |
|   }
 | |
|   | LogicalOps '(' ConstVal ',' ConstVal ')' {
 | |
|     if ($3->getType() != $5->getType())
 | |
|       ThrowException("Logical operator types must match!");
 | |
|     if (!$3->getType()->isIntegral())
 | |
|       ThrowException("Logical operands must have integral types!");
 | |
|     $$ = ConstantExpr::get($1, $3, $5);
 | |
|   }
 | |
|   | SetCondOps '(' ConstVal ',' ConstVal ')' {
 | |
|     if ($3->getType() != $5->getType())
 | |
|       ThrowException("setcc operand types must match!");
 | |
|     $$ = ConstantExpr::get($1, $3, $5);
 | |
|   }
 | |
|   | ShiftOps '(' ConstVal ',' ConstVal ')' {
 | |
|     if ($5->getType() != Type::UByteTy)
 | |
|       ThrowException("Shift count for shift constant must be unsigned byte!");
 | |
|     if (!$3->getType()->isInteger())
 | |
|       ThrowException("Shift constant expression requires integer operand!");
 | |
|     $$ = ConstantExpr::get($1, $3, $5);
 | |
|   };
 | |
| 
 | |
| 
 | |
| // ConstVector - A list of comma separated constants.
 | |
| ConstVector : ConstVector ',' ConstVal {
 | |
|     ($$ = $1)->push_back($3);
 | |
|   }
 | |
|   | ConstVal {
 | |
|     $$ = new std::vector<Constant*>();
 | |
|     $$->push_back($1);
 | |
|   };
 | |
| 
 | |
| 
 | |
| // GlobalType - Match either GLOBAL or CONSTANT for global declarations...
 | |
| GlobalType : GLOBAL { $$ = false; } | CONSTANT { $$ = true; };
 | |
| 
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                             Rules to match Modules
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| // Module rule: Capture the result of parsing the whole file into a result
 | |
| // variable...
 | |
| //
 | |
| Module : FunctionList {
 | |
|   $$ = ParserResult = $1;
 | |
|   CurModule.ModuleDone();
 | |
| };
 | |
| 
 | |
| // FunctionList - A list of functions, preceeded by a constant pool.
 | |
| //
 | |
| FunctionList : FunctionList Function {
 | |
|     $$ = $1;
 | |
|     CurFun.FunctionDone();
 | |
|   } 
 | |
|   | FunctionList FunctionProto {
 | |
|     $$ = $1;
 | |
|   }
 | |
|   | FunctionList IMPLEMENTATION {
 | |
|     $$ = $1;
 | |
|   }
 | |
|   | ConstPool {
 | |
|     $$ = CurModule.CurrentModule;
 | |
|     // Emit an error if there are any unresolved types left.
 | |
|     if (!CurModule.LateResolveTypes.empty()) {
 | |
|       const ValID &DID = CurModule.LateResolveTypes.begin()->first;
 | |
|       if (DID.Type == ValID::NameVal)
 | |
|         ThrowException("Reference to an undefined type: '"+DID.getName() + "'");
 | |
|       else
 | |
|         ThrowException("Reference to an undefined type: #" + itostr(DID.Num));
 | |
|     }
 | |
|   };
 | |
| 
 | |
| // ConstPool - Constants with optional names assigned to them.
 | |
| ConstPool : ConstPool OptAssign TYPE TypesV {
 | |
|     // Eagerly resolve types.  This is not an optimization, this is a
 | |
|     // requirement that is due to the fact that we could have this:
 | |
|     //
 | |
|     // %list = type { %list * }
 | |
|     // %list = type { %list * }    ; repeated type decl
 | |
|     //
 | |
|     // If types are not resolved eagerly, then the two types will not be
 | |
|     // determined to be the same type!
 | |
|     //
 | |
|     ResolveTypeTo($2, *$4);
 | |
| 
 | |
|     if (!setTypeName(*$4, $2) && !$2) {
 | |
|       // If this is a named type that is not a redefinition, add it to the slot
 | |
|       // table.
 | |
|       CurModule.Types.push_back(*$4);
 | |
|     }
 | |
| 
 | |
|     delete $4;
 | |
|   }
 | |
|   | ConstPool FunctionProto {       // Function prototypes can be in const pool
 | |
|   }
 | |
|   | ConstPool OptAssign OptLinkage GlobalType ConstVal {
 | |
|     if ($5 == 0) ThrowException("Global value initializer is not a constant!");
 | |
|     ParseGlobalVariable($2, $3, $4, $5->getType(), $5);
 | |
|   }
 | |
|   | ConstPool OptAssign EXTERNAL GlobalType Types {
 | |
|     ParseGlobalVariable($2, GlobalValue::ExternalLinkage, $4, *$5, 0);
 | |
|     delete $5;
 | |
|   }
 | |
|   | ConstPool TARGET TargetDefinition { 
 | |
|   }
 | |
|   | ConstPool DEPLIBS '=' LibrariesDefinition {
 | |
|   }
 | |
|   | /* empty: end of list */ { 
 | |
|   };
 | |
| 
 | |
| 
 | |
| 
 | |
| BigOrLittle : BIG    { $$ = Module::BigEndian; };
 | |
| BigOrLittle : LITTLE { $$ = Module::LittleEndian; };
 | |
| 
 | |
| TargetDefinition : ENDIAN '=' BigOrLittle {
 | |
|     CurModule.CurrentModule->setEndianness($3);
 | |
|   }
 | |
|   | POINTERSIZE '=' EUINT64VAL {
 | |
|     if ($3 == 32)
 | |
|       CurModule.CurrentModule->setPointerSize(Module::Pointer32);
 | |
|     else if ($3 == 64)
 | |
|       CurModule.CurrentModule->setPointerSize(Module::Pointer64);
 | |
|     else
 | |
|       ThrowException("Invalid pointer size: '" + utostr($3) + "'!");
 | |
|   }
 | |
|   | TRIPLE '=' STRINGCONSTANT {
 | |
|     CurModule.CurrentModule->setTargetTriple($3);
 | |
|     free($3);
 | |
|   };
 | |
| 
 | |
| LibrariesDefinition : '[' LibList ']';
 | |
| 
 | |
| LibList : LibList ',' STRINGCONSTANT {
 | |
|           CurModule.CurrentModule->addLibrary($3);
 | |
|           free($3);
 | |
|         }
 | |
|         | STRINGCONSTANT {
 | |
|           CurModule.CurrentModule->addLibrary($1);
 | |
|           free($1);
 | |
|         }
 | |
|         | /* empty: end of list */ {
 | |
|         }
 | |
|         ;
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                       Rules to match Function Headers
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| Name : VAR_ID | STRINGCONSTANT;
 | |
| OptName : Name | /*empty*/ { $$ = 0; };
 | |
| 
 | |
| ArgVal : Types OptName {
 | |
|   if (*$1 == Type::VoidTy)
 | |
|     ThrowException("void typed arguments are invalid!");
 | |
|   $$ = new std::pair<PATypeHolder*, char*>($1, $2);
 | |
| };
 | |
| 
 | |
| ArgListH : ArgListH ',' ArgVal {
 | |
|     $$ = $1;
 | |
|     $1->push_back(*$3);
 | |
|     delete $3;
 | |
|   }
 | |
|   | ArgVal {
 | |
|     $$ = new std::vector<std::pair<PATypeHolder*,char*> >();
 | |
|     $$->push_back(*$1);
 | |
|     delete $1;
 | |
|   };
 | |
| 
 | |
| ArgList : ArgListH {
 | |
|     $$ = $1;
 | |
|   }
 | |
|   | ArgListH ',' DOTDOTDOT {
 | |
|     $$ = $1;
 | |
|     $$->push_back(std::pair<PATypeHolder*,
 | |
|                             char*>(new PATypeHolder(Type::VoidTy), 0));
 | |
|   }
 | |
|   | DOTDOTDOT {
 | |
|     $$ = new std::vector<std::pair<PATypeHolder*,char*> >();
 | |
|     $$->push_back(std::make_pair(new PATypeHolder(Type::VoidTy), (char*)0));
 | |
|   }
 | |
|   | /* empty */ {
 | |
|     $$ = 0;
 | |
|   };
 | |
| 
 | |
| FunctionHeaderH : TypesV Name '(' ArgList ')' {
 | |
|   UnEscapeLexed($2);
 | |
|   std::string FunctionName($2);
 | |
|   free($2);  // Free strdup'd memory!
 | |
|   
 | |
|   if (!(*$1)->isFirstClassType() && *$1 != Type::VoidTy)
 | |
|     ThrowException("LLVM functions cannot return aggregate types!");
 | |
| 
 | |
|   std::vector<const Type*> ParamTypeList;
 | |
|   if ($4) {   // If there are arguments...
 | |
|     for (std::vector<std::pair<PATypeHolder*,char*> >::iterator I = $4->begin();
 | |
|          I != $4->end(); ++I)
 | |
|       ParamTypeList.push_back(I->first->get());
 | |
|   }
 | |
| 
 | |
|   bool isVarArg = ParamTypeList.size() && ParamTypeList.back() == Type::VoidTy;
 | |
|   if (isVarArg) ParamTypeList.pop_back();
 | |
| 
 | |
|   const FunctionType *FT = FunctionType::get(*$1, ParamTypeList, isVarArg);
 | |
|   const PointerType *PFT = PointerType::get(FT);
 | |
|   delete $1;
 | |
| 
 | |
|   ValID ID;
 | |
|   if (!FunctionName.empty()) {
 | |
|     ID = ValID::create((char*)FunctionName.c_str());
 | |
|   } else {
 | |
|     ID = ValID::create((int)CurModule.Values[PFT].size());
 | |
|   }
 | |
| 
 | |
|   Function *Fn = 0;
 | |
|   // See if this function was forward referenced.  If so, recycle the object.
 | |
|   if (GlobalValue *FWRef = CurModule.GetForwardRefForGlobal(PFT, ID)) {
 | |
|     // Move the function to the end of the list, from whereever it was 
 | |
|     // previously inserted.
 | |
|     Fn = cast<Function>(FWRef);
 | |
|     CurModule.CurrentModule->getFunctionList().remove(Fn);
 | |
|     CurModule.CurrentModule->getFunctionList().push_back(Fn);
 | |
|   } else if (!FunctionName.empty() &&     // Merge with an earlier prototype?
 | |
|              (Fn = CurModule.CurrentModule->getFunction(FunctionName, FT))) {
 | |
|     // If this is the case, either we need to be a forward decl, or it needs 
 | |
|     // to be.
 | |
|     if (!CurFun.isDeclare && !Fn->isExternal())
 | |
|       ThrowException("Redefinition of function '" + FunctionName + "'!");
 | |
|     
 | |
|     // Make sure to strip off any argument names so we can't get conflicts.
 | |
|     if (Fn->isExternal())
 | |
|       for (Function::arg_iterator AI = Fn->arg_begin(), AE = Fn->arg_end();
 | |
|            AI != AE; ++AI)
 | |
|         AI->setName("");
 | |
| 
 | |
|   } else  {  // Not already defined?
 | |
|     Fn = new Function(FT, GlobalValue::ExternalLinkage, FunctionName,
 | |
|                       CurModule.CurrentModule);
 | |
|     InsertValue(Fn, CurModule.Values);
 | |
|   }
 | |
| 
 | |
|   CurFun.FunctionStart(Fn);
 | |
| 
 | |
|   // Add all of the arguments we parsed to the function...
 | |
|   if ($4) {                     // Is null if empty...
 | |
|     if (isVarArg) {  // Nuke the last entry
 | |
|       assert($4->back().first->get() == Type::VoidTy && $4->back().second == 0&&
 | |
|              "Not a varargs marker!");
 | |
|       delete $4->back().first;
 | |
|       $4->pop_back();  // Delete the last entry
 | |
|     }
 | |
|     Function::arg_iterator ArgIt = Fn->arg_begin();
 | |
|     for (std::vector<std::pair<PATypeHolder*, char*> >::iterator I =$4->begin();
 | |
|          I != $4->end(); ++I, ++ArgIt) {
 | |
|       delete I->first;                          // Delete the typeholder...
 | |
| 
 | |
|       setValueName(ArgIt, I->second);           // Insert arg into symtab...
 | |
|       InsertValue(ArgIt);
 | |
|     }
 | |
| 
 | |
|     delete $4;                     // We're now done with the argument list
 | |
|   }
 | |
| };
 | |
| 
 | |
| BEGIN : BEGINTOK | '{';                // Allow BEGIN or '{' to start a function
 | |
| 
 | |
| FunctionHeader : OptLinkage FunctionHeaderH BEGIN {
 | |
|   $$ = CurFun.CurrentFunction;
 | |
| 
 | |
|   // Make sure that we keep track of the linkage type even if there was a
 | |
|   // previous "declare".
 | |
|   $$->setLinkage($1);
 | |
| };
 | |
| 
 | |
| END : ENDTOK | '}';                    // Allow end of '}' to end a function
 | |
| 
 | |
| Function : BasicBlockList END {
 | |
|   $$ = $1;
 | |
| };
 | |
| 
 | |
| FunctionProto : DECLARE { CurFun.isDeclare = true; } FunctionHeaderH {
 | |
|   $$ = CurFun.CurrentFunction;
 | |
|   CurFun.FunctionDone();
 | |
| };
 | |
| 
 | |
| //===----------------------------------------------------------------------===//
 | |
| //                        Rules to match Basic Blocks
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| ConstValueRef : ESINT64VAL {    // A reference to a direct constant
 | |
|     $$ = ValID::create($1);
 | |
|   }
 | |
|   | EUINT64VAL {
 | |
|     $$ = ValID::create($1);
 | |
|   }
 | |
|   | FPVAL {                     // Perhaps it's an FP constant?
 | |
|     $$ = ValID::create($1);
 | |
|   }
 | |
|   | TRUETOK {
 | |
|     $$ = ValID::create(ConstantBool::True);
 | |
|   } 
 | |
|   | FALSETOK {
 | |
|     $$ = ValID::create(ConstantBool::False);
 | |
|   }
 | |
|   | NULL_TOK {
 | |
|     $$ = ValID::createNull();
 | |
|   }
 | |
|   | UNDEF {
 | |
|     $$ = ValID::createUndef();
 | |
|   }
 | |
|   | '<' ConstVector '>' { // Nonempty unsized packed vector
 | |
|     const Type *ETy = (*$2)[0]->getType();
 | |
|     int NumElements = $2->size(); 
 | |
|     
 | |
|     PackedType* pt = PackedType::get(ETy, NumElements);
 | |
|     PATypeHolder* PTy = new PATypeHolder(
 | |
|                                          HandleUpRefs(
 | |
|                                             PackedType::get(
 | |
|                                                 ETy, 
 | |
|                                                 NumElements)
 | |
|                                             )
 | |
|                                          );
 | |
|     
 | |
|     // Verify all elements are correct type!
 | |
|     for (unsigned i = 0; i < $2->size(); i++) {
 | |
|       if (ETy != (*$2)[i]->getType())
 | |
|         ThrowException("Element #" + utostr(i) + " is not of type '" + 
 | |
|                      ETy->getDescription() +"' as required!\nIt is of type '" +
 | |
|                      (*$2)[i]->getType()->getDescription() + "'.");
 | |
|     }
 | |
| 
 | |
|     $$ = ValID::create(ConstantPacked::get(pt, *$2));
 | |
|     delete PTy; delete $2;
 | |
|   }
 | |
|   | ConstExpr {
 | |
|     $$ = ValID::create($1);
 | |
|   };
 | |
| 
 | |
| // SymbolicValueRef - Reference to one of two ways of symbolically refering to
 | |
| // another value.
 | |
| //
 | |
| SymbolicValueRef : INTVAL {  // Is it an integer reference...?
 | |
|     $$ = ValID::create($1);
 | |
|   }
 | |
|   | Name {                   // Is it a named reference...?
 | |
|     $$ = ValID::create($1);
 | |
|   };
 | |
| 
 | |
| // ValueRef - A reference to a definition... either constant or symbolic
 | |
| ValueRef : SymbolicValueRef | ConstValueRef;
 | |
| 
 | |
| 
 | |
| // ResolvedVal - a <type> <value> pair.  This is used only in cases where the
 | |
| // type immediately preceeds the value reference, and allows complex constant
 | |
| // pool references (for things like: 'ret [2 x int] [ int 12, int 42]')
 | |
| ResolvedVal : Types ValueRef {
 | |
|     $$ = getVal(*$1, $2); delete $1;
 | |
|   };
 | |
| 
 | |
| BasicBlockList : BasicBlockList BasicBlock {
 | |
|     $$ = $1;
 | |
|   }
 | |
|   | FunctionHeader BasicBlock { // Do not allow functions with 0 basic blocks   
 | |
|     $$ = $1;
 | |
|   };
 | |
| 
 | |
| 
 | |
| // Basic blocks are terminated by branching instructions: 
 | |
| // br, br/cc, switch, ret
 | |
| //
 | |
| BasicBlock : InstructionList OptAssign BBTerminatorInst  {
 | |
|     setValueName($3, $2);
 | |
|     InsertValue($3);
 | |
| 
 | |
|     $1->getInstList().push_back($3);
 | |
|     InsertValue($1);
 | |
|     $$ = $1;
 | |
|   };
 | |
| 
 | |
| InstructionList : InstructionList Inst {
 | |
|     $1->getInstList().push_back($2);
 | |
|     $$ = $1;
 | |
|   }
 | |
|   | /* empty */ {
 | |
|     $$ = CurBB = getBBVal(ValID::create((int)CurFun.NextBBNum++), true);
 | |
| 
 | |
|     // Make sure to move the basic block to the correct location in the
 | |
|     // function, instead of leaving it inserted wherever it was first
 | |
|     // referenced.
 | |
|     CurFun.CurrentFunction->getBasicBlockList().remove(CurBB);
 | |
|     CurFun.CurrentFunction->getBasicBlockList().push_back(CurBB);
 | |
|   }
 | |
|   | LABELSTR {
 | |
|     $$ = CurBB = getBBVal(ValID::create($1), true);
 | |
| 
 | |
|     // Make sure to move the basic block to the correct location in the
 | |
|     // function, instead of leaving it inserted wherever it was first
 | |
|     // referenced.
 | |
|     CurFun.CurrentFunction->getBasicBlockList().remove(CurBB);
 | |
|     CurFun.CurrentFunction->getBasicBlockList().push_back(CurBB);
 | |
|   };
 | |
| 
 | |
| BBTerminatorInst : RET ResolvedVal {              // Return with a result...
 | |
|     $$ = new ReturnInst($2);
 | |
|   }
 | |
|   | RET VOID {                                       // Return with no result...
 | |
|     $$ = new ReturnInst();
 | |
|   }
 | |
|   | BR LABEL ValueRef {                         // Unconditional Branch...
 | |
|     $$ = new BranchInst(getBBVal($3));
 | |
|   }                                                  // Conditional Branch...
 | |
|   | BR BOOL ValueRef ',' LABEL ValueRef ',' LABEL ValueRef {  
 | |
|     $$ = new BranchInst(getBBVal($6), getBBVal($9), getVal(Type::BoolTy, $3));
 | |
|   }
 | |
|   | SWITCH IntType ValueRef ',' LABEL ValueRef '[' JumpTable ']' {
 | |
|     SwitchInst *S = new SwitchInst(getVal($2, $3), getBBVal($6), $8->size());
 | |
|     $$ = S;
 | |
| 
 | |
|     std::vector<std::pair<Constant*,BasicBlock*> >::iterator I = $8->begin(),
 | |
|       E = $8->end();
 | |
|     for (; I != E; ++I) {
 | |
|       if (ConstantInt *CI = dyn_cast<ConstantInt>(I->first))
 | |
|           S->addCase(CI, I->second);
 | |
|       else
 | |
|         ThrowException("Switch case is constant, but not a simple integer!");
 | |
|     }
 | |
|     delete $8;
 | |
|   }
 | |
|   | SWITCH IntType ValueRef ',' LABEL ValueRef '[' ']' {
 | |
|     SwitchInst *S = new SwitchInst(getVal($2, $3), getBBVal($6), 0);
 | |
|     $$ = S;
 | |
|   }
 | |
|   | INVOKE TypesV ValueRef '(' ValueRefListE ')' TO LABEL ValueRef
 | |
|     UNWIND LABEL ValueRef {
 | |
|     const PointerType *PFTy;
 | |
|     const FunctionType *Ty;
 | |
| 
 | |
|     if (!(PFTy = dyn_cast<PointerType>($2->get())) ||
 | |
|         !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
 | |
|       // Pull out the types of all of the arguments...
 | |
|       std::vector<const Type*> ParamTypes;
 | |
|       if ($5) {
 | |
|         for (std::vector<Value*>::iterator I = $5->begin(), E = $5->end();
 | |
|              I != E; ++I)
 | |
|           ParamTypes.push_back((*I)->getType());
 | |
|       }
 | |
| 
 | |
|       bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy;
 | |
|       if (isVarArg) ParamTypes.pop_back();
 | |
| 
 | |
|       Ty = FunctionType::get($2->get(), ParamTypes, isVarArg);
 | |
|       PFTy = PointerType::get(Ty);
 | |
|     }
 | |
| 
 | |
|     Value *V = getVal(PFTy, $3);   // Get the function we're calling...
 | |
| 
 | |
|     BasicBlock *Normal = getBBVal($9);
 | |
|     BasicBlock *Except = getBBVal($12);
 | |
| 
 | |
|     // Create the call node...
 | |
|     if (!$5) {                                   // Has no arguments?
 | |
|       $$ = new InvokeInst(V, Normal, Except, std::vector<Value*>());
 | |
|     } else {                                     // Has arguments?
 | |
|       // Loop through FunctionType's arguments and ensure they are specified
 | |
|       // correctly!
 | |
|       //
 | |
|       FunctionType::param_iterator I = Ty->param_begin();
 | |
|       FunctionType::param_iterator E = Ty->param_end();
 | |
|       std::vector<Value*>::iterator ArgI = $5->begin(), ArgE = $5->end();
 | |
| 
 | |
|       for (; ArgI != ArgE && I != E; ++ArgI, ++I)
 | |
|         if ((*ArgI)->getType() != *I)
 | |
|           ThrowException("Parameter " +(*ArgI)->getName()+ " is not of type '" +
 | |
|                          (*I)->getDescription() + "'!");
 | |
| 
 | |
|       if (I != E || (ArgI != ArgE && !Ty->isVarArg()))
 | |
|         ThrowException("Invalid number of parameters detected!");
 | |
| 
 | |
|       $$ = new InvokeInst(V, Normal, Except, *$5);
 | |
|     }
 | |
|     delete $2;
 | |
|     delete $5;
 | |
|   }
 | |
|   | UNWIND {
 | |
|     $$ = new UnwindInst();
 | |
|   }
 | |
|   | UNREACHABLE {
 | |
|     $$ = new UnreachableInst();
 | |
|   };
 | |
| 
 | |
| 
 | |
| 
 | |
| JumpTable : JumpTable IntType ConstValueRef ',' LABEL ValueRef {
 | |
|     $$ = $1;
 | |
|     Constant *V = cast<Constant>(getValNonImprovising($2, $3));
 | |
|     if (V == 0)
 | |
|       ThrowException("May only switch on a constant pool value!");
 | |
| 
 | |
|     $$->push_back(std::make_pair(V, getBBVal($6)));
 | |
|   }
 | |
|   | IntType ConstValueRef ',' LABEL ValueRef {
 | |
|     $$ = new std::vector<std::pair<Constant*, BasicBlock*> >();
 | |
|     Constant *V = cast<Constant>(getValNonImprovising($1, $2));
 | |
| 
 | |
|     if (V == 0)
 | |
|       ThrowException("May only switch on a constant pool value!");
 | |
| 
 | |
|     $$->push_back(std::make_pair(V, getBBVal($5)));
 | |
|   };
 | |
| 
 | |
| Inst : OptAssign InstVal {
 | |
|   // Is this definition named?? if so, assign the name...
 | |
|   setValueName($2, $1);
 | |
|   InsertValue($2);
 | |
|   $$ = $2;
 | |
| };
 | |
| 
 | |
| PHIList : Types '[' ValueRef ',' ValueRef ']' {    // Used for PHI nodes
 | |
|     $$ = new std::list<std::pair<Value*, BasicBlock*> >();
 | |
|     $$->push_back(std::make_pair(getVal(*$1, $3), getBBVal($5)));
 | |
|     delete $1;
 | |
|   }
 | |
|   | PHIList ',' '[' ValueRef ',' ValueRef ']' {
 | |
|     $$ = $1;
 | |
|     $1->push_back(std::make_pair(getVal($1->front().first->getType(), $4),
 | |
|                                  getBBVal($6)));
 | |
|   };
 | |
| 
 | |
| 
 | |
| ValueRefList : ResolvedVal {    // Used for call statements, and memory insts...
 | |
|     $$ = new std::vector<Value*>();
 | |
|     $$->push_back($1);
 | |
|   }
 | |
|   | ValueRefList ',' ResolvedVal {
 | |
|     $$ = $1;
 | |
|     $1->push_back($3);
 | |
|   };
 | |
| 
 | |
| // ValueRefListE - Just like ValueRefList, except that it may also be empty!
 | |
| ValueRefListE : ValueRefList | /*empty*/ { $$ = 0; };
 | |
| 
 | |
| InstVal : ArithmeticOps Types ValueRef ',' ValueRef {
 | |
|     if (!(*$2)->isInteger() && !(*$2)->isFloatingPoint() && 
 | |
|         !isa<PackedType>((*$2).get()))
 | |
|       ThrowException(
 | |
|         "Arithmetic operator requires integer, FP, or packed operands!");
 | |
|     if(isa<PackedType>((*$2).get()) && $1 == Instruction::Rem) {
 | |
|       ThrowException(
 | |
|         "Rem not supported on packed types!");
 | |
|     }
 | |
|     $$ = BinaryOperator::create($1, getVal(*$2, $3), getVal(*$2, $5));
 | |
|     if ($$ == 0)
 | |
|       ThrowException("binary operator returned null!");
 | |
|     delete $2;
 | |
|   }
 | |
|   | LogicalOps Types ValueRef ',' ValueRef {
 | |
|     if (!(*$2)->isIntegral())
 | |
|       ThrowException("Logical operator requires integral operands!");
 | |
|     $$ = BinaryOperator::create($1, getVal(*$2, $3), getVal(*$2, $5));
 | |
|     if ($$ == 0)
 | |
|       ThrowException("binary operator returned null!");
 | |
|     delete $2;
 | |
|   }
 | |
|   | SetCondOps Types ValueRef ',' ValueRef {
 | |
|     if(isa<PackedType>((*$2).get())) {
 | |
|       ThrowException(
 | |
|         "PackedTypes currently not supported in setcc instructions!");
 | |
|     }
 | |
|     $$ = new SetCondInst($1, getVal(*$2, $3), getVal(*$2, $5));
 | |
|     if ($$ == 0)
 | |
|       ThrowException("binary operator returned null!");
 | |
|     delete $2;
 | |
|   }
 | |
|   | NOT ResolvedVal {
 | |
|     std::cerr << "WARNING: Use of eliminated 'not' instruction:"
 | |
|               << " Replacing with 'xor'.\n";
 | |
| 
 | |
|     Value *Ones = ConstantIntegral::getAllOnesValue($2->getType());
 | |
|     if (Ones == 0)
 | |
|       ThrowException("Expected integral type for not instruction!");
 | |
| 
 | |
|     $$ = BinaryOperator::create(Instruction::Xor, $2, Ones);
 | |
|     if ($$ == 0)
 | |
|       ThrowException("Could not create a xor instruction!");
 | |
|   }
 | |
|   | ShiftOps ResolvedVal ',' ResolvedVal {
 | |
|     if ($4->getType() != Type::UByteTy)
 | |
|       ThrowException("Shift amount must be ubyte!");
 | |
|     if (!$2->getType()->isInteger())
 | |
|       ThrowException("Shift constant expression requires integer operand!");
 | |
|     $$ = new ShiftInst($1, $2, $4);
 | |
|   }
 | |
|   | CAST ResolvedVal TO Types {
 | |
|     if (!$4->get()->isFirstClassType())
 | |
|       ThrowException("cast instruction to a non-primitive type: '" +
 | |
|                      $4->get()->getDescription() + "'!");
 | |
|     $$ = new CastInst($2, *$4);
 | |
|     delete $4;
 | |
|   }
 | |
|   | SELECT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
 | |
|     if ($2->getType() != Type::BoolTy)
 | |
|       ThrowException("select condition must be boolean!");
 | |
|     if ($4->getType() != $6->getType())
 | |
|       ThrowException("select value types should match!");
 | |
|     $$ = new SelectInst($2, $4, $6);
 | |
|   }
 | |
|   | VA_ARG ResolvedVal ',' Types {
 | |
|     // FIXME: This is emulation code for an obsolete syntax.  This should be
 | |
|     // removed at some point.
 | |
|     if (!ObsoleteVarArgs) {
 | |
|       std::cerr << "WARNING: this file uses obsolete features.  "
 | |
|                 << "Assemble and disassemble to update it.\n";
 | |
|       ObsoleteVarArgs = true;
 | |
|     }
 | |
| 
 | |
|     // First, load the valist...
 | |
|     Instruction *CurVAList = new LoadInst($2, "");
 | |
|     CurBB->getInstList().push_back(CurVAList);
 | |
| 
 | |
|     // Emit the vaarg instruction.
 | |
|     $$ = new VAArgInst(CurVAList, *$4);
 | |
|     
 | |
|     // Now we must advance the pointer and update it in memory.
 | |
|     Instruction *TheVANext = new VANextInst(CurVAList, *$4);
 | |
|     CurBB->getInstList().push_back(TheVANext);
 | |
| 
 | |
|     CurBB->getInstList().push_back(new StoreInst(TheVANext, $2));
 | |
|     delete $4;
 | |
|   }
 | |
|   | VAARG ResolvedVal ',' Types {
 | |
|     $$ = new VAArgInst($2, *$4);
 | |
|     delete $4;
 | |
|   }
 | |
|   | VANEXT ResolvedVal ',' Types {
 | |
|     $$ = new VANextInst($2, *$4);
 | |
|     delete $4;
 | |
|   }
 | |
|   | PHI_TOK PHIList {
 | |
|     const Type *Ty = $2->front().first->getType();
 | |
|     if (!Ty->isFirstClassType())
 | |
|       ThrowException("PHI node operands must be of first class type!");
 | |
|     $$ = new PHINode(Ty);
 | |
|     ((PHINode*)$$)->reserveOperandSpace($2->size());
 | |
|     while ($2->begin() != $2->end()) {
 | |
|       if ($2->front().first->getType() != Ty) 
 | |
|         ThrowException("All elements of a PHI node must be of the same type!");
 | |
|       cast<PHINode>($$)->addIncoming($2->front().first, $2->front().second);
 | |
|       $2->pop_front();
 | |
|     }
 | |
|     delete $2;  // Free the list...
 | |
|   } 
 | |
|   | CALL TypesV ValueRef '(' ValueRefListE ')' {
 | |
|     const PointerType *PFTy;
 | |
|     const FunctionType *Ty;
 | |
| 
 | |
|     if (!(PFTy = dyn_cast<PointerType>($2->get())) ||
 | |
|         !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
 | |
|       // Pull out the types of all of the arguments...
 | |
|       std::vector<const Type*> ParamTypes;
 | |
|       if ($5) {
 | |
|         for (std::vector<Value*>::iterator I = $5->begin(), E = $5->end();
 | |
|              I != E; ++I)
 | |
|           ParamTypes.push_back((*I)->getType());
 | |
|       }
 | |
| 
 | |
|       bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy;
 | |
|       if (isVarArg) ParamTypes.pop_back();
 | |
| 
 | |
|       if (!(*$2)->isFirstClassType() && *$2 != Type::VoidTy)
 | |
|         ThrowException("LLVM functions cannot return aggregate types!");
 | |
| 
 | |
|       Ty = FunctionType::get($2->get(), ParamTypes, isVarArg);
 | |
|       PFTy = PointerType::get(Ty);
 | |
|     }
 | |
| 
 | |
|     Value *V = getVal(PFTy, $3);   // Get the function we're calling...
 | |
| 
 | |
|     // Create the call node...
 | |
|     if (!$5) {                                   // Has no arguments?
 | |
|       // Make sure no arguments is a good thing!
 | |
|       if (Ty->getNumParams() != 0)
 | |
|         ThrowException("No arguments passed to a function that "
 | |
|                        "expects arguments!");
 | |
| 
 | |
|       $$ = new CallInst(V, std::vector<Value*>());
 | |
|     } else {                                     // Has arguments?
 | |
|       // Loop through FunctionType's arguments and ensure they are specified
 | |
|       // correctly!
 | |
|       //
 | |
|       FunctionType::param_iterator I = Ty->param_begin();
 | |
|       FunctionType::param_iterator E = Ty->param_end();
 | |
|       std::vector<Value*>::iterator ArgI = $5->begin(), ArgE = $5->end();
 | |
| 
 | |
|       for (; ArgI != ArgE && I != E; ++ArgI, ++I)
 | |
|         if ((*ArgI)->getType() != *I)
 | |
|           ThrowException("Parameter " +(*ArgI)->getName()+ " is not of type '" +
 | |
|                          (*I)->getDescription() + "'!");
 | |
| 
 | |
|       if (I != E || (ArgI != ArgE && !Ty->isVarArg()))
 | |
|         ThrowException("Invalid number of parameters detected!");
 | |
| 
 | |
|       $$ = new CallInst(V, *$5);
 | |
|     }
 | |
|     delete $2;
 | |
|     delete $5;
 | |
|   }
 | |
|   | MemoryInst {
 | |
|     $$ = $1;
 | |
|   };
 | |
| 
 | |
| 
 | |
| // IndexList - List of indices for GEP based instructions...
 | |
| IndexList : ',' ValueRefList { 
 | |
|     $$ = $2; 
 | |
|   } | /* empty */ { 
 | |
|     $$ = new std::vector<Value*>(); 
 | |
|   };
 | |
| 
 | |
| OptVolatile : VOLATILE {
 | |
|     $$ = true;
 | |
|   }
 | |
|   | /* empty */ {
 | |
|     $$ = false;
 | |
|   };
 | |
| 
 | |
| 
 | |
| MemoryInst : MALLOC Types {
 | |
|     $$ = new MallocInst(*$2);
 | |
|     delete $2;
 | |
|   }
 | |
|   | MALLOC Types ',' UINT ValueRef {
 | |
|     $$ = new MallocInst(*$2, getVal($4, $5));
 | |
|     delete $2;
 | |
|   }
 | |
|   | ALLOCA Types {
 | |
|     $$ = new AllocaInst(*$2);
 | |
|     delete $2;
 | |
|   }
 | |
|   | ALLOCA Types ',' UINT ValueRef {
 | |
|     $$ = new AllocaInst(*$2, getVal($4, $5));
 | |
|     delete $2;
 | |
|   }
 | |
|   | FREE ResolvedVal {
 | |
|     if (!isa<PointerType>($2->getType()))
 | |
|       ThrowException("Trying to free nonpointer type " + 
 | |
|                      $2->getType()->getDescription() + "!");
 | |
|     $$ = new FreeInst($2);
 | |
|   }
 | |
| 
 | |
|   | OptVolatile LOAD Types ValueRef {
 | |
|     if (!isa<PointerType>($3->get()))
 | |
|       ThrowException("Can't load from nonpointer type: " +
 | |
|                      (*$3)->getDescription());
 | |
|     if (!cast<PointerType>($3->get())->getElementType()->isFirstClassType())
 | |
|       ThrowException("Can't load from pointer of non-first-class type: " +
 | |
|                      (*$3)->getDescription());
 | |
|     $$ = new LoadInst(getVal(*$3, $4), "", $1);
 | |
|     delete $3;
 | |
|   }
 | |
|   | OptVolatile STORE ResolvedVal ',' Types ValueRef {
 | |
|     const PointerType *PT = dyn_cast<PointerType>($5->get());
 | |
|     if (!PT)
 | |
|       ThrowException("Can't store to a nonpointer type: " +
 | |
|                      (*$5)->getDescription());
 | |
|     const Type *ElTy = PT->getElementType();
 | |
|     if (ElTy != $3->getType())
 | |
|       ThrowException("Can't store '" + $3->getType()->getDescription() +
 | |
|                      "' into space of type '" + ElTy->getDescription() + "'!");
 | |
| 
 | |
|     $$ = new StoreInst($3, getVal(*$5, $6), $1);
 | |
|     delete $5;
 | |
|   }
 | |
|   | GETELEMENTPTR Types ValueRef IndexList {
 | |
|     if (!isa<PointerType>($2->get()))
 | |
|       ThrowException("getelementptr insn requires pointer operand!");
 | |
| 
 | |
|     // LLVM 1.2 and earlier used ubyte struct indices.  Convert any ubyte struct
 | |
|     // indices to uint struct indices for compatibility.
 | |
|     generic_gep_type_iterator<std::vector<Value*>::iterator>
 | |
|       GTI = gep_type_begin($2->get(), $4->begin(), $4->end()),
 | |
|       GTE = gep_type_end($2->get(), $4->begin(), $4->end());
 | |
|     for (unsigned i = 0, e = $4->size(); i != e && GTI != GTE; ++i, ++GTI)
 | |
|       if (isa<StructType>(*GTI))        // Only change struct indices
 | |
|         if (ConstantUInt *CUI = dyn_cast<ConstantUInt>((*$4)[i]))
 | |
|           if (CUI->getType() == Type::UByteTy)
 | |
|             (*$4)[i] = ConstantExpr::getCast(CUI, Type::UIntTy);
 | |
| 
 | |
|     if (!GetElementPtrInst::getIndexedType(*$2, *$4, true))
 | |
|       ThrowException("Invalid getelementptr indices for type '" +
 | |
|                      (*$2)->getDescription()+ "'!");
 | |
|     $$ = new GetElementPtrInst(getVal(*$2, $3), *$4);
 | |
|     delete $2; delete $4;
 | |
|   };
 | |
| 
 | |
| 
 | |
| %%
 | |
| int yyerror(const char *ErrorMsg) {
 | |
|   std::string where 
 | |
|     = std::string((CurFilename == "-") ? std::string("<stdin>") : CurFilename)
 | |
|                   + ":" + utostr((unsigned) llvmAsmlineno) + ": ";
 | |
|   std::string errMsg = std::string(ErrorMsg) + "\n" + where + " while reading ";
 | |
|   if (yychar == YYEMPTY || yychar == 0)
 | |
|     errMsg += "end-of-file.";
 | |
|   else
 | |
|     errMsg += "token: '" + std::string(llvmAsmtext, llvmAsmleng) + "'";
 | |
|   ThrowException(errMsg);
 | |
|   return 0;
 | |
| }
 |