mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-30 16:17:05 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@21422 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			326 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			326 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This tool implements a just-in-time compiler for LLVM, allowing direct
 | |
| // execution of LLVM bytecode in an efficient manner.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "JIT.h"
 | |
| #include "llvm/Constants.h"
 | |
| #include "llvm/DerivedTypes.h"
 | |
| #include "llvm/Function.h"
 | |
| #include "llvm/GlobalVariable.h"
 | |
| #include "llvm/Instructions.h"
 | |
| #include "llvm/ModuleProvider.h"
 | |
| #include "llvm/CodeGen/MachineCodeEmitter.h"
 | |
| #include "llvm/CodeGen/MachineFunction.h"
 | |
| #include "llvm/ExecutionEngine/GenericValue.h"
 | |
| #include "llvm/System/DynamicLibrary.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/Target/TargetJITInfo.h"
 | |
| #include <iostream>
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| JIT::JIT(ModuleProvider *MP, TargetMachine &tm, TargetJITInfo &tji)
 | |
|   : ExecutionEngine(MP), TM(tm), TJI(tji), PM(MP) {
 | |
|   setTargetData(TM.getTargetData());
 | |
| 
 | |
|   // Initialize MCE
 | |
|   MCE = createEmitter(*this);
 | |
| 
 | |
|   // Add target data
 | |
|   PM.add(new TargetData(TM.getTargetData()));
 | |
| 
 | |
|   // Compile LLVM Code down to machine code in the intermediate representation
 | |
|   TJI.addPassesToJITCompile(PM);
 | |
| 
 | |
|   // Turn the machine code intermediate representation into bytes in memory that
 | |
|   // may be executed.
 | |
|   if (TM.addPassesToEmitMachineCode(PM, *MCE)) {
 | |
|     std::cerr << "Target '" << TM.getName()
 | |
|               << "' doesn't support machine code emission!\n";
 | |
|     abort();
 | |
|   }
 | |
| }
 | |
| 
 | |
| JIT::~JIT() {
 | |
|   delete MCE;
 | |
|   delete &TM;
 | |
| }
 | |
| 
 | |
| /// run - Start execution with the specified function and arguments.
 | |
| ///
 | |
| GenericValue JIT::runFunction(Function *F,
 | |
|                               const std::vector<GenericValue> &ArgValues) {
 | |
|   assert(F && "Function *F was null at entry to run()");
 | |
| 
 | |
|   void *FPtr = getPointerToFunction(F);
 | |
|   assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
 | |
|   const FunctionType *FTy = F->getFunctionType();
 | |
|   const Type *RetTy = FTy->getReturnType();
 | |
| 
 | |
|   assert((FTy->getNumParams() <= ArgValues.size() || FTy->isVarArg()) &&
 | |
|          "Too many arguments passed into function!");
 | |
|   assert(FTy->getNumParams() == ArgValues.size() &&
 | |
|          "This doesn't support passing arguments through varargs (yet)!");
 | |
| 
 | |
|   // Handle some common cases first.  These cases correspond to common `main'
 | |
|   // prototypes.
 | |
|   if (RetTy == Type::IntTy || RetTy == Type::UIntTy || RetTy == Type::VoidTy) {
 | |
|     switch (ArgValues.size()) {
 | |
|     case 3:
 | |
|       if ((FTy->getParamType(0) == Type::IntTy ||
 | |
|            FTy->getParamType(0) == Type::UIntTy) &&
 | |
|           isa<PointerType>(FTy->getParamType(1)) &&
 | |
|           isa<PointerType>(FTy->getParamType(2))) {
 | |
|         int (*PF)(int, char **, const char **) =
 | |
|           (int(*)(int, char **, const char **))FPtr;
 | |
| 
 | |
|         // Call the function.
 | |
|         GenericValue rv;
 | |
|         rv.IntVal = PF(ArgValues[0].IntVal, (char **)GVTOP(ArgValues[1]),
 | |
|                        (const char **)GVTOP(ArgValues[2]));
 | |
|         return rv;
 | |
|       }
 | |
|       break;
 | |
|     case 2:
 | |
|       if ((FTy->getParamType(0) == Type::IntTy ||
 | |
|            FTy->getParamType(0) == Type::UIntTy) &&
 | |
|           isa<PointerType>(FTy->getParamType(1))) {
 | |
|         int (*PF)(int, char **) = (int(*)(int, char **))FPtr;
 | |
| 
 | |
|         // Call the function.
 | |
|         GenericValue rv;
 | |
|         rv.IntVal = PF(ArgValues[0].IntVal, (char **)GVTOP(ArgValues[1]));
 | |
|         return rv;
 | |
|       }
 | |
|       break;
 | |
|     case 1:
 | |
|       if (FTy->getNumParams() == 1 &&
 | |
|           (FTy->getParamType(0) == Type::IntTy ||
 | |
|            FTy->getParamType(0) == Type::UIntTy)) {
 | |
|         GenericValue rv;
 | |
|         int (*PF)(int) = (int(*)(int))FPtr;
 | |
|         rv.IntVal = PF(ArgValues[0].IntVal);
 | |
|         return rv;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Handle cases where no arguments are passed first.
 | |
|   if (ArgValues.empty()) {
 | |
|     GenericValue rv;
 | |
|     switch (RetTy->getTypeID()) {
 | |
|     default: assert(0 && "Unknown return type for function call!");
 | |
|     case Type::BoolTyID:
 | |
|       rv.BoolVal = ((bool(*)())FPtr)();
 | |
|       return rv;
 | |
|     case Type::SByteTyID:
 | |
|     case Type::UByteTyID:
 | |
|       rv.SByteVal = ((char(*)())FPtr)();
 | |
|       return rv;
 | |
|     case Type::ShortTyID:
 | |
|     case Type::UShortTyID:
 | |
|       rv.ShortVal = ((short(*)())FPtr)();
 | |
|       return rv;
 | |
|     case Type::VoidTyID:
 | |
|     case Type::IntTyID:
 | |
|     case Type::UIntTyID:
 | |
|       rv.IntVal = ((int(*)())FPtr)();
 | |
|       return rv;
 | |
|     case Type::LongTyID:
 | |
|     case Type::ULongTyID:
 | |
|       rv.LongVal = ((int64_t(*)())FPtr)();
 | |
|       return rv;
 | |
|     case Type::FloatTyID:
 | |
|       rv.FloatVal = ((float(*)())FPtr)();
 | |
|       return rv;
 | |
|     case Type::DoubleTyID:
 | |
|       rv.DoubleVal = ((double(*)())FPtr)();
 | |
|       return rv;
 | |
|     case Type::PointerTyID:
 | |
|       return PTOGV(((void*(*)())FPtr)());
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Okay, this is not one of our quick and easy cases.  Because we don't have a
 | |
|   // full FFI, we have to codegen a nullary stub function that just calls the
 | |
|   // function we are interested in, passing in constants for all of the
 | |
|   // arguments.  Make this function and return.
 | |
| 
 | |
|   // First, create the function.
 | |
|   FunctionType *STy=FunctionType::get(RetTy, std::vector<const Type*>(), false);
 | |
|   Function *Stub = new Function(STy, Function::InternalLinkage, "",
 | |
|                                 F->getParent());
 | |
| 
 | |
|   // Insert a basic block.
 | |
|   BasicBlock *StubBB = new BasicBlock("", Stub);
 | |
| 
 | |
|   // Convert all of the GenericValue arguments over to constants.  Note that we
 | |
|   // currently don't support varargs.
 | |
|   std::vector<Value*> Args;
 | |
|   for (unsigned i = 0, e = ArgValues.size(); i != e; ++i) {
 | |
|     Constant *C = 0;
 | |
|     const Type *ArgTy = FTy->getParamType(i);
 | |
|     const GenericValue &AV = ArgValues[i];
 | |
|     switch (ArgTy->getTypeID()) {
 | |
|     default: assert(0 && "Unknown argument type for function call!");
 | |
|     case Type::BoolTyID:   C = ConstantBool::get(AV.BoolVal); break;
 | |
|     case Type::SByteTyID:  C = ConstantSInt::get(ArgTy, AV.SByteVal);  break;
 | |
|     case Type::UByteTyID:  C = ConstantUInt::get(ArgTy, AV.UByteVal);  break;
 | |
|     case Type::ShortTyID:  C = ConstantSInt::get(ArgTy, AV.ShortVal);  break;
 | |
|     case Type::UShortTyID: C = ConstantUInt::get(ArgTy, AV.UShortVal); break;
 | |
|     case Type::IntTyID:    C = ConstantSInt::get(ArgTy, AV.IntVal);    break;
 | |
|     case Type::UIntTyID:   C = ConstantUInt::get(ArgTy, AV.UIntVal);   break;
 | |
|     case Type::LongTyID:   C = ConstantSInt::get(ArgTy, AV.LongVal);   break;
 | |
|     case Type::ULongTyID:  C = ConstantUInt::get(ArgTy, AV.ULongVal);  break;
 | |
|     case Type::FloatTyID:  C = ConstantFP  ::get(ArgTy, AV.FloatVal);  break;
 | |
|     case Type::DoubleTyID: C = ConstantFP  ::get(ArgTy, AV.DoubleVal); break;
 | |
|     case Type::PointerTyID:
 | |
|       void *ArgPtr = GVTOP(AV);
 | |
|       if (sizeof(void*) == 4) {
 | |
|         C = ConstantSInt::get(Type::IntTy, (int)(intptr_t)ArgPtr);
 | |
|       } else {
 | |
|         C = ConstantSInt::get(Type::LongTy, (intptr_t)ArgPtr);
 | |
|       }
 | |
|       C = ConstantExpr::getCast(C, ArgTy);  // Cast the integer to pointer
 | |
|       break;
 | |
|     }
 | |
|     Args.push_back(C);
 | |
|   }
 | |
| 
 | |
|   Value *TheCall = new CallInst(F, Args, "", StubBB);
 | |
|   if (TheCall->getType() != Type::VoidTy)
 | |
|     new ReturnInst(TheCall, StubBB);             // Return result of the call.
 | |
|   else
 | |
|     new ReturnInst(StubBB);                      // Just return void.
 | |
| 
 | |
|   // Finally, return the value returned by our nullary stub function.
 | |
|   return runFunction(Stub, std::vector<GenericValue>());
 | |
| }
 | |
| 
 | |
| /// runJITOnFunction - Run the FunctionPassManager full of
 | |
| /// just-in-time compilation passes on F, hopefully filling in
 | |
| /// GlobalAddress[F] with the address of F's machine code.
 | |
| ///
 | |
| void JIT::runJITOnFunction(Function *F) {
 | |
|   static bool isAlreadyCodeGenerating = false;
 | |
|   assert(!isAlreadyCodeGenerating && "Error: Recursive compilation detected!");
 | |
| 
 | |
|   // JIT the function
 | |
|   isAlreadyCodeGenerating = true;
 | |
|   PM.run(*F);
 | |
|   isAlreadyCodeGenerating = false;
 | |
| 
 | |
|   // If the function referred to a global variable that had not yet been
 | |
|   // emitted, it allocates memory for the global, but doesn't emit it yet.  Emit
 | |
|   // all of these globals now.
 | |
|   while (!PendingGlobals.empty()) {
 | |
|     const GlobalVariable *GV = PendingGlobals.back();
 | |
|     PendingGlobals.pop_back();
 | |
|     EmitGlobalVariable(GV);
 | |
|   }
 | |
| }
 | |
| 
 | |
| /// getPointerToFunction - This method is used to get the address of the
 | |
| /// specified function, compiling it if neccesary.
 | |
| ///
 | |
| void *JIT::getPointerToFunction(Function *F) {
 | |
|   if (void *Addr = getPointerToGlobalIfAvailable(F))
 | |
|     return Addr;   // Check if function already code gen'd
 | |
| 
 | |
|   // Make sure we read in the function if it exists in this Module
 | |
|   if (F->hasNotBeenReadFromBytecode())
 | |
|     try {
 | |
|       MP->materializeFunction(F);
 | |
|     } catch ( std::string& errmsg ) {
 | |
|       std::cerr << "Error reading function '" << F->getName()
 | |
|                 << "' from bytecode file: " << errmsg << "\n";
 | |
|       abort();
 | |
|     } catch (...) {
 | |
|       std::cerr << "Error reading function '" << F->getName()
 | |
|                 << "from bytecode file!\n";
 | |
|       abort();
 | |
|     }
 | |
| 
 | |
|   if (F->isExternal()) {
 | |
|     void *Addr = getPointerToNamedFunction(F->getName());
 | |
|     addGlobalMapping(F, Addr);
 | |
|     return Addr;
 | |
|   }
 | |
| 
 | |
|   runJITOnFunction(F);
 | |
| 
 | |
|   void *Addr = getPointerToGlobalIfAvailable(F);
 | |
|   assert(Addr && "Code generation didn't add function to GlobalAddress table!");
 | |
|   return Addr;
 | |
| }
 | |
| 
 | |
| /// getOrEmitGlobalVariable - Return the address of the specified global
 | |
| /// variable, possibly emitting it to memory if needed.  This is used by the
 | |
| /// Emitter.
 | |
| void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) {
 | |
|   void *Ptr = getPointerToGlobalIfAvailable(GV);
 | |
|   if (Ptr) return Ptr;
 | |
| 
 | |
|   // If the global is external, just remember the address.
 | |
|   if (GV->isExternal()) {
 | |
|     Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(GV->getName().c_str());
 | |
|     if (Ptr == 0) {
 | |
|       std::cerr << "Could not resolve external global address: "
 | |
|                 << GV->getName() << "\n";
 | |
|       abort();
 | |
|     }
 | |
|   } else {
 | |
|     // If the global hasn't been emitted to memory yet, allocate space.  We will
 | |
|     // actually initialize the global after current function has finished
 | |
|     // compilation.
 | |
|     uint64_t S = getTargetData().getTypeSize(GV->getType()->getElementType());
 | |
|     Ptr = new char[(size_t)S];
 | |
|     PendingGlobals.push_back(GV);
 | |
|   }
 | |
|   addGlobalMapping(GV, Ptr);
 | |
|   return Ptr;
 | |
| }
 | |
| 
 | |
| 
 | |
| /// recompileAndRelinkFunction - This method is used to force a function
 | |
| /// which has already been compiled, to be compiled again, possibly
 | |
| /// after it has been modified. Then the entry to the old copy is overwritten
 | |
| /// with a branch to the new copy. If there was no old copy, this acts
 | |
| /// just like JIT::getPointerToFunction().
 | |
| ///
 | |
| void *JIT::recompileAndRelinkFunction(Function *F) {
 | |
|   void *OldAddr = getPointerToGlobalIfAvailable(F);
 | |
| 
 | |
|   // If it's not already compiled there is no reason to patch it up.
 | |
|   if (OldAddr == 0) { return getPointerToFunction(F); }
 | |
| 
 | |
|   // Delete the old function mapping.
 | |
|   addGlobalMapping(F, 0);
 | |
| 
 | |
|   // Recodegen the function
 | |
|   runJITOnFunction(F);
 | |
| 
 | |
|   // Update state, forward the old function to the new function.
 | |
|   void *Addr = getPointerToGlobalIfAvailable(F);
 | |
|   assert(Addr && "Code generation didn't add function to GlobalAddress table!");
 | |
|   TJI.replaceMachineCodeForFunction(OldAddr, Addr);
 | |
|   return Addr;
 | |
| }
 | |
| 
 | |
| /// freeMachineCodeForFunction - release machine code memory for given Function
 | |
| ///
 | |
| void JIT::freeMachineCodeForFunction(Function *F) {
 | |
|   // currently a no-op
 | |
| }
 |