mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-03 14:21:30 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@21425 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1364 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1364 lines
		
	
	
		
			54 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- PhyRegAlloc.cpp ---------------------------------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file was developed by the LLVM research group and is distributed under
 | 
						|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// Traditional graph-coloring global register allocator currently used
 | 
						|
// by the SPARC back-end.
 | 
						|
//
 | 
						|
// NOTE: This register allocator has some special support
 | 
						|
// for the Reoptimizer, such as not saving some registers on calls to
 | 
						|
// the first-level instrumentation function.
 | 
						|
//
 | 
						|
// NOTE 2: This register allocator can save its state in a global
 | 
						|
// variable in the module it's working on. This feature is not
 | 
						|
// thread-safe; if you have doubts, leave it turned off.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "AllocInfo.h"
 | 
						|
#include "IGNode.h"
 | 
						|
#include "PhyRegAlloc.h"
 | 
						|
#include "RegAllocCommon.h"
 | 
						|
#include "RegClass.h"
 | 
						|
#include "../LiveVar/FunctionLiveVarInfo.h"
 | 
						|
#include "../MachineCodeForInstruction.h"
 | 
						|
#include "../MachineFunctionInfo.h"
 | 
						|
#include "../SparcV9InstrInfo.h"
 | 
						|
#include "../SparcV9TmpInstr.h"
 | 
						|
#include "llvm/Constants.h"
 | 
						|
#include "llvm/DerivedTypes.h"
 | 
						|
#include "llvm/Instructions.h"
 | 
						|
#include "llvm/Module.h"
 | 
						|
#include "llvm/Type.h"
 | 
						|
#include "llvm/Analysis/LoopInfo.h"
 | 
						|
#include "llvm/CodeGen/MachineFunction.h"
 | 
						|
#include "llvm/CodeGen/MachineInstr.h"
 | 
						|
#include "llvm/CodeGen/MachineInstrBuilder.h"
 | 
						|
#include "../MachineInstrAnnot.h"
 | 
						|
#include "llvm/CodeGen/Passes.h"
 | 
						|
#include "llvm/Support/InstIterator.h"
 | 
						|
#include "llvm/Target/TargetInstrInfo.h"
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
#include "llvm/ADT/SetOperations.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include <cmath>
 | 
						|
#include <iostream>
 | 
						|
 | 
						|
namespace llvm {
 | 
						|
 | 
						|
RegAllocDebugLevel_t DEBUG_RA;
 | 
						|
 | 
						|
static cl::opt<RegAllocDebugLevel_t, true>
 | 
						|
DRA_opt("dregalloc", cl::Hidden, cl::location(DEBUG_RA),
 | 
						|
        cl::desc("enable register allocation debugging information"),
 | 
						|
        cl::values(
 | 
						|
  clEnumValN(RA_DEBUG_None   ,     "n", "disable debug output"),
 | 
						|
  clEnumValN(RA_DEBUG_Results,     "y", "debug output for allocation results"),
 | 
						|
  clEnumValN(RA_DEBUG_Coloring,    "c", "debug output for graph coloring step"),
 | 
						|
  clEnumValN(RA_DEBUG_Interference,"ig","debug output for interference graphs"),
 | 
						|
  clEnumValN(RA_DEBUG_LiveRanges , "lr","debug output for live ranges"),
 | 
						|
  clEnumValN(RA_DEBUG_Verbose,     "v", "extra debug output"),
 | 
						|
                   clEnumValEnd));
 | 
						|
 | 
						|
/// The reoptimizer wants to be able to grovel through the register
 | 
						|
/// allocator's state after it has done its job. This is a hack.
 | 
						|
///
 | 
						|
PhyRegAlloc::SavedStateMapTy ExportedFnAllocState;
 | 
						|
bool SaveRegAllocState = false;
 | 
						|
bool SaveStateToModule = true;
 | 
						|
static cl::opt<bool, true>
 | 
						|
SaveRegAllocStateOpt("save-ra-state", cl::Hidden,
 | 
						|
                  cl::location (SaveRegAllocState),
 | 
						|
                  cl::init(false),
 | 
						|
                  cl::desc("write reg. allocator state into module"));
 | 
						|
 | 
						|
FunctionPass *getRegisterAllocator(TargetMachine &T) {
 | 
						|
  return new PhyRegAlloc (T);
 | 
						|
}
 | 
						|
 | 
						|
void PhyRegAlloc::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.addRequired<LoopInfo> ();
 | 
						|
  AU.addRequired<FunctionLiveVarInfo> ();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Initialize interference graphs (one in each reg class) and IGNodeLists
 | 
						|
/// (one in each IG). The actual nodes will be pushed later.
 | 
						|
///
 | 
						|
void PhyRegAlloc::createIGNodeListsAndIGs() {
 | 
						|
  if (DEBUG_RA >= RA_DEBUG_LiveRanges) std::cerr << "Creating LR lists ...\n";
 | 
						|
 | 
						|
  LiveRangeMapType::const_iterator HMI = LRI->getLiveRangeMap()->begin();
 | 
						|
  LiveRangeMapType::const_iterator HMIEnd = LRI->getLiveRangeMap()->end();
 | 
						|
 | 
						|
  for (; HMI != HMIEnd ; ++HMI ) {
 | 
						|
    if (HMI->first) {
 | 
						|
      LiveRange *L = HMI->second;   // get the LiveRange
 | 
						|
      if (!L) {
 | 
						|
        if (DEBUG_RA && !isa<ConstantIntegral> (HMI->first))
 | 
						|
          std::cerr << "\n**** ?!?WARNING: NULL LIVE RANGE FOUND FOR: "
 | 
						|
               << RAV(HMI->first) << "****\n";
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // if the Value * is not null, and LR is not yet written to the IGNodeList
 | 
						|
      if (!(L->getUserIGNode())  ) {
 | 
						|
        RegClass *const RC =           // RegClass of first value in the LR
 | 
						|
          RegClassList[ L->getRegClassID() ];
 | 
						|
        RC->addLRToIG(L);              // add this LR to an IG
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // init RegClassList
 | 
						|
  for ( unsigned rc=0; rc < NumOfRegClasses ; rc++)
 | 
						|
    RegClassList[rc]->createInterferenceGraph();
 | 
						|
 | 
						|
  if (DEBUG_RA >= RA_DEBUG_LiveRanges) std::cerr << "LRLists Created!\n";
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Add all interferences for a given instruction.  Interference occurs only
 | 
						|
/// if the LR of Def (Inst or Arg) is of the same reg class as that of live
 | 
						|
/// var. The live var passed to this function is the LVset AFTER the
 | 
						|
/// instruction.
 | 
						|
///
 | 
						|
void PhyRegAlloc::addInterference(const Value *Def, const ValueSet *LVSet,
 | 
						|
				  bool isCallInst) {
 | 
						|
  ValueSet::const_iterator LIt = LVSet->begin();
 | 
						|
 | 
						|
  // get the live range of instruction
 | 
						|
  const LiveRange *const LROfDef = LRI->getLiveRangeForValue( Def );
 | 
						|
 | 
						|
  IGNode *const IGNodeOfDef = LROfDef->getUserIGNode();
 | 
						|
  assert( IGNodeOfDef );
 | 
						|
 | 
						|
  RegClass *const RCOfDef = LROfDef->getRegClass();
 | 
						|
 | 
						|
  // for each live var in live variable set
 | 
						|
  for ( ; LIt != LVSet->end(); ++LIt) {
 | 
						|
 | 
						|
    if (DEBUG_RA >= RA_DEBUG_Verbose)
 | 
						|
      std::cerr << "< Def=" << RAV(Def) << ", Lvar=" << RAV(*LIt) << "> ";
 | 
						|
 | 
						|
    //  get the live range corresponding to live var
 | 
						|
    LiveRange *LROfVar = LRI->getLiveRangeForValue(*LIt);
 | 
						|
 | 
						|
    // LROfVar can be null if it is a const since a const
 | 
						|
    // doesn't have a dominating def - see Assumptions above
 | 
						|
    if (LROfVar)
 | 
						|
      if (LROfDef != LROfVar)                  // do not set interf for same LR
 | 
						|
        if (RCOfDef == LROfVar->getRegClass()) // 2 reg classes are the same
 | 
						|
          RCOfDef->setInterference( LROfDef, LROfVar);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// For a call instruction, this method sets the CallInterference flag in
 | 
						|
/// the LR of each variable live in the Live Variable Set live after the
 | 
						|
/// call instruction (except the return value of the call instruction - since
 | 
						|
/// the return value does not interfere with that call itself).
 | 
						|
///
 | 
						|
void PhyRegAlloc::setCallInterferences(const MachineInstr *MInst,
 | 
						|
				       const ValueSet *LVSetAft) {
 | 
						|
  if (DEBUG_RA >= RA_DEBUG_Interference)
 | 
						|
    std::cerr << "\n For call inst: " << *MInst;
 | 
						|
 | 
						|
  // for each live var in live variable set after machine inst
 | 
						|
  for (ValueSet::const_iterator LIt = LVSetAft->begin(), LEnd = LVSetAft->end();
 | 
						|
       LIt != LEnd; ++LIt) {
 | 
						|
 | 
						|
    //  get the live range corresponding to live var
 | 
						|
    LiveRange *const LR = LRI->getLiveRangeForValue(*LIt);
 | 
						|
 | 
						|
    // LR can be null if it is a const since a const
 | 
						|
    // doesn't have a dominating def - see Assumptions above
 | 
						|
    if (LR) {
 | 
						|
      if (DEBUG_RA >= RA_DEBUG_Interference)
 | 
						|
        std::cerr << "\n\tLR after Call: " << *LR << "\n";
 | 
						|
      LR->setCallInterference();
 | 
						|
      if (DEBUG_RA >= RA_DEBUG_Interference)
 | 
						|
	    std::cerr << "\n  ++After adding call interference for LR: " << *LR << "\n";
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Now find the LR of the return value of the call
 | 
						|
  // We do this because, we look at the LV set *after* the instruction
 | 
						|
  // to determine, which LRs must be saved across calls. The return value
 | 
						|
  // of the call is live in this set - but it does not interfere with call
 | 
						|
  // (i.e., we can allocate a volatile register to the return value)
 | 
						|
  CallArgsDescriptor* argDesc = CallArgsDescriptor::get(MInst);
 | 
						|
 | 
						|
  if (const Value *RetVal = argDesc->getReturnValue()) {
 | 
						|
    LiveRange *RetValLR = LRI->getLiveRangeForValue( RetVal );
 | 
						|
    assert( RetValLR && "No LR for RetValue of call");
 | 
						|
    RetValLR->clearCallInterference();
 | 
						|
  }
 | 
						|
 | 
						|
  // If the CALL is an indirect call, find the LR of the function pointer.
 | 
						|
  // That has a call interference because it conflicts with outgoing args.
 | 
						|
  if (const Value *AddrVal = argDesc->getIndirectFuncPtr()) {
 | 
						|
    LiveRange *AddrValLR = LRI->getLiveRangeForValue( AddrVal );
 | 
						|
    // LR can be null if the function pointer is a constant.
 | 
						|
    if (AddrValLR)
 | 
						|
      AddrValLR->setCallInterference();
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Create interferences in the IG of each RegClass, and calculate the spill
 | 
						|
/// cost of each Live Range (it is done in this method to save another pass
 | 
						|
/// over the code).
 | 
						|
///
 | 
						|
void PhyRegAlloc::buildInterferenceGraphs() {
 | 
						|
  if (DEBUG_RA >= RA_DEBUG_Interference)
 | 
						|
    std::cerr << "Creating interference graphs ...\n";
 | 
						|
 | 
						|
  unsigned BBLoopDepthCost;
 | 
						|
  for (MachineFunction::iterator BBI = MF->begin(), BBE = MF->end();
 | 
						|
       BBI != BBE; ++BBI) {
 | 
						|
    const MachineBasicBlock &MBB = *BBI;
 | 
						|
    const BasicBlock *BB = MBB.getBasicBlock();
 | 
						|
 | 
						|
    // find the 10^(loop_depth) of this BB
 | 
						|
    BBLoopDepthCost = (unsigned)pow(10.0, LoopDepthCalc->getLoopDepth(BB));
 | 
						|
 | 
						|
    // get the iterator for machine instructions
 | 
						|
    MachineBasicBlock::const_iterator MII = MBB.begin();
 | 
						|
 | 
						|
    // iterate over all the machine instructions in BB
 | 
						|
    for ( ; MII != MBB.end(); ++MII) {
 | 
						|
      const MachineInstr *MInst = MII;
 | 
						|
 | 
						|
      // get the LV set after the instruction
 | 
						|
      const ValueSet &LVSetAI = LVI->getLiveVarSetAfterMInst(MInst, BB);
 | 
						|
      bool isCallInst = TM.getInstrInfo()->isCall(MInst->getOpcode());
 | 
						|
 | 
						|
      if (isCallInst) {
 | 
						|
	// set the isCallInterference flag of each live range which extends
 | 
						|
	// across this call instruction. This information is used by graph
 | 
						|
	// coloring algorithm to avoid allocating volatile colors to live ranges
 | 
						|
	// that span across calls (since they have to be saved/restored)
 | 
						|
	setCallInterferences(MInst, &LVSetAI);
 | 
						|
      }
 | 
						|
 | 
						|
      // iterate over all MI operands to find defs
 | 
						|
      for (MachineInstr::const_val_op_iterator OpI = MInst->begin(),
 | 
						|
             OpE = MInst->end(); OpI != OpE; ++OpI) {
 | 
						|
       	if (OpI.isDef()) // create a new LR since def
 | 
						|
	  addInterference(*OpI, &LVSetAI, isCallInst);
 | 
						|
 | 
						|
	// Calculate the spill cost of each live range
 | 
						|
	LiveRange *LR = LRI->getLiveRangeForValue(*OpI);
 | 
						|
	if (LR) LR->addSpillCost(BBLoopDepthCost);
 | 
						|
      }
 | 
						|
      // Also add interference for any implicit definitions in a machine
 | 
						|
      // instr (currently, only calls have this).
 | 
						|
      unsigned NumOfImpRefs =  MInst->getNumImplicitRefs();
 | 
						|
      for (unsigned z=0; z < NumOfImpRefs; z++)
 | 
						|
        if (MInst->getImplicitOp(z).isDef())
 | 
						|
	  addInterference( MInst->getImplicitRef(z), &LVSetAI, isCallInst );
 | 
						|
    } // for all machine instructions in BB
 | 
						|
  } // for all BBs in function
 | 
						|
 | 
						|
  // add interferences for function arguments. Since there are no explicit
 | 
						|
  // defs in the function for args, we have to add them manually
 | 
						|
  addInterferencesForArgs();
 | 
						|
 | 
						|
  if (DEBUG_RA >= RA_DEBUG_Interference)
 | 
						|
    std::cerr << "Interference graphs calculated!\n";
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Mark all operands of the given MachineInstr as interfering with one
 | 
						|
/// another.
 | 
						|
///
 | 
						|
void PhyRegAlloc::addInterf4PseudoInstr(const MachineInstr *MInst) {
 | 
						|
  bool setInterf = false;
 | 
						|
 | 
						|
  // iterate over MI operands to find defs
 | 
						|
  for (MachineInstr::const_val_op_iterator It1 = MInst->begin(),
 | 
						|
         ItE = MInst->end(); It1 != ItE; ++It1) {
 | 
						|
    const LiveRange *LROfOp1 = LRI->getLiveRangeForValue(*It1);
 | 
						|
    assert((LROfOp1 || It1.isDef()) && "No LR for Def in PSEUDO insruction");
 | 
						|
 | 
						|
    MachineInstr::const_val_op_iterator It2 = It1;
 | 
						|
    for (++It2; It2 != ItE; ++It2) {
 | 
						|
      const LiveRange *LROfOp2 = LRI->getLiveRangeForValue(*It2);
 | 
						|
 | 
						|
      if (LROfOp2) {
 | 
						|
	RegClass *RCOfOp1 = LROfOp1->getRegClass();
 | 
						|
	RegClass *RCOfOp2 = LROfOp2->getRegClass();
 | 
						|
 | 
						|
	if (RCOfOp1 == RCOfOp2 ){
 | 
						|
	  RCOfOp1->setInterference( LROfOp1, LROfOp2 );
 | 
						|
	  setInterf = true;
 | 
						|
	}
 | 
						|
      } // if Op2 has a LR
 | 
						|
    } // for all other defs in machine instr
 | 
						|
  } // for all operands in an instruction
 | 
						|
 | 
						|
  if (!setInterf && MInst->getNumOperands() > 2) {
 | 
						|
    std::cerr << "\nInterf not set for any operand in pseudo instr:\n";
 | 
						|
    std::cerr << *MInst;
 | 
						|
    assert(0 && "Interf not set for pseudo instr with > 2 operands" );
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Add interferences for incoming arguments to a function.
 | 
						|
///
 | 
						|
void PhyRegAlloc::addInterferencesForArgs() {
 | 
						|
  // get the InSet of root BB
 | 
						|
  const ValueSet &InSet = LVI->getInSetOfBB(&Fn->front());
 | 
						|
 | 
						|
  for (Function::const_arg_iterator AI = Fn->arg_begin(); AI != Fn->arg_end(); ++AI) {
 | 
						|
    // add interferences between args and LVars at start
 | 
						|
    addInterference(AI, &InSet, false);
 | 
						|
 | 
						|
    if (DEBUG_RA >= RA_DEBUG_Interference)
 | 
						|
      std::cerr << " - %% adding interference for argument " << RAV(AI) << "\n";
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// The following are utility functions used solely by updateMachineCode and
 | 
						|
/// the functions that it calls. They should probably be folded back into
 | 
						|
/// updateMachineCode at some point.
 | 
						|
///
 | 
						|
 | 
						|
// used by: updateMachineCode (1 time), PrependInstructions (1 time)
 | 
						|
inline void InsertBefore(MachineInstr* newMI, MachineBasicBlock& MBB,
 | 
						|
                         MachineBasicBlock::iterator& MII) {
 | 
						|
  MII = MBB.insert(MII, newMI);
 | 
						|
  ++MII;
 | 
						|
}
 | 
						|
 | 
						|
// used by: AppendInstructions (1 time)
 | 
						|
inline void InsertAfter(MachineInstr* newMI, MachineBasicBlock& MBB,
 | 
						|
                        MachineBasicBlock::iterator& MII) {
 | 
						|
  ++MII;    // insert before the next instruction
 | 
						|
  MII = MBB.insert(MII, newMI);
 | 
						|
}
 | 
						|
 | 
						|
// used by: updateMachineCode (2 times)
 | 
						|
inline void PrependInstructions(std::vector<MachineInstr *> &IBef,
 | 
						|
                                MachineBasicBlock& MBB,
 | 
						|
                                MachineBasicBlock::iterator& MII,
 | 
						|
                                const std::string& msg) {
 | 
						|
  if (!IBef.empty()) {
 | 
						|
      MachineInstr* OrigMI = MII;
 | 
						|
      std::vector<MachineInstr *>::iterator AdIt;
 | 
						|
      for (AdIt = IBef.begin(); AdIt != IBef.end() ; ++AdIt) {
 | 
						|
          if (DEBUG_RA) {
 | 
						|
            if (OrigMI) std::cerr << "For MInst:\n  " << *OrigMI;
 | 
						|
            std::cerr << msg << "PREPENDed instr:\n  " << **AdIt << "\n";
 | 
						|
          }
 | 
						|
          InsertBefore(*AdIt, MBB, MII);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
// used by: updateMachineCode (1 time)
 | 
						|
inline void AppendInstructions(std::vector<MachineInstr *> &IAft,
 | 
						|
                               MachineBasicBlock& MBB,
 | 
						|
                               MachineBasicBlock::iterator& MII,
 | 
						|
                               const std::string& msg) {
 | 
						|
  if (!IAft.empty()) {
 | 
						|
      MachineInstr* OrigMI = MII;
 | 
						|
      std::vector<MachineInstr *>::iterator AdIt;
 | 
						|
      for ( AdIt = IAft.begin(); AdIt != IAft.end() ; ++AdIt ) {
 | 
						|
          if (DEBUG_RA) {
 | 
						|
            if (OrigMI) std::cerr << "For MInst:\n  " << *OrigMI;
 | 
						|
            std::cerr << msg << "APPENDed instr:\n  "  << **AdIt << "\n";
 | 
						|
          }
 | 
						|
          InsertAfter(*AdIt, MBB, MII);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/// Set the registers for operands in the given MachineInstr, if a register was
 | 
						|
/// successfully allocated.  Return true if any of its operands has been marked
 | 
						|
/// for spill.
 | 
						|
///
 | 
						|
bool PhyRegAlloc::markAllocatedRegs(MachineInstr* MInst)
 | 
						|
{
 | 
						|
  bool instrNeedsSpills = false;
 | 
						|
 | 
						|
  // First, set the registers for operands in the machine instruction
 | 
						|
  // if a register was successfully allocated.  Do this first because we
 | 
						|
  // will need to know which registers are already used by this instr'n.
 | 
						|
  for (unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum) {
 | 
						|
      MachineOperand& Op = MInst->getOperand(OpNum);
 | 
						|
      if (Op.getType() ==  MachineOperand::MO_VirtualRegister ||
 | 
						|
          Op.getType() ==  MachineOperand::MO_CCRegister) {
 | 
						|
          const Value *const Val =  Op.getVRegValue();
 | 
						|
          if (const LiveRange* LR = LRI->getLiveRangeForValue(Val)) {
 | 
						|
            // Remember if any operand needs spilling
 | 
						|
            instrNeedsSpills |= LR->isMarkedForSpill();
 | 
						|
 | 
						|
            // An operand may have a color whether or not it needs spilling
 | 
						|
            if (LR->hasColor())
 | 
						|
              MInst->SetRegForOperand(OpNum,
 | 
						|
                          MRI.getUnifiedRegNum(LR->getRegClassID(),
 | 
						|
                                               LR->getColor()));
 | 
						|
          }
 | 
						|
        }
 | 
						|
    } // for each operand
 | 
						|
 | 
						|
  return instrNeedsSpills;
 | 
						|
}
 | 
						|
 | 
						|
/// Mark allocated registers (using markAllocatedRegs()) on the instruction
 | 
						|
/// that MII points to. Then, if it's a call instruction, insert caller-saving
 | 
						|
/// code before and after it. Finally, insert spill code before and after it,
 | 
						|
/// using insertCode4SpilledLR().
 | 
						|
///
 | 
						|
void PhyRegAlloc::updateInstruction(MachineBasicBlock::iterator& MII,
 | 
						|
                                    MachineBasicBlock &MBB) {
 | 
						|
  MachineInstr* MInst = MII;
 | 
						|
  unsigned Opcode = MInst->getOpcode();
 | 
						|
 | 
						|
  // Reset tmp stack positions so they can be reused for each machine instr.
 | 
						|
  MF->getInfo<SparcV9FunctionInfo>()->popAllTempValues();
 | 
						|
 | 
						|
  // Mark the operands for which regs have been allocated.
 | 
						|
  bool instrNeedsSpills = markAllocatedRegs(MII);
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  // Mark that the operands have been updated.  Later,
 | 
						|
  // setRelRegsUsedByThisInst() is called to find registers used by each
 | 
						|
  // MachineInst, and it should not be used for an instruction until
 | 
						|
  // this is done.  This flag just serves as a sanity check.
 | 
						|
  OperandsColoredMap[MInst] = true;
 | 
						|
#endif
 | 
						|
 | 
						|
  // Now insert caller-saving code before/after the call.
 | 
						|
  // Do this before inserting spill code since some registers must be
 | 
						|
  // used by save/restore and spill code should not use those registers.
 | 
						|
  if (TM.getInstrInfo()->isCall(Opcode)) {
 | 
						|
    AddedInstrns &AI = AddedInstrMap[MInst];
 | 
						|
    insertCallerSavingCode(AI.InstrnsBefore, AI.InstrnsAfter, MInst,
 | 
						|
                           MBB.getBasicBlock());
 | 
						|
  }
 | 
						|
 | 
						|
  // Now insert spill code for remaining operands not allocated to
 | 
						|
  // registers.  This must be done even for call return instructions
 | 
						|
  // since those are not handled by the special code above.
 | 
						|
  if (instrNeedsSpills)
 | 
						|
    for (unsigned OpNum=0; OpNum < MInst->getNumOperands(); ++OpNum) {
 | 
						|
        MachineOperand& Op = MInst->getOperand(OpNum);
 | 
						|
        if (Op.getType() ==  MachineOperand::MO_VirtualRegister ||
 | 
						|
            Op.getType() ==  MachineOperand::MO_CCRegister) {
 | 
						|
            const Value* Val = Op.getVRegValue();
 | 
						|
            if (const LiveRange *LR = LRI->getLiveRangeForValue(Val))
 | 
						|
              if (LR->isMarkedForSpill())
 | 
						|
                insertCode4SpilledLR(LR, MII, MBB, OpNum);
 | 
						|
          }
 | 
						|
      } // for each operand
 | 
						|
}
 | 
						|
 | 
						|
/// Iterate over all the MachineBasicBlocks in the current function and set
 | 
						|
/// the allocated registers for each instruction (using updateInstruction()),
 | 
						|
/// after register allocation is complete. Then move code out of delay slots.
 | 
						|
///
 | 
						|
void PhyRegAlloc::updateMachineCode()
 | 
						|
{
 | 
						|
  // Insert any instructions needed at method entry
 | 
						|
  MachineBasicBlock::iterator MII = MF->front().begin();
 | 
						|
  PrependInstructions(AddedInstrAtEntry.InstrnsBefore, MF->front(), MII,
 | 
						|
                      "At function entry: \n");
 | 
						|
  assert(AddedInstrAtEntry.InstrnsAfter.empty() &&
 | 
						|
         "InstrsAfter should be unnecessary since we are just inserting at "
 | 
						|
         "the function entry point here.");
 | 
						|
 | 
						|
  for (MachineFunction::iterator BBI = MF->begin(), BBE = MF->end();
 | 
						|
       BBI != BBE; ++BBI) {
 | 
						|
    MachineBasicBlock &MBB = *BBI;
 | 
						|
 | 
						|
    // Iterate over all machine instructions in BB and mark operands with
 | 
						|
    // their assigned registers or insert spill code, as appropriate.
 | 
						|
    // Also, fix operands of call/return instructions.
 | 
						|
    for (MachineBasicBlock::iterator MII = MBB.begin(); MII != MBB.end(); ++MII)
 | 
						|
      if (MII->getOpcode() != V9::PHI)
 | 
						|
        updateInstruction(MII, MBB);
 | 
						|
 | 
						|
    // Now, move code out of delay slots of branches and returns if needed.
 | 
						|
    // (Also, move "after" code from calls to the last delay slot instruction.)
 | 
						|
    // Moving code out of delay slots is needed in 2 situations:
 | 
						|
    // (1) If this is a branch and it needs instructions inserted after it,
 | 
						|
    //     move any existing instructions out of the delay slot so that the
 | 
						|
    //     instructions can go into the delay slot.  This only supports the
 | 
						|
    //     case that #instrsAfter <= #delay slots.
 | 
						|
    //
 | 
						|
    // (2) If any instruction in the delay slot needs
 | 
						|
    //     instructions inserted, move it out of the delay slot and before the
 | 
						|
    //     branch because putting code before or after it would be VERY BAD!
 | 
						|
    //
 | 
						|
    // If the annul bit of the branch is set, neither of these is legal!
 | 
						|
    // If so, we need to handle spill differently but annulling is not yet used.
 | 
						|
    for (MachineBasicBlock::iterator MII = MBB.begin(); MII != MBB.end(); ++MII)
 | 
						|
      if (unsigned delaySlots =
 | 
						|
          TM.getInstrInfo()->getNumDelaySlots(MII->getOpcode())) {
 | 
						|
          MachineBasicBlock::iterator DelaySlotMI = next(MII);
 | 
						|
          assert(DelaySlotMI != MBB.end() && "no instruction for delay slot");
 | 
						|
 | 
						|
          // Check the 2 conditions above:
 | 
						|
          // (1) Does a branch need instructions added after it?
 | 
						|
          // (2) O/w does delay slot instr. need instrns before or after?
 | 
						|
          bool isBranch = (TM.getInstrInfo()->isBranch(MII->getOpcode()) ||
 | 
						|
                           TM.getInstrInfo()->isReturn(MII->getOpcode()));
 | 
						|
          bool cond1 = (isBranch &&
 | 
						|
                        AddedInstrMap.count(MII) &&
 | 
						|
                        AddedInstrMap[MII].InstrnsAfter.size() > 0);
 | 
						|
          bool cond2 = (AddedInstrMap.count(DelaySlotMI) &&
 | 
						|
                        (AddedInstrMap[DelaySlotMI].InstrnsBefore.size() > 0 ||
 | 
						|
                         AddedInstrMap[DelaySlotMI].InstrnsAfter.size()  > 0));
 | 
						|
 | 
						|
          if (cond1 || cond2) {
 | 
						|
              assert(delaySlots==1 &&
 | 
						|
                     "InsertBefore does not yet handle >1 delay slots!");
 | 
						|
 | 
						|
              if (DEBUG_RA) {
 | 
						|
                std::cerr << "\nRegAlloc: Moved instr. with added code: "
 | 
						|
                     << *DelaySlotMI
 | 
						|
                     << "           out of delay slots of instr: " << *MII;
 | 
						|
              }
 | 
						|
 | 
						|
              // move instruction before branch
 | 
						|
              MBB.insert(MII, MBB.remove(DelaySlotMI++));
 | 
						|
 | 
						|
              // On cond1 we are done (we already moved the
 | 
						|
              // instruction out of the delay slot). On cond2 we need
 | 
						|
              // to insert a nop in place of the moved instruction
 | 
						|
              if (cond2) {
 | 
						|
                MBB.insert(MII, BuildMI(V9::NOP, 1));
 | 
						|
              }
 | 
						|
            }
 | 
						|
          else {
 | 
						|
            // For non-branch instr with delay slots (probably a call), move
 | 
						|
            // InstrAfter to the instr. in the last delay slot.
 | 
						|
            MachineBasicBlock::iterator tmp = next(MII, delaySlots);
 | 
						|
            move2DelayedInstr(MII, tmp);
 | 
						|
          }
 | 
						|
      }
 | 
						|
 | 
						|
    // Finally iterate over all instructions in BB and insert before/after
 | 
						|
    for (MachineBasicBlock::iterator MII=MBB.begin(); MII != MBB.end(); ++MII) {
 | 
						|
      MachineInstr *MInst = MII;
 | 
						|
 | 
						|
      // do not process Phis
 | 
						|
      if (MInst->getOpcode() == V9::PHI)
 | 
						|
	continue;
 | 
						|
 | 
						|
      // if there are any added instructions...
 | 
						|
      if (AddedInstrMap.count(MInst)) {
 | 
						|
        AddedInstrns &CallAI = AddedInstrMap[MInst];
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
        bool isBranch = (TM.getInstrInfo()->isBranch(MInst->getOpcode()) ||
 | 
						|
                         TM.getInstrInfo()->isReturn(MInst->getOpcode()));
 | 
						|
        assert((!isBranch ||
 | 
						|
                AddedInstrMap[MInst].InstrnsAfter.size() <=
 | 
						|
                TM.getInstrInfo()->getNumDelaySlots(MInst->getOpcode())) &&
 | 
						|
               "Cannot put more than #delaySlots instrns after "
 | 
						|
               "branch or return! Need to handle temps differently.");
 | 
						|
#endif
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
        // Temporary sanity checking code to detect whether the same machine
 | 
						|
        // instruction is ever inserted twice before/after a call.
 | 
						|
        // I suspect this is happening but am not sure. --Vikram, 7/1/03.
 | 
						|
        std::set<const MachineInstr*> instrsSeen;
 | 
						|
        for (int i = 0, N = CallAI.InstrnsBefore.size(); i < N; ++i) {
 | 
						|
          assert(instrsSeen.count(CallAI.InstrnsBefore[i]) == 0 &&
 | 
						|
                 "Duplicate machine instruction in InstrnsBefore!");
 | 
						|
          instrsSeen.insert(CallAI.InstrnsBefore[i]);
 | 
						|
        }
 | 
						|
        for (int i = 0, N = CallAI.InstrnsAfter.size(); i < N; ++i) {
 | 
						|
          assert(instrsSeen.count(CallAI.InstrnsAfter[i]) == 0 &&
 | 
						|
                 "Duplicate machine instruction in InstrnsBefore/After!");
 | 
						|
          instrsSeen.insert(CallAI.InstrnsAfter[i]);
 | 
						|
        }
 | 
						|
#endif
 | 
						|
 | 
						|
        // Now add the instructions before/after this MI.
 | 
						|
        // We do this here to ensure that spill for an instruction is inserted
 | 
						|
        // as close as possible to an instruction (see above insertCode4Spill)
 | 
						|
        if (! CallAI.InstrnsBefore.empty())
 | 
						|
          PrependInstructions(CallAI.InstrnsBefore, MBB, MII,"");
 | 
						|
 | 
						|
        if (! CallAI.InstrnsAfter.empty())
 | 
						|
          AppendInstructions(CallAI.InstrnsAfter, MBB, MII,"");
 | 
						|
 | 
						|
      } // if there are any added instructions
 | 
						|
    } // for each machine instruction
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Insert spill code for AN operand whose LR was spilled.  May be called
 | 
						|
/// repeatedly for a single MachineInstr if it has many spilled operands. On
 | 
						|
/// each call, it finds a register which is not live at that instruction and
 | 
						|
/// also which is not used by other spilled operands of the same
 | 
						|
/// instruction. Then it uses this register temporarily to accommodate the
 | 
						|
/// spilled value.
 | 
						|
///
 | 
						|
void PhyRegAlloc::insertCode4SpilledLR(const LiveRange *LR,
 | 
						|
                                       MachineBasicBlock::iterator& MII,
 | 
						|
                                       MachineBasicBlock &MBB,
 | 
						|
				       const unsigned OpNum) {
 | 
						|
  MachineInstr *MInst = MII;
 | 
						|
  const BasicBlock *BB = MBB.getBasicBlock();
 | 
						|
 | 
						|
  assert((! TM.getInstrInfo()->isCall(MInst->getOpcode()) || OpNum == 0) &&
 | 
						|
         "Outgoing arg of a call must be handled elsewhere (func arg ok)");
 | 
						|
  assert(! TM.getInstrInfo()->isReturn(MInst->getOpcode()) &&
 | 
						|
	 "Return value of a ret must be handled elsewhere");
 | 
						|
 | 
						|
  MachineOperand& Op = MInst->getOperand(OpNum);
 | 
						|
  bool isDef =  Op.isDef();
 | 
						|
  bool isUse = Op.isUse();
 | 
						|
  unsigned RegType = MRI.getRegTypeForLR(LR);
 | 
						|
  int SpillOff = LR->getSpillOffFromFP();
 | 
						|
  RegClass *RC = LR->getRegClass();
 | 
						|
 | 
						|
  // Get the live-variable set to find registers free before this instr.
 | 
						|
  const ValueSet &LVSetBef = LVI->getLiveVarSetBeforeMInst(MInst, BB);
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  // If this instr. is in the delay slot of a branch or return, we need to
 | 
						|
  // include all live variables before that branch or return -- we don't want to
 | 
						|
  // trample those!  Verify that the set is included in the LV set before MInst.
 | 
						|
  if (MII != MBB.begin()) {
 | 
						|
    MachineBasicBlock::iterator PredMI = prior(MII);
 | 
						|
    if (unsigned DS = TM.getInstrInfo()->getNumDelaySlots(PredMI->getOpcode()))
 | 
						|
      assert(set_difference(LVI->getLiveVarSetBeforeMInst(PredMI), LVSetBef)
 | 
						|
             .empty() && "Live-var set before branch should be included in "
 | 
						|
             "live-var set of each delay slot instruction!");
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  MF->getInfo<SparcV9FunctionInfo>()->pushTempValue(MRI.getSpilledRegSize(RegType));
 | 
						|
 | 
						|
  std::vector<MachineInstr*> MIBef, MIAft;
 | 
						|
  std::vector<MachineInstr*> AdIMid;
 | 
						|
 | 
						|
  // Choose a register to hold the spilled value, if one was not preallocated.
 | 
						|
  // This may insert code before and after MInst to free up the value.  If so,
 | 
						|
  // this code should be first/last in the spill sequence before/after MInst.
 | 
						|
  int TmpRegU=(LR->hasColor()
 | 
						|
               ? MRI.getUnifiedRegNum(LR->getRegClassID(),LR->getColor())
 | 
						|
               : getUsableUniRegAtMI(RegType, &LVSetBef, MInst, MIBef,MIAft));
 | 
						|
 | 
						|
  // Set the operand first so that it this register does not get used
 | 
						|
  // as a scratch register for later calls to getUsableUniRegAtMI below
 | 
						|
  MInst->SetRegForOperand(OpNum, TmpRegU);
 | 
						|
 | 
						|
  // get the added instructions for this instruction
 | 
						|
  AddedInstrns &AI = AddedInstrMap[MInst];
 | 
						|
 | 
						|
  // We may need a scratch register to copy the spilled value to/from memory.
 | 
						|
  // This may itself have to insert code to free up a scratch register.
 | 
						|
  // Any such code should go before (after) the spill code for a load (store).
 | 
						|
  // The scratch reg is not marked as used because it is only used
 | 
						|
  // for the copy and not used across MInst.
 | 
						|
  int scratchRegType = -1;
 | 
						|
  int scratchReg = -1;
 | 
						|
  if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType)) {
 | 
						|
      scratchReg = getUsableUniRegAtMI(scratchRegType, &LVSetBef,
 | 
						|
                                       MInst, MIBef, MIAft);
 | 
						|
      assert(scratchReg != MRI.getInvalidRegNum());
 | 
						|
    }
 | 
						|
 | 
						|
  if (isUse) {
 | 
						|
    // for a USE, we have to load the value of LR from stack to a TmpReg
 | 
						|
    // and use the TmpReg as one operand of instruction
 | 
						|
 | 
						|
    // actual loading instruction(s)
 | 
						|
    MRI.cpMem2RegMI(AdIMid, MRI.getFramePointer(), SpillOff, TmpRegU,
 | 
						|
                    RegType, scratchReg);
 | 
						|
 | 
						|
    // the actual load should be after the instructions to free up TmpRegU
 | 
						|
    MIBef.insert(MIBef.end(), AdIMid.begin(), AdIMid.end());
 | 
						|
    AdIMid.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  if (isDef) {   // if this is a Def
 | 
						|
    // for a DEF, we have to store the value produced by this instruction
 | 
						|
    // on the stack position allocated for this LR
 | 
						|
 | 
						|
    // actual storing instruction(s)
 | 
						|
    MRI.cpReg2MemMI(AdIMid, TmpRegU, MRI.getFramePointer(), SpillOff,
 | 
						|
                    RegType, scratchReg);
 | 
						|
 | 
						|
    MIAft.insert(MIAft.begin(), AdIMid.begin(), AdIMid.end());
 | 
						|
  }  // if !DEF
 | 
						|
 | 
						|
  // Finally, insert the entire spill code sequences before/after MInst
 | 
						|
  AI.InstrnsBefore.insert(AI.InstrnsBefore.end(), MIBef.begin(), MIBef.end());
 | 
						|
  AI.InstrnsAfter.insert(AI.InstrnsAfter.begin(), MIAft.begin(), MIAft.end());
 | 
						|
 | 
						|
  if (DEBUG_RA) {
 | 
						|
    std::cerr << "\nFor Inst:\n  " << *MInst;
 | 
						|
    std::cerr << "SPILLED LR# " << LR->getUserIGNode()->getIndex();
 | 
						|
    std::cerr << "; added Instructions:";
 | 
						|
    for_each(MIBef.begin(), MIBef.end(), std::mem_fun(&MachineInstr::dump));
 | 
						|
    for_each(MIAft.begin(), MIAft.end(), std::mem_fun(&MachineInstr::dump));
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Insert caller saving/restoring instructions before/after a call machine
 | 
						|
/// instruction (before or after any other instructions that were inserted for
 | 
						|
/// the call).
 | 
						|
///
 | 
						|
void
 | 
						|
PhyRegAlloc::insertCallerSavingCode(std::vector<MachineInstr*> &instrnsBefore,
 | 
						|
                                    std::vector<MachineInstr*> &instrnsAfter,
 | 
						|
                                    MachineInstr *CallMI,
 | 
						|
                                    const BasicBlock *BB) {
 | 
						|
  assert(TM.getInstrInfo()->isCall(CallMI->getOpcode()));
 | 
						|
 | 
						|
  // hash set to record which registers were saved/restored
 | 
						|
  hash_set<unsigned> PushedRegSet;
 | 
						|
 | 
						|
  CallArgsDescriptor* argDesc = CallArgsDescriptor::get(CallMI);
 | 
						|
 | 
						|
  // if the call is to a instrumentation function, do not insert save and
 | 
						|
  // restore instructions the instrumentation function takes care of save
 | 
						|
  // restore for volatile regs.
 | 
						|
  //
 | 
						|
  // FIXME: this should be made general, not specific to the reoptimizer!
 | 
						|
  const Function *Callee = argDesc->getCallInst()->getCalledFunction();
 | 
						|
  bool isLLVMFirstTrigger = Callee && Callee->getName() == "llvm_first_trigger";
 | 
						|
 | 
						|
  // Now check if the call has a return value (using argDesc) and if so,
 | 
						|
  // find the LR of the TmpInstruction representing the return value register.
 | 
						|
  // (using the last or second-last *implicit operand* of the call MI).
 | 
						|
  // Insert it to to the PushedRegSet since we must not save that register
 | 
						|
  // and restore it after the call.
 | 
						|
  // We do this because, we look at the LV set *after* the instruction
 | 
						|
  // to determine, which LRs must be saved across calls. The return value
 | 
						|
  // of the call is live in this set - but we must not save/restore it.
 | 
						|
  if (const Value *origRetVal = argDesc->getReturnValue()) {
 | 
						|
    unsigned retValRefNum = (CallMI->getNumImplicitRefs() -
 | 
						|
                             (argDesc->getIndirectFuncPtr()? 1 : 2));
 | 
						|
    const TmpInstruction* tmpRetVal =
 | 
						|
      cast<TmpInstruction>(CallMI->getImplicitRef(retValRefNum));
 | 
						|
    assert(tmpRetVal->getOperand(0) == origRetVal &&
 | 
						|
           tmpRetVal->getType() == origRetVal->getType() &&
 | 
						|
           "Wrong implicit ref?");
 | 
						|
    LiveRange *RetValLR = LRI->getLiveRangeForValue(tmpRetVal);
 | 
						|
    assert(RetValLR && "No LR for RetValue of call");
 | 
						|
 | 
						|
    if (! RetValLR->isMarkedForSpill())
 | 
						|
      PushedRegSet.insert(MRI.getUnifiedRegNum(RetValLR->getRegClassID(),
 | 
						|
                                               RetValLR->getColor()));
 | 
						|
  }
 | 
						|
 | 
						|
  const ValueSet &LVSetAft =  LVI->getLiveVarSetAfterMInst(CallMI, BB);
 | 
						|
  ValueSet::const_iterator LIt = LVSetAft.begin();
 | 
						|
 | 
						|
  // for each live var in live variable set after machine inst
 | 
						|
  for( ; LIt != LVSetAft.end(); ++LIt) {
 | 
						|
    // get the live range corresponding to live var
 | 
						|
    LiveRange *const LR = LRI->getLiveRangeForValue(*LIt);
 | 
						|
 | 
						|
    // LR can be null if it is a const since a const
 | 
						|
    // doesn't have a dominating def - see Assumptions above
 | 
						|
    if (LR) {
 | 
						|
      if (! LR->isMarkedForSpill()) {
 | 
						|
        assert(LR->hasColor() && "LR is neither spilled nor colored?");
 | 
						|
	unsigned RCID = LR->getRegClassID();
 | 
						|
	unsigned Color = LR->getColor();
 | 
						|
 | 
						|
	if (MRI.isRegVolatile(RCID, Color) ) {
 | 
						|
	  // if this is a call to the first-level reoptimizer
 | 
						|
	  // instrumentation entry point, and the register is not
 | 
						|
	  // modified by call, don't save and restore it.
 | 
						|
	  if (isLLVMFirstTrigger && !MRI.modifiedByCall(RCID, Color))
 | 
						|
	    continue;
 | 
						|
 | 
						|
	  // if the value is in both LV sets (i.e., live before and after
 | 
						|
	  // the call machine instruction)
 | 
						|
	  unsigned Reg = MRI.getUnifiedRegNum(RCID, Color);
 | 
						|
	
 | 
						|
	  // if we haven't already pushed this register...
 | 
						|
	  if( PushedRegSet.find(Reg) == PushedRegSet.end() ) {
 | 
						|
	    unsigned RegType = MRI.getRegTypeForLR(LR);
 | 
						|
 | 
						|
	    // Now get two instructions - to push on stack and pop from stack
 | 
						|
	    // and add them to InstrnsBefore and InstrnsAfter of the
 | 
						|
	    // call instruction
 | 
						|
	    int StackOff =
 | 
						|
              MF->getInfo<SparcV9FunctionInfo>()->pushTempValue(MRI.getSpilledRegSize(RegType));
 | 
						|
 | 
						|
	    //---- Insert code for pushing the reg on stack ----------
 | 
						|
 | 
						|
	    std::vector<MachineInstr*> AdIBef, AdIAft;
 | 
						|
 | 
						|
            // We may need a scratch register to copy the saved value
 | 
						|
            // to/from memory.  This may itself have to insert code to
 | 
						|
            // free up a scratch register.  Any such code should go before
 | 
						|
            // the save code.  The scratch register, if any, is by default
 | 
						|
            // temporary and not "used" by the instruction unless the
 | 
						|
            // copy code itself decides to keep the value in the scratch reg.
 | 
						|
            int scratchRegType = -1;
 | 
						|
            int scratchReg = -1;
 | 
						|
            if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType))
 | 
						|
              { // Find a register not live in the LVSet before CallMI
 | 
						|
                const ValueSet &LVSetBef =
 | 
						|
                  LVI->getLiveVarSetBeforeMInst(CallMI, BB);
 | 
						|
                scratchReg = getUsableUniRegAtMI(scratchRegType, &LVSetBef,
 | 
						|
                                                 CallMI, AdIBef, AdIAft);
 | 
						|
                assert(scratchReg != MRI.getInvalidRegNum());
 | 
						|
              }
 | 
						|
 | 
						|
            if (AdIBef.size() > 0)
 | 
						|
              instrnsBefore.insert(instrnsBefore.end(),
 | 
						|
                                   AdIBef.begin(), AdIBef.end());
 | 
						|
 | 
						|
            MRI.cpReg2MemMI(instrnsBefore, Reg, MRI.getFramePointer(),
 | 
						|
                            StackOff, RegType, scratchReg);
 | 
						|
 | 
						|
            if (AdIAft.size() > 0)
 | 
						|
              instrnsBefore.insert(instrnsBefore.end(),
 | 
						|
                                   AdIAft.begin(), AdIAft.end());
 | 
						|
 | 
						|
	    //---- Insert code for popping the reg from the stack ----------
 | 
						|
	    AdIBef.clear();
 | 
						|
            AdIAft.clear();
 | 
						|
 | 
						|
            // We may need a scratch register to copy the saved value
 | 
						|
            // from memory.  This may itself have to insert code to
 | 
						|
            // free up a scratch register.  Any such code should go
 | 
						|
            // after the save code.  As above, scratch is not marked "used".
 | 
						|
            scratchRegType = -1;
 | 
						|
            scratchReg = -1;
 | 
						|
            if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType))
 | 
						|
              { // Find a register not live in the LVSet after CallMI
 | 
						|
                scratchReg = getUsableUniRegAtMI(scratchRegType, &LVSetAft,
 | 
						|
                                                 CallMI, AdIBef, AdIAft);
 | 
						|
                assert(scratchReg != MRI.getInvalidRegNum());
 | 
						|
              }
 | 
						|
 | 
						|
            if (AdIBef.size() > 0)
 | 
						|
              instrnsAfter.insert(instrnsAfter.end(),
 | 
						|
                                  AdIBef.begin(), AdIBef.end());
 | 
						|
 | 
						|
	    MRI.cpMem2RegMI(instrnsAfter, MRI.getFramePointer(), StackOff,
 | 
						|
                            Reg, RegType, scratchReg);
 | 
						|
 | 
						|
            if (AdIAft.size() > 0)
 | 
						|
              instrnsAfter.insert(instrnsAfter.end(),
 | 
						|
                                  AdIAft.begin(), AdIAft.end());
 | 
						|
	
 | 
						|
	    PushedRegSet.insert(Reg);
 | 
						|
 | 
						|
	    if(DEBUG_RA) {
 | 
						|
	      std::cerr << "\nFor call inst:" << *CallMI;
 | 
						|
	      std::cerr << " -inserted caller saving instrs: Before:\n\t ";
 | 
						|
              for_each(instrnsBefore.begin(), instrnsBefore.end(),
 | 
						|
                       std::mem_fun(&MachineInstr::dump));
 | 
						|
	      std::cerr << " -and After:\n\t ";
 | 
						|
              for_each(instrnsAfter.begin(), instrnsAfter.end(),
 | 
						|
                       std::mem_fun(&MachineInstr::dump));
 | 
						|
	    }	
 | 
						|
	  } // if not already pushed
 | 
						|
	} // if LR has a volatile color
 | 
						|
      } // if LR has color
 | 
						|
    } // if there is a LR for Var
 | 
						|
  } // for each value in the LV set after instruction
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Returns the unified register number of a temporary register to be used
 | 
						|
/// BEFORE MInst. If no register is available, it will pick one and modify
 | 
						|
/// MIBef and MIAft to contain instructions used to free up this returned
 | 
						|
/// register.
 | 
						|
///
 | 
						|
int PhyRegAlloc::getUsableUniRegAtMI(const int RegType,
 | 
						|
                                     const ValueSet *LVSetBef,
 | 
						|
                                     MachineInstr *MInst,
 | 
						|
                                     std::vector<MachineInstr*>& MIBef,
 | 
						|
                                     std::vector<MachineInstr*>& MIAft) {
 | 
						|
  RegClass* RC = getRegClassByID(MRI.getRegClassIDOfRegType(RegType));
 | 
						|
 | 
						|
  int RegU = getUnusedUniRegAtMI(RC, RegType, MInst, LVSetBef);
 | 
						|
 | 
						|
  if (RegU == -1) {
 | 
						|
    // we couldn't find an unused register. Generate code to free up a reg by
 | 
						|
    // saving it on stack and restoring after the instruction
 | 
						|
 | 
						|
    int TmpOff = MF->getInfo<SparcV9FunctionInfo>()->pushTempValue(MRI.getSpilledRegSize(RegType));
 | 
						|
 | 
						|
    RegU = getUniRegNotUsedByThisInst(RC, RegType, MInst);
 | 
						|
 | 
						|
    // Check if we need a scratch register to copy this register to memory.
 | 
						|
    int scratchRegType = -1;
 | 
						|
    if (MRI.regTypeNeedsScratchReg(RegType, scratchRegType)) {
 | 
						|
        int scratchReg = getUsableUniRegAtMI(scratchRegType, LVSetBef,
 | 
						|
                                             MInst, MIBef, MIAft);
 | 
						|
        assert(scratchReg != MRI.getInvalidRegNum());
 | 
						|
 | 
						|
        // We may as well hold the value in the scratch register instead
 | 
						|
        // of copying it to memory and back.  But we have to mark the
 | 
						|
        // register as used by this instruction, so it does not get used
 | 
						|
        // as a scratch reg. by another operand or anyone else.
 | 
						|
        ScratchRegsUsed.insert(std::make_pair(MInst, scratchReg));
 | 
						|
        MRI.cpReg2RegMI(MIBef, RegU, scratchReg, RegType);
 | 
						|
        MRI.cpReg2RegMI(MIAft, scratchReg, RegU, RegType);
 | 
						|
    } else { // the register can be copied directly to/from memory so do it.
 | 
						|
        MRI.cpReg2MemMI(MIBef, RegU, MRI.getFramePointer(), TmpOff, RegType);
 | 
						|
        MRI.cpMem2RegMI(MIAft, MRI.getFramePointer(), TmpOff, RegU, RegType);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return RegU;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Returns the register-class register number of a new unused register that
 | 
						|
/// can be used to accommodate a temporary value.  May be called repeatedly
 | 
						|
/// for a single MachineInstr.  On each call, it finds a register which is not
 | 
						|
/// live at that instruction and which is not used by any spilled operands of
 | 
						|
/// that instruction.
 | 
						|
///
 | 
						|
int PhyRegAlloc::getUnusedUniRegAtMI(RegClass *RC, const int RegType,
 | 
						|
                                     const MachineInstr *MInst,
 | 
						|
                                     const ValueSet* LVSetBef) {
 | 
						|
  RC->clearColorsUsed();     // Reset array
 | 
						|
 | 
						|
  if (LVSetBef == NULL) {
 | 
						|
      LVSetBef = &LVI->getLiveVarSetBeforeMInst(MInst);
 | 
						|
      assert(LVSetBef != NULL && "Unable to get live-var set before MInst?");
 | 
						|
  }
 | 
						|
 | 
						|
  ValueSet::const_iterator LIt = LVSetBef->begin();
 | 
						|
 | 
						|
  // for each live var in live variable set after machine inst
 | 
						|
  for ( ; LIt != LVSetBef->end(); ++LIt) {
 | 
						|
    // Get the live range corresponding to live var, and its RegClass
 | 
						|
    LiveRange *const LRofLV = LRI->getLiveRangeForValue(*LIt );
 | 
						|
 | 
						|
    // LR can be null if it is a const since a const
 | 
						|
    // doesn't have a dominating def - see Assumptions above
 | 
						|
    if (LRofLV && LRofLV->getRegClass() == RC && LRofLV->hasColor())
 | 
						|
      RC->markColorsUsed(LRofLV->getColor(),
 | 
						|
                         MRI.getRegTypeForLR(LRofLV), RegType);
 | 
						|
  }
 | 
						|
 | 
						|
  // It is possible that one operand of this MInst was already spilled
 | 
						|
  // and it received some register temporarily. If that's the case,
 | 
						|
  // it is recorded in machine operand. We must skip such registers.
 | 
						|
  setRelRegsUsedByThisInst(RC, RegType, MInst);
 | 
						|
 | 
						|
  int unusedReg = RC->getUnusedColor(RegType);   // find first unused color
 | 
						|
  if (unusedReg >= 0)
 | 
						|
    return MRI.getUnifiedRegNum(RC->getID(), unusedReg);
 | 
						|
 | 
						|
  return -1;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Return the unified register number of a register in class RC which is not
 | 
						|
/// used by any operands of MInst.
 | 
						|
///
 | 
						|
int PhyRegAlloc::getUniRegNotUsedByThisInst(RegClass *RC,
 | 
						|
                                            const int RegType,
 | 
						|
                                            const MachineInstr *MInst) {
 | 
						|
  RC->clearColorsUsed();
 | 
						|
 | 
						|
  setRelRegsUsedByThisInst(RC, RegType, MInst);
 | 
						|
 | 
						|
  // find the first unused color
 | 
						|
  int unusedReg = RC->getUnusedColor(RegType);
 | 
						|
  assert(unusedReg >= 0 &&
 | 
						|
         "FATAL: No free register could be found in reg class!!");
 | 
						|
 | 
						|
  return MRI.getUnifiedRegNum(RC->getID(), unusedReg);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Modify the IsColorUsedArr of register class RC, by setting the bits
 | 
						|
/// corresponding to register RegNo. This is a helper method of
 | 
						|
/// setRelRegsUsedByThisInst().
 | 
						|
///
 | 
						|
static void markRegisterUsed(int RegNo, RegClass *RC, int RegType,
 | 
						|
                             const SparcV9RegInfo &TRI) {
 | 
						|
  unsigned classId = 0;
 | 
						|
  int classRegNum = TRI.getClassRegNum(RegNo, classId);
 | 
						|
  if (RC->getID() == classId)
 | 
						|
    RC->markColorsUsed(classRegNum, RegType, RegType);
 | 
						|
}
 | 
						|
 | 
						|
void PhyRegAlloc::setRelRegsUsedByThisInst(RegClass *RC, int RegType,
 | 
						|
                                           const MachineInstr *MI) {
 | 
						|
  assert(OperandsColoredMap[MI] == true &&
 | 
						|
         "Illegal to call setRelRegsUsedByThisInst() until colored operands "
 | 
						|
         "are marked for an instruction.");
 | 
						|
 | 
						|
  // Add the registers already marked as used by the instruction. Both
 | 
						|
  // explicit and implicit operands are set.
 | 
						|
  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
 | 
						|
    if (MI->getOperand(i).hasAllocatedReg())
 | 
						|
      markRegisterUsed(MI->getOperand(i).getReg(), RC, RegType,MRI);
 | 
						|
 | 
						|
  for (unsigned i = 0, e = MI->getNumImplicitRefs(); i != e; ++i)
 | 
						|
    if (MI->getImplicitOp(i).hasAllocatedReg())
 | 
						|
      markRegisterUsed(MI->getImplicitOp(i).getReg(), RC, RegType,MRI);
 | 
						|
 | 
						|
  // Add all of the scratch registers that are used to save values across the
 | 
						|
  // instruction (e.g., for saving state register values).
 | 
						|
  std::pair<ScratchRegsUsedTy::iterator, ScratchRegsUsedTy::iterator>
 | 
						|
    IR = ScratchRegsUsed.equal_range(MI);
 | 
						|
  for (ScratchRegsUsedTy::iterator I = IR.first; I != IR.second; ++I)
 | 
						|
    markRegisterUsed(I->second, RC, RegType, MRI);
 | 
						|
 | 
						|
  // If there are implicit references, mark their allocated regs as well
 | 
						|
  for (unsigned z=0; z < MI->getNumImplicitRefs(); z++)
 | 
						|
    if (const LiveRange*
 | 
						|
        LRofImpRef = LRI->getLiveRangeForValue(MI->getImplicitRef(z)))
 | 
						|
      if (LRofImpRef->hasColor())
 | 
						|
        // this implicit reference is in a LR that received a color
 | 
						|
        RC->markColorsUsed(LRofImpRef->getColor(),
 | 
						|
                           MRI.getRegTypeForLR(LRofImpRef), RegType);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// If there are delay slots for an instruction, the instructions added after
 | 
						|
/// it must really go after the delayed instruction(s).  So, we Move the
 | 
						|
/// InstrAfter of that instruction to the corresponding delayed instruction
 | 
						|
/// using the following method.
 | 
						|
///
 | 
						|
void PhyRegAlloc::move2DelayedInstr(const MachineInstr *OrigMI,
 | 
						|
                                    const MachineInstr *DelayedMI)
 | 
						|
{
 | 
						|
  // "added after" instructions of the original instr
 | 
						|
  std::vector<MachineInstr *> &OrigAft = AddedInstrMap[OrigMI].InstrnsAfter;
 | 
						|
 | 
						|
  if (DEBUG_RA && OrigAft.size() > 0) {
 | 
						|
    std::cerr << "\nRegAlloc: Moved InstrnsAfter for: " << *OrigMI;
 | 
						|
    std::cerr << "         to last delay slot instrn: " << *DelayedMI;
 | 
						|
  }
 | 
						|
 | 
						|
  // "added after" instructions of the delayed instr
 | 
						|
  std::vector<MachineInstr *> &DelayedAft=AddedInstrMap[DelayedMI].InstrnsAfter;
 | 
						|
 | 
						|
  // go thru all the "added after instructions" of the original instruction
 | 
						|
  // and append them to the "added after instructions" of the delayed
 | 
						|
  // instructions
 | 
						|
  DelayedAft.insert(DelayedAft.end(), OrigAft.begin(), OrigAft.end());
 | 
						|
 | 
						|
  // empty the "added after instructions" of the original instruction
 | 
						|
  OrigAft.clear();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void PhyRegAlloc::colorIncomingArgs()
 | 
						|
{
 | 
						|
  MRI.colorMethodArgs(Fn, *LRI, AddedInstrAtEntry.InstrnsBefore,
 | 
						|
                      AddedInstrAtEntry.InstrnsAfter);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Determine whether the suggested color of each live range is really usable,
 | 
						|
/// and then call its setSuggestedColorUsable() method to record the answer. A
 | 
						|
/// suggested color is NOT usable when the suggested color is volatile AND
 | 
						|
/// when there are call interferences.
 | 
						|
///
 | 
						|
void PhyRegAlloc::markUnusableSugColors()
 | 
						|
{
 | 
						|
  LiveRangeMapType::const_iterator HMI = (LRI->getLiveRangeMap())->begin();
 | 
						|
  LiveRangeMapType::const_iterator HMIEnd = (LRI->getLiveRangeMap())->end();
 | 
						|
 | 
						|
  for (; HMI != HMIEnd ; ++HMI ) {
 | 
						|
    if (HMI->first) {
 | 
						|
      LiveRange *L = HMI->second;      // get the LiveRange
 | 
						|
      if (L && L->hasSuggestedColor ())
 | 
						|
        L->setSuggestedColorUsable
 | 
						|
          (!(MRI.isRegVolatile (L->getRegClassID (), L->getSuggestedColor ())
 | 
						|
             && L->isCallInterference ()));
 | 
						|
    }
 | 
						|
  } // for all LR's in hash map
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// For each live range that is spilled, allocates a new spill position on the
 | 
						|
/// stack, and set the stack offsets of the live range that will be spilled to
 | 
						|
/// that position. This must be called just after coloring the LRs.
 | 
						|
///
 | 
						|
void PhyRegAlloc::allocateStackSpace4SpilledLRs() {
 | 
						|
  if (DEBUG_RA) std::cerr << "\nSetting LR stack offsets for spills...\n";
 | 
						|
 | 
						|
  LiveRangeMapType::const_iterator HMI    = LRI->getLiveRangeMap()->begin();
 | 
						|
  LiveRangeMapType::const_iterator HMIEnd = LRI->getLiveRangeMap()->end();
 | 
						|
 | 
						|
  for ( ; HMI != HMIEnd ; ++HMI) {
 | 
						|
    if (HMI->first && HMI->second) {
 | 
						|
      LiveRange *L = HMI->second;       // get the LiveRange
 | 
						|
      if (L->isMarkedForSpill()) {      // NOTE: allocating size of long Type **
 | 
						|
        int stackOffset = MF->getInfo<SparcV9FunctionInfo>()->allocateSpilledValue(Type::LongTy);
 | 
						|
        L->setSpillOffFromFP(stackOffset);
 | 
						|
        if (DEBUG_RA)
 | 
						|
          std::cerr << "  LR# " << L->getUserIGNode()->getIndex()
 | 
						|
               << ": stack-offset = " << stackOffset << "\n";
 | 
						|
      }
 | 
						|
    }
 | 
						|
  } // for all LR's in hash map
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void PhyRegAlloc::saveStateForValue (std::vector<AllocInfo> &state,
 | 
						|
                                     const Value *V, int Insn, int Opnd) {
 | 
						|
  LiveRangeMapType::const_iterator HMI = LRI->getLiveRangeMap ()->find (V);
 | 
						|
  LiveRangeMapType::const_iterator HMIEnd = LRI->getLiveRangeMap ()->end ();
 | 
						|
  AllocInfo::AllocStateTy AllocState = AllocInfo::NotAllocated;
 | 
						|
  int Placement = -1;
 | 
						|
  if ((HMI != HMIEnd) && HMI->second) {
 | 
						|
    LiveRange *L = HMI->second;
 | 
						|
    assert ((L->hasColor () || L->isMarkedForSpill ())
 | 
						|
            && "Live range exists but not colored or spilled");
 | 
						|
    if (L->hasColor ()) {
 | 
						|
      AllocState = AllocInfo::Allocated;
 | 
						|
      Placement = MRI.getUnifiedRegNum (L->getRegClassID (),
 | 
						|
                                        L->getColor ());
 | 
						|
    } else if (L->isMarkedForSpill ()) {
 | 
						|
      AllocState = AllocInfo::Spilled;
 | 
						|
      assert (L->hasSpillOffset ()
 | 
						|
              && "Live range marked for spill but has no spill offset");
 | 
						|
      Placement = L->getSpillOffFromFP ();
 | 
						|
    }
 | 
						|
  }
 | 
						|
  state.push_back (AllocInfo (Insn, Opnd, AllocState, Placement));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Save the global register allocation decisions made by the register
 | 
						|
/// allocator so that they can be accessed later (sort of like "poor man's
 | 
						|
/// debug info").
 | 
						|
///
 | 
						|
void PhyRegAlloc::saveState () {
 | 
						|
  std::vector<AllocInfo> &state = FnAllocState[Fn];
 | 
						|
  unsigned ArgNum = 0;
 | 
						|
  // Arguments encoded as instruction # -1
 | 
						|
  for (Function::const_arg_iterator i=Fn->arg_begin (), e=Fn->arg_end (); i != e; ++i) {
 | 
						|
    const Argument *Arg = &*i;
 | 
						|
    saveStateForValue (state, Arg, -1, ArgNum);
 | 
						|
    ++ArgNum;
 | 
						|
  }
 | 
						|
  unsigned InstCount = 0;
 | 
						|
  // Instructions themselves encoded as operand # -1
 | 
						|
  for (const_inst_iterator II=inst_begin (Fn), IE=inst_end (Fn); II!=IE; ++II){
 | 
						|
    const Instruction *Inst = &*II;
 | 
						|
    saveStateForValue (state, Inst, InstCount, -1);
 | 
						|
    if (isa<PHINode> (Inst)) {
 | 
						|
     MachineCodeForInstruction &MCforPN = MachineCodeForInstruction::get(Inst);
 | 
						|
     // Last instr should be the copy...figure out what reg it is reading from
 | 
						|
     if (Value *PhiCpRes = MCforPN.back()->getOperand(0).getVRegValueOrNull()){
 | 
						|
      if (DEBUG_RA)
 | 
						|
       std::cerr << "Found Phi copy result: " << PhiCpRes->getName()
 | 
						|
         << " in: " << *MCforPN.back() << "\n";
 | 
						|
      saveStateForValue (state, PhiCpRes, InstCount, -2);
 | 
						|
     }
 | 
						|
    }
 | 
						|
    ++InstCount;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
bool PhyRegAlloc::doFinalization (Module &M) {
 | 
						|
  if (SaveRegAllocState) finishSavingState (M);
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Finish the job of saveState(), by collapsing FnAllocState into an LLVM
 | 
						|
/// Constant and stuffing it inside the Module.
 | 
						|
///
 | 
						|
/// FIXME: There should be other, better ways of storing the saved
 | 
						|
/// state; this one is cumbersome and does not work well with the JIT.
 | 
						|
///
 | 
						|
void PhyRegAlloc::finishSavingState (Module &M) {
 | 
						|
  if (DEBUG_RA)
 | 
						|
    std::cerr << "---- Saving reg. alloc state; SaveStateToModule = "
 | 
						|
              << SaveStateToModule << " ----\n";
 | 
						|
 | 
						|
  // If saving state into the module, just copy new elements to the
 | 
						|
  // correct global.
 | 
						|
  if (!SaveStateToModule) {
 | 
						|
    ExportedFnAllocState = FnAllocState;
 | 
						|
    // FIXME: should ONLY copy new elements in FnAllocState
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Convert FnAllocState to a single Constant array and add it
 | 
						|
  // to the Module.
 | 
						|
  ArrayType *AT = ArrayType::get (AllocInfo::getConstantType (), 0);
 | 
						|
  std::vector<const Type *> TV;
 | 
						|
  TV.push_back (Type::UIntTy);
 | 
						|
  TV.push_back (AT);
 | 
						|
  PointerType *PT = PointerType::get (StructType::get (TV));
 | 
						|
 | 
						|
  std::vector<Constant *> allstate;
 | 
						|
  for (Module::iterator I = M.begin (), E = M.end (); I != E; ++I) {
 | 
						|
    Function *F = I;
 | 
						|
    if (F->isExternal ()) continue;
 | 
						|
    if (FnAllocState.find (F) == FnAllocState.end ()) {
 | 
						|
      allstate.push_back (ConstantPointerNull::get (PT));
 | 
						|
    } else {
 | 
						|
      std::vector<AllocInfo> &state = FnAllocState[F];
 | 
						|
 | 
						|
      // Convert state into an LLVM ConstantArray, and put it in a
 | 
						|
      // ConstantStruct (named S) along with its size.
 | 
						|
      std::vector<Constant *> stateConstants;
 | 
						|
      for (unsigned i = 0, s = state.size (); i != s; ++i)
 | 
						|
        stateConstants.push_back (state[i].toConstant ());
 | 
						|
      unsigned Size = stateConstants.size ();
 | 
						|
      ArrayType *AT = ArrayType::get (AllocInfo::getConstantType (), Size);
 | 
						|
      std::vector<const Type *> TV;
 | 
						|
      TV.push_back (Type::UIntTy);
 | 
						|
      TV.push_back (AT);
 | 
						|
      StructType *ST = StructType::get (TV);
 | 
						|
      std::vector<Constant *> CV;
 | 
						|
      CV.push_back (ConstantUInt::get (Type::UIntTy, Size));
 | 
						|
      CV.push_back (ConstantArray::get (AT, stateConstants));
 | 
						|
      Constant *S = ConstantStruct::get (ST, CV);
 | 
						|
 | 
						|
      GlobalVariable *GV =
 | 
						|
        new GlobalVariable (ST, true,
 | 
						|
                            GlobalValue::InternalLinkage, S,
 | 
						|
                            F->getName () + ".regAllocState", &M);
 | 
						|
 | 
						|
      // Have: { uint, [Size x { uint, int, uint, int }] } *
 | 
						|
      // Cast it to: { uint, [0 x { uint, int, uint, int }] } *
 | 
						|
      Constant *CE = ConstantExpr::getCast (GV, PT);
 | 
						|
      allstate.push_back (CE);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  unsigned Size = allstate.size ();
 | 
						|
  // Final structure type is:
 | 
						|
  // { uint, [Size x { uint, [0 x { uint, int, uint, int }] } *] }
 | 
						|
  std::vector<const Type *> TV2;
 | 
						|
  TV2.push_back (Type::UIntTy);
 | 
						|
  ArrayType *AT2 = ArrayType::get (PT, Size);
 | 
						|
  TV2.push_back (AT2);
 | 
						|
  StructType *ST2 = StructType::get (TV2);
 | 
						|
  std::vector<Constant *> CV2;
 | 
						|
  CV2.push_back (ConstantUInt::get (Type::UIntTy, Size));
 | 
						|
  CV2.push_back (ConstantArray::get (AT2, allstate));
 | 
						|
  new GlobalVariable (ST2, true, GlobalValue::ExternalLinkage,
 | 
						|
                      ConstantStruct::get (ST2, CV2), "_llvm_regAllocState",
 | 
						|
                      &M);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// Allocate registers for the machine code previously generated for F using
 | 
						|
/// the graph-coloring algorithm.
 | 
						|
///
 | 
						|
bool PhyRegAlloc::runOnFunction (Function &F) {
 | 
						|
  if (DEBUG_RA)
 | 
						|
    std::cerr << "\n********* Function "<< F.getName () << " ***********\n";
 | 
						|
 | 
						|
  Fn = &F;
 | 
						|
  MF = &MachineFunction::get (Fn);
 | 
						|
  LVI = &getAnalysis<FunctionLiveVarInfo> ();
 | 
						|
  LRI = new LiveRangeInfo (Fn, TM, RegClassList);
 | 
						|
  LoopDepthCalc = &getAnalysis<LoopInfo> ();
 | 
						|
 | 
						|
  // Create each RegClass for the target machine and add it to the
 | 
						|
  // RegClassList.  This must be done before calling constructLiveRanges().
 | 
						|
  for (unsigned rc = 0; rc != NumOfRegClasses; ++rc)
 | 
						|
    RegClassList.push_back (new RegClass (Fn, TM.getRegInfo(),
 | 
						|
					  MRI.getMachineRegClass(rc)));
 | 
						|
 | 
						|
  LRI->constructLiveRanges();            // create LR info
 | 
						|
  if (DEBUG_RA >= RA_DEBUG_LiveRanges)
 | 
						|
    LRI->printLiveRanges();
 | 
						|
 | 
						|
  createIGNodeListsAndIGs();            // create IGNode list and IGs
 | 
						|
 | 
						|
  buildInterferenceGraphs();            // build IGs in all reg classes
 | 
						|
 | 
						|
  if (DEBUG_RA >= RA_DEBUG_LiveRanges) {
 | 
						|
    // print all LRs in all reg classes
 | 
						|
    for ( unsigned rc=0; rc < NumOfRegClasses  ; rc++)
 | 
						|
      RegClassList[rc]->printIGNodeList();
 | 
						|
 | 
						|
    // print IGs in all register classes
 | 
						|
    for ( unsigned rc=0; rc < NumOfRegClasses ; rc++)
 | 
						|
      RegClassList[rc]->printIG();
 | 
						|
  }
 | 
						|
 | 
						|
  LRI->coalesceLRs();                    // coalesce all live ranges
 | 
						|
 | 
						|
  if (DEBUG_RA >= RA_DEBUG_LiveRanges) {
 | 
						|
    // print all LRs in all reg classes
 | 
						|
    for (unsigned rc=0; rc < NumOfRegClasses; rc++)
 | 
						|
      RegClassList[rc]->printIGNodeList();
 | 
						|
 | 
						|
    // print IGs in all register classes
 | 
						|
    for (unsigned rc=0; rc < NumOfRegClasses; rc++)
 | 
						|
      RegClassList[rc]->printIG();
 | 
						|
  }
 | 
						|
 | 
						|
  // mark un-usable suggested color before graph coloring algorithm.
 | 
						|
  // When this is done, the graph coloring algo will not reserve
 | 
						|
  // suggested color unnecessarily - they can be used by another LR
 | 
						|
  markUnusableSugColors();
 | 
						|
 | 
						|
  // color all register classes using the graph coloring algo
 | 
						|
  for (unsigned rc=0; rc < NumOfRegClasses ; rc++)
 | 
						|
    RegClassList[rc]->colorAllRegs();
 | 
						|
 | 
						|
  // After graph coloring, if some LRs did not receive a color (i.e, spilled)
 | 
						|
  // a position for such spilled LRs
 | 
						|
  allocateStackSpace4SpilledLRs();
 | 
						|
 | 
						|
  // Reset the temp. area on the stack before use by the first instruction.
 | 
						|
  // This will also happen after updating each instruction.
 | 
						|
  MF->getInfo<SparcV9FunctionInfo>()->popAllTempValues();
 | 
						|
 | 
						|
  // color incoming args - if the correct color was not received
 | 
						|
  // insert code to copy to the correct register
 | 
						|
  colorIncomingArgs();
 | 
						|
 | 
						|
  // Save register allocation state for this function in a Constant.
 | 
						|
  if (SaveRegAllocState)
 | 
						|
    saveState();
 | 
						|
 | 
						|
  // Now update the machine code with register names and add any additional
 | 
						|
  // code inserted by the register allocator to the instruction stream.
 | 
						|
  updateMachineCode();
 | 
						|
 | 
						|
  if (SaveRegAllocState && !SaveStateToModule)
 | 
						|
    finishSavingState (const_cast<Module&> (*Fn->getParent ()));
 | 
						|
 | 
						|
  if (DEBUG_RA) {
 | 
						|
    std::cerr << "\n**** Machine Code After Register Allocation:\n\n";
 | 
						|
    MF->dump();
 | 
						|
  }
 | 
						|
 | 
						|
  // Tear down temporary data structures
 | 
						|
  for (unsigned rc = 0; rc < NumOfRegClasses; ++rc)
 | 
						|
    delete RegClassList[rc];
 | 
						|
  RegClassList.clear ();
 | 
						|
  AddedInstrMap.clear ();
 | 
						|
  OperandsColoredMap.clear ();
 | 
						|
  ScratchRegsUsed.clear ();
 | 
						|
  AddedInstrAtEntry.clear ();
 | 
						|
  delete LRI;
 | 
						|
 | 
						|
  if (DEBUG_RA) std::cerr << "\nRegister allocation complete!\n";
 | 
						|
  return false;     // Function was not modified
 | 
						|
}
 | 
						|
 | 
						|
} // End llvm namespace
 |