mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-10-31 08:16:47 +00:00 
			
		
		
		
	* Convert tabs to spaces git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@21426 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			529 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			529 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //===-- X86PeepholeOpt.cpp - X86 Peephole Optimizer -----------------------===//
 | |
| //
 | |
| //                     The LLVM Compiler Infrastructure
 | |
| //
 | |
| // This file was developed by the LLVM research group and is distributed under
 | |
| // the University of Illinois Open Source License. See LICENSE.TXT for details.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| //
 | |
| // This file contains a peephole optimizer for the X86.
 | |
| //
 | |
| //===----------------------------------------------------------------------===//
 | |
| 
 | |
| #include "X86.h"
 | |
| #include "llvm/CodeGen/MachineFunctionPass.h"
 | |
| #include "llvm/CodeGen/MachineInstrBuilder.h"
 | |
| #include "llvm/Target/MRegisterInfo.h"
 | |
| #include "llvm/Target/TargetInstrInfo.h"
 | |
| #include "llvm/Target/TargetMachine.h"
 | |
| #include "llvm/ADT/Statistic.h"
 | |
| #include "llvm/ADT/STLExtras.h"
 | |
| 
 | |
| using namespace llvm;
 | |
| 
 | |
| namespace {
 | |
|   Statistic<> NumPHOpts("x86-peephole",
 | |
|                         "Number of peephole optimization performed");
 | |
|   Statistic<> NumPHMoves("x86-peephole", "Number of peephole moves folded");
 | |
|   struct PH : public MachineFunctionPass {
 | |
|     virtual bool runOnMachineFunction(MachineFunction &MF);
 | |
| 
 | |
|     bool PeepholeOptimize(MachineBasicBlock &MBB,
 | |
| 			  MachineBasicBlock::iterator &I);
 | |
| 
 | |
|     virtual const char *getPassName() const { return "X86 Peephole Optimizer"; }
 | |
|   };
 | |
| }
 | |
| 
 | |
| FunctionPass *llvm::createX86PeepholeOptimizerPass() { return new PH(); }
 | |
| 
 | |
| bool PH::runOnMachineFunction(MachineFunction &MF) {
 | |
|   bool Changed = false;
 | |
| 
 | |
|   for (MachineFunction::iterator BI = MF.begin(), E = MF.end(); BI != E; ++BI)
 | |
|     for (MachineBasicBlock::iterator I = BI->begin(); I != BI->end(); )
 | |
|       if (PeepholeOptimize(*BI, I)) {
 | |
| 	Changed = true;
 | |
|         ++NumPHOpts;
 | |
|       } else
 | |
| 	++I;
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| 
 | |
| bool PH::PeepholeOptimize(MachineBasicBlock &MBB,
 | |
| 			  MachineBasicBlock::iterator &I) {
 | |
|   assert(I != MBB.end());
 | |
|   MachineBasicBlock::iterator NextI = next(I);
 | |
| 
 | |
|   MachineInstr *MI = I;
 | |
|   MachineInstr *Next = (NextI != MBB.end()) ? &*NextI : (MachineInstr*)0;
 | |
|   unsigned Size = 0;
 | |
|   switch (MI->getOpcode()) {
 | |
|   case X86::MOV8rr:
 | |
|   case X86::MOV16rr:
 | |
|   case X86::MOV32rr:   // Destroy X = X copies...
 | |
|     if (MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
 | |
|       I = MBB.erase(I);
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
| 
 | |
|     // A large number of X86 instructions have forms which take an 8-bit
 | |
|     // immediate despite the fact that the operands are 16 or 32 bits.  Because
 | |
|     // this can save three bytes of code size (and icache space), we want to
 | |
|     // shrink them if possible.
 | |
|   case X86::IMUL16rri: case X86::IMUL32rri:
 | |
|     assert(MI->getNumOperands() == 3 && "These should all have 3 operands!");
 | |
|     if (MI->getOperand(2).isImmediate()) {
 | |
|       int Val = MI->getOperand(2).getImmedValue();
 | |
|       // If the value is the same when signed extended from 8 bits...
 | |
|       if (Val == (signed int)(signed char)Val) {
 | |
|         unsigned Opcode;
 | |
|         switch (MI->getOpcode()) {
 | |
|         default: assert(0 && "Unknown opcode value!");
 | |
|         case X86::IMUL16rri: Opcode = X86::IMUL16rri8; break;
 | |
|         case X86::IMUL32rri: Opcode = X86::IMUL32rri8; break;
 | |
|         }
 | |
|         unsigned R0 = MI->getOperand(0).getReg();
 | |
|         unsigned R1 = MI->getOperand(1).getReg();
 | |
|         I = MBB.insert(MBB.erase(I),
 | |
|                        BuildMI(Opcode, 2, R0).addReg(R1).addZImm((char)Val));
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|     return false;
 | |
| 
 | |
| #if 0
 | |
|   case X86::IMUL16rmi: case X86::IMUL32rmi:
 | |
|     assert(MI->getNumOperands() == 6 && "These should all have 6 operands!");
 | |
|     if (MI->getOperand(5).isImmediate()) {
 | |
|       int Val = MI->getOperand(5).getImmedValue();
 | |
|       // If the value is the same when signed extended from 8 bits...
 | |
|       if (Val == (signed int)(signed char)Val) {
 | |
|         unsigned Opcode;
 | |
|         switch (MI->getOpcode()) {
 | |
|         default: assert(0 && "Unknown opcode value!");
 | |
|         case X86::IMUL16rmi: Opcode = X86::IMUL16rmi8; break;
 | |
|         case X86::IMUL32rmi: Opcode = X86::IMUL32rmi8; break;
 | |
|         }
 | |
|         unsigned R0 = MI->getOperand(0).getReg();
 | |
|         unsigned R1 = MI->getOperand(1).getReg();
 | |
|         unsigned Scale = MI->getOperand(2).getImmedValue();
 | |
|         unsigned R2 = MI->getOperand(3).getReg();
 | |
|         unsigned Offset = MI->getOperand(4).getImmedValue();
 | |
|         I = MBB.insert(MBB.erase(I),
 | |
|                        BuildMI(Opcode, 5, R0).addReg(R1).addZImm(Scale).
 | |
|                              addReg(R2).addSImm(Offset).addZImm((char)Val));
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|     return false;
 | |
| #endif
 | |
| 
 | |
|   case X86::ADD16ri:  case X86::ADD32ri:  case X86::ADC32ri:
 | |
|   case X86::SUB16ri:  case X86::SUB32ri:
 | |
|   case X86::SBB16ri:  case X86::SBB32ri:
 | |
|   case X86::AND16ri:  case X86::AND32ri:
 | |
|   case X86::OR16ri:   case X86::OR32ri:
 | |
|   case X86::XOR16ri:  case X86::XOR32ri:
 | |
|     assert(MI->getNumOperands() == 2 && "These should all have 2 operands!");
 | |
|     if (MI->getOperand(1).isImmediate()) {
 | |
|       int Val = MI->getOperand(1).getImmedValue();
 | |
|       // If the value is the same when signed extended from 8 bits...
 | |
|       if (Val == (signed int)(signed char)Val) {
 | |
|         unsigned Opcode;
 | |
|         switch (MI->getOpcode()) {
 | |
|         default: assert(0 && "Unknown opcode value!");
 | |
|         case X86::ADD16ri:  Opcode = X86::ADD16ri8; break;
 | |
|         case X86::ADD32ri:  Opcode = X86::ADD32ri8; break;
 | |
|         case X86::ADC32ri:  Opcode = X86::ADC32ri8; break;
 | |
|         case X86::SUB16ri:  Opcode = X86::SUB16ri8; break;
 | |
|         case X86::SUB32ri:  Opcode = X86::SUB32ri8; break;
 | |
|         case X86::SBB16ri:  Opcode = X86::SBB16ri8; break;
 | |
|         case X86::SBB32ri:  Opcode = X86::SBB32ri8; break;
 | |
|         case X86::AND16ri:  Opcode = X86::AND16ri8; break;
 | |
|         case X86::AND32ri:  Opcode = X86::AND32ri8; break;
 | |
|         case X86::OR16ri:   Opcode = X86::OR16ri8; break;
 | |
|         case X86::OR32ri:   Opcode = X86::OR32ri8; break;
 | |
|         case X86::XOR16ri:  Opcode = X86::XOR16ri8; break;
 | |
|         case X86::XOR32ri:  Opcode = X86::XOR32ri8; break;
 | |
|         }
 | |
|         unsigned R0 = MI->getOperand(0).getReg();
 | |
|         I = MBB.insert(MBB.erase(I),
 | |
|                     BuildMI(Opcode, 1, R0, MachineOperand::UseAndDef)
 | |
|                       .addZImm((char)Val));
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|     return false;
 | |
| 
 | |
|   case X86::ADD16mi:  case X86::ADD32mi:  case X86::ADC32mi:
 | |
|   case X86::SUB16mi:  case X86::SUB32mi:
 | |
|   case X86::SBB16mi:  case X86::SBB32mi:
 | |
|   case X86::AND16mi:  case X86::AND32mi:
 | |
|   case X86::OR16mi:  case X86::OR32mi:
 | |
|   case X86::XOR16mi:  case X86::XOR32mi:
 | |
|     assert(MI->getNumOperands() == 5 && "These should all have 5 operands!");
 | |
|     if (MI->getOperand(4).isImmediate()) {
 | |
|       int Val = MI->getOperand(4).getImmedValue();
 | |
|       // If the value is the same when signed extended from 8 bits...
 | |
|       if (Val == (signed int)(signed char)Val) {
 | |
|         unsigned Opcode;
 | |
|         switch (MI->getOpcode()) {
 | |
|         default: assert(0 && "Unknown opcode value!");
 | |
|         case X86::ADD16mi:  Opcode = X86::ADD16mi8; break;
 | |
|         case X86::ADD32mi:  Opcode = X86::ADD32mi8; break;
 | |
|         case X86::ADC32mi:  Opcode = X86::ADC32mi8; break;
 | |
|         case X86::SUB16mi:  Opcode = X86::SUB16mi8; break;
 | |
|         case X86::SUB32mi:  Opcode = X86::SUB32mi8; break;
 | |
|         case X86::SBB16mi:  Opcode = X86::SBB16mi8; break;
 | |
|         case X86::SBB32mi:  Opcode = X86::SBB32mi8; break;
 | |
|         case X86::AND16mi:  Opcode = X86::AND16mi8; break;
 | |
|         case X86::AND32mi:  Opcode = X86::AND32mi8; break;
 | |
|         case X86::OR16mi:   Opcode = X86::OR16mi8; break;
 | |
|         case X86::OR32mi:   Opcode = X86::OR32mi8; break;
 | |
|         case X86::XOR16mi:  Opcode = X86::XOR16mi8; break;
 | |
|         case X86::XOR32mi:  Opcode = X86::XOR32mi8; break;
 | |
|         }
 | |
|         unsigned R0 = MI->getOperand(0).getReg();
 | |
|         unsigned Scale = MI->getOperand(1).getImmedValue();
 | |
|         unsigned R1 = MI->getOperand(2).getReg();
 | |
|         if (MI->getOperand(3).isImmediate()) {
 | |
|           unsigned Offset = MI->getOperand(3).getImmedValue();
 | |
|           I = MBB.insert(MBB.erase(I),
 | |
|                          BuildMI(Opcode, 5).addReg(R0).addZImm(Scale).
 | |
|                          addReg(R1).addSImm(Offset).addZImm((char)Val));
 | |
|         } else if (MI->getOperand(3).isGlobalAddress()) {
 | |
|           GlobalValue *GA = MI->getOperand(3).getGlobal();
 | |
|           int Offset = MI->getOperand(3).getOffset();
 | |
|           I = MBB.insert(MBB.erase(I),
 | |
|                          BuildMI(Opcode, 5).addReg(R0).addZImm(Scale).
 | |
|                          addReg(R1).addGlobalAddress(GA, false, Offset).
 | |
|                          addZImm((char)Val));
 | |
|         }
 | |
|         return true;
 | |
|       }
 | |
|     }
 | |
|     return false;
 | |
| 
 | |
| #if 0
 | |
|   case X86::MOV32ri: Size++;
 | |
|   case X86::MOV16ri: Size++;
 | |
|   case X86::MOV8ri:
 | |
|     // FIXME: We can only do this transformation if we know that flags are not
 | |
|     // used here, because XOR clobbers the flags!
 | |
|     if (MI->getOperand(1).isImmediate()) {         // avoid mov EAX, <value>
 | |
|       int Val = MI->getOperand(1).getImmedValue();
 | |
|       if (Val == 0) {                              // mov EAX, 0 -> xor EAX, EAX
 | |
| 	static const unsigned Opcode[] ={X86::XOR8rr,X86::XOR16rr,X86::XOR32rr};
 | |
| 	unsigned Reg = MI->getOperand(0).getReg();
 | |
| 	I = MBB.insert(MBB.erase(I),
 | |
|                        BuildMI(Opcode[Size], 2, Reg).addReg(Reg).addReg(Reg));
 | |
| 	return true;
 | |
|       } else if (Val == -1) {                     // mov EAX, -1 -> or EAX, -1
 | |
| 	// TODO: 'or Reg, -1' has a smaller encoding than 'mov Reg, -1'
 | |
|       }
 | |
|     }
 | |
|     return false;
 | |
| #endif
 | |
|   case X86::BSWAP32r:        // Change bswap EAX, bswap EAX into nothing
 | |
|     if (Next->getOpcode() == X86::BSWAP32r &&
 | |
| 	MI->getOperand(0).getReg() == Next->getOperand(0).getReg()) {
 | |
|       I = MBB.erase(MBB.erase(I));
 | |
|       return true;
 | |
|     }
 | |
|     return false;
 | |
|   default:
 | |
|     return false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| namespace {
 | |
|   class UseDefChains : public MachineFunctionPass {
 | |
|     std::vector<MachineInstr*> DefiningInst;
 | |
|   public:
 | |
|     // getDefinition - Return the machine instruction that defines the specified
 | |
|     // SSA virtual register.
 | |
|     MachineInstr *getDefinition(unsigned Reg) {
 | |
|       assert(MRegisterInfo::isVirtualRegister(Reg) &&
 | |
|              "use-def chains only exist for SSA registers!");
 | |
|       assert(Reg - MRegisterInfo::FirstVirtualRegister < DefiningInst.size() &&
 | |
|              "Unknown register number!");
 | |
|       assert(DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister] &&
 | |
|              "Unknown register number!");
 | |
|       return DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister];
 | |
|     }
 | |
| 
 | |
|     // setDefinition - Update the use-def chains to indicate that MI defines
 | |
|     // register Reg.
 | |
|     void setDefinition(unsigned Reg, MachineInstr *MI) {
 | |
|       if (Reg-MRegisterInfo::FirstVirtualRegister >= DefiningInst.size())
 | |
|         DefiningInst.resize(Reg-MRegisterInfo::FirstVirtualRegister+1);
 | |
|       DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister] = MI;
 | |
|     }
 | |
| 
 | |
|     // removeDefinition - Update the use-def chains to forget about Reg
 | |
|     // entirely.
 | |
|     void removeDefinition(unsigned Reg) {
 | |
|       assert(getDefinition(Reg));      // Check validity
 | |
|       DefiningInst[Reg-MRegisterInfo::FirstVirtualRegister] = 0;
 | |
|     }
 | |
| 
 | |
|     virtual bool runOnMachineFunction(MachineFunction &MF) {
 | |
|       for (MachineFunction::iterator BI = MF.begin(), E = MF.end(); BI!=E; ++BI)
 | |
|         for (MachineBasicBlock::iterator I = BI->begin(); I != BI->end(); ++I) {
 | |
|           for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
 | |
|             MachineOperand &MO = I->getOperand(i);
 | |
|             if (MO.isRegister() && MO.isDef() && !MO.isUse() &&
 | |
|                 MRegisterInfo::isVirtualRegister(MO.getReg()))
 | |
|               setDefinition(MO.getReg(), I);
 | |
|           }
 | |
|         }
 | |
|       return false;
 | |
|     }
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.setPreservesAll();
 | |
|       MachineFunctionPass::getAnalysisUsage(AU);
 | |
|     }
 | |
| 
 | |
|     virtual void releaseMemory() {
 | |
|       std::vector<MachineInstr*>().swap(DefiningInst);
 | |
|     }
 | |
|   };
 | |
| 
 | |
|   RegisterAnalysis<UseDefChains> X("use-def-chains",
 | |
|                                 "use-def chain construction for machine code");
 | |
| }
 | |
| 
 | |
| 
 | |
| namespace {
 | |
|   Statistic<> NumSSAPHOpts("x86-ssa-peephole",
 | |
|                            "Number of SSA peephole optimization performed");
 | |
| 
 | |
|   /// SSAPH - This pass is an X86-specific, SSA-based, peephole optimizer.  This
 | |
|   /// pass is really a bad idea: a better instruction selector should completely
 | |
|   /// supersume it.  However, that will take some time to develop, and the
 | |
|   /// simple things this can do are important now.
 | |
|   class SSAPH : public MachineFunctionPass {
 | |
|     UseDefChains *UDC;
 | |
|   public:
 | |
|     virtual bool runOnMachineFunction(MachineFunction &MF);
 | |
| 
 | |
|     bool PeepholeOptimize(MachineBasicBlock &MBB,
 | |
| 			  MachineBasicBlock::iterator &I);
 | |
| 
 | |
|     virtual const char *getPassName() const {
 | |
|       return "X86 SSA-based Peephole Optimizer";
 | |
|     }
 | |
| 
 | |
|     /// Propagate - Set MI[DestOpNo] = Src[SrcOpNo], optionally change the
 | |
|     /// opcode of the instruction, then return true.
 | |
|     bool Propagate(MachineInstr *MI, unsigned DestOpNo,
 | |
|                    MachineInstr *Src, unsigned SrcOpNo, unsigned NewOpcode = 0){
 | |
|       MI->getOperand(DestOpNo) = Src->getOperand(SrcOpNo);
 | |
|       if (NewOpcode) MI->setOpcode(NewOpcode);
 | |
|       return true;
 | |
|     }
 | |
| 
 | |
|     /// OptimizeAddress - If we can fold the addressing arithmetic for this
 | |
|     /// memory instruction into the instruction itself, do so and return true.
 | |
|     bool OptimizeAddress(MachineInstr *MI, unsigned OpNo);
 | |
| 
 | |
|     /// getDefininingInst - If the specified operand is a read of an SSA
 | |
|     /// register, return the machine instruction defining it, otherwise, return
 | |
|     /// null.
 | |
|     MachineInstr *getDefiningInst(MachineOperand &MO) {
 | |
|       if (MO.isDef() || !MO.isRegister() ||
 | |
|           !MRegisterInfo::isVirtualRegister(MO.getReg())) return 0;
 | |
|       return UDC->getDefinition(MO.getReg());
 | |
|     }
 | |
| 
 | |
|     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
 | |
|       AU.addRequired<UseDefChains>();
 | |
|       AU.addPreserved<UseDefChains>();
 | |
|       MachineFunctionPass::getAnalysisUsage(AU);
 | |
|     }
 | |
|   };
 | |
| }
 | |
| 
 | |
| FunctionPass *llvm::createX86SSAPeepholeOptimizerPass() { return new SSAPH(); }
 | |
| 
 | |
| bool SSAPH::runOnMachineFunction(MachineFunction &MF) {
 | |
|   bool Changed = false;
 | |
|   bool LocalChanged;
 | |
| 
 | |
|   UDC = &getAnalysis<UseDefChains>();
 | |
| 
 | |
|   do {
 | |
|     LocalChanged = false;
 | |
| 
 | |
|     for (MachineFunction::iterator BI = MF.begin(), E = MF.end(); BI != E; ++BI)
 | |
|       for (MachineBasicBlock::iterator I = BI->begin(); I != BI->end(); )
 | |
|         if (PeepholeOptimize(*BI, I)) {
 | |
|           LocalChanged = true;
 | |
|           ++NumSSAPHOpts;
 | |
|         } else
 | |
|           ++I;
 | |
|     Changed |= LocalChanged;
 | |
|   } while (LocalChanged);
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| static bool isValidScaleAmount(unsigned Scale) {
 | |
|   return Scale == 1 || Scale == 2 || Scale == 4 || Scale == 8;
 | |
| }
 | |
| 
 | |
| /// OptimizeAddress - If we can fold the addressing arithmetic for this
 | |
| /// memory instruction into the instruction itself, do so and return true.
 | |
| bool SSAPH::OptimizeAddress(MachineInstr *MI, unsigned OpNo) {
 | |
|   MachineOperand &BaseRegOp      = MI->getOperand(OpNo+0);
 | |
|   MachineOperand &ScaleOp        = MI->getOperand(OpNo+1);
 | |
|   MachineOperand &IndexRegOp     = MI->getOperand(OpNo+2);
 | |
|   MachineOperand &DisplacementOp = MI->getOperand(OpNo+3);
 | |
| 
 | |
|   unsigned BaseReg  = BaseRegOp.hasAllocatedReg() ? BaseRegOp.getReg() : 0;
 | |
|   unsigned Scale    = ScaleOp.getImmedValue();
 | |
|   unsigned IndexReg = IndexRegOp.hasAllocatedReg() ? IndexRegOp.getReg() : 0;
 | |
| 
 | |
|   bool Changed = false;
 | |
| 
 | |
|   // If the base register is unset, and the index register is set with a scale
 | |
|   // of 1, move it to be the base register.
 | |
|   if (BaseRegOp.hasAllocatedReg() && BaseReg == 0 &&
 | |
|       Scale == 1 && IndexReg != 0) {
 | |
|     BaseRegOp.setReg(IndexReg);
 | |
|     IndexRegOp.setReg(0);
 | |
|     return true;
 | |
|   }
 | |
| 
 | |
|   // Attempt to fold instructions used by the base register into the instruction
 | |
|   if (MachineInstr *DefInst = getDefiningInst(BaseRegOp)) {
 | |
|     switch (DefInst->getOpcode()) {
 | |
|     case X86::MOV32ri:
 | |
|       // If there is no displacement set for this instruction set one now.
 | |
|       // FIXME: If we can fold two immediates together, we should do so!
 | |
|       if (DisplacementOp.isImmediate() && !DisplacementOp.getImmedValue()) {
 | |
|         if (DefInst->getOperand(1).isImmediate()) {
 | |
|           BaseRegOp.setReg(0);
 | |
|           return Propagate(MI, OpNo+3, DefInst, 1);
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case X86::ADD32rr:
 | |
|       // If the source is a register-register add, and we do not yet have an
 | |
|       // index register, fold the add into the memory address.
 | |
|       if (IndexReg == 0) {
 | |
|         BaseRegOp = DefInst->getOperand(1);
 | |
|         IndexRegOp = DefInst->getOperand(2);
 | |
|         ScaleOp.setImmedValue(1);
 | |
|         return true;
 | |
|       }
 | |
|       break;
 | |
| 
 | |
|     case X86::SHL32ri:
 | |
|       // If this shift could be folded into the index portion of the address if
 | |
|       // it were the index register, move it to the index register operand now,
 | |
|       // so it will be folded in below.
 | |
|       if ((Scale == 1 || (IndexReg == 0 && IndexRegOp.hasAllocatedReg())) &&
 | |
|           DefInst->getOperand(2).getImmedValue() < 4) {
 | |
|         std::swap(BaseRegOp, IndexRegOp);
 | |
|         ScaleOp.setImmedValue(1); Scale = 1;
 | |
|         std::swap(IndexReg, BaseReg);
 | |
|         Changed = true;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   // Attempt to fold instructions used by the index into the instruction
 | |
|   if (MachineInstr *DefInst = getDefiningInst(IndexRegOp)) {
 | |
|     switch (DefInst->getOpcode()) {
 | |
|     case X86::SHL32ri: {
 | |
|       // Figure out what the resulting scale would be if we folded this shift.
 | |
|       unsigned ResScale = Scale * (1 << DefInst->getOperand(2).getImmedValue());
 | |
|       if (isValidScaleAmount(ResScale)) {
 | |
|         IndexRegOp = DefInst->getOperand(1);
 | |
|         ScaleOp.setImmedValue(ResScale);
 | |
|         return true;
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 | |
| 
 | |
| bool SSAPH::PeepholeOptimize(MachineBasicBlock &MBB,
 | |
|                              MachineBasicBlock::iterator &I) {
 | |
|     MachineBasicBlock::iterator NextI = next(I);
 | |
| 
 | |
|   MachineInstr *MI = I;
 | |
|   MachineInstr *Next = (NextI != MBB.end()) ? &*NextI : (MachineInstr*)0;
 | |
| 
 | |
|   bool Changed = false;
 | |
| 
 | |
|   const TargetInstrInfo &TII = *MBB.getParent()->getTarget().getInstrInfo();
 | |
| 
 | |
|   // Scan the operands of this instruction.  If any operands are
 | |
|   // register-register copies, replace the operand with the source.
 | |
|   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
 | |
|     // Is this an SSA register use?
 | |
|     if (MachineInstr *DefInst = getDefiningInst(MI->getOperand(i))) {
 | |
|       // If the operand is a vreg-vreg copy, it is always safe to replace the
 | |
|       // source value with the input operand.
 | |
|       unsigned Source, Dest;
 | |
|       if (TII.isMoveInstr(*DefInst, Source, Dest)) {
 | |
|         // Don't propagate physical registers into any instructions.
 | |
|         if (DefInst->getOperand(1).isRegister() &&
 | |
|             MRegisterInfo::isVirtualRegister(Source)) {
 | |
|           MI->getOperand(i).setReg(Source);
 | |
|           Changed = true;
 | |
|           ++NumPHMoves;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
| 
 | |
|   // Perform instruction specific optimizations.
 | |
|   switch (MI->getOpcode()) {
 | |
| 
 | |
|     // Register to memory stores.  Format: <base,scale,indexreg,immdisp>, srcreg
 | |
|   case X86::MOV32mr: case X86::MOV16mr: case X86::MOV8mr:
 | |
|   case X86::MOV32mi: case X86::MOV16mi: case X86::MOV8mi:
 | |
|     // Check to see if we can fold the source instruction into this one...
 | |
|     if (MachineInstr *SrcInst = getDefiningInst(MI->getOperand(4))) {
 | |
|       switch (SrcInst->getOpcode()) {
 | |
|         // Fold the immediate value into the store, if possible.
 | |
|       case X86::MOV8ri:  return Propagate(MI, 4, SrcInst, 1, X86::MOV8mi);
 | |
|       case X86::MOV16ri: return Propagate(MI, 4, SrcInst, 1, X86::MOV16mi);
 | |
|       case X86::MOV32ri: return Propagate(MI, 4, SrcInst, 1, X86::MOV32mi);
 | |
|       default: break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // If we can optimize the addressing expression, do so now.
 | |
|     if (OptimizeAddress(MI, 0))
 | |
|       return true;
 | |
|     break;
 | |
| 
 | |
|   case X86::MOV32rm:
 | |
|   case X86::MOV16rm:
 | |
|   case X86::MOV8rm:
 | |
|     // If we can optimize the addressing expression, do so now.
 | |
|     if (OptimizeAddress(MI, 1))
 | |
|       return true;
 | |
|     break;
 | |
| 
 | |
|   default: break;
 | |
|   }
 | |
| 
 | |
|   return Changed;
 | |
| }
 |