mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@227035 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			1234 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1234 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// \file
 | 
						|
/// This file implements a TargetTransformInfo analysis pass specific to the
 | 
						|
/// X86 target machine. It uses the target's detailed information to provide
 | 
						|
/// more precise answers to certain TTI queries, while letting the target
 | 
						|
/// independent and default TTI implementations handle the rest.
 | 
						|
///
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#include "X86.h"
 | 
						|
#include "X86TargetMachine.h"
 | 
						|
#include "llvm/Analysis/TargetTransformInfo.h"
 | 
						|
#include "llvm/IR/IntrinsicInst.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Target/CostTable.h"
 | 
						|
#include "llvm/Target/TargetLowering.h"
 | 
						|
using namespace llvm;
 | 
						|
 | 
						|
#define DEBUG_TYPE "x86tti"
 | 
						|
 | 
						|
// Declare the pass initialization routine locally as target-specific passes
 | 
						|
// don't have a target-wide initialization entry point, and so we rely on the
 | 
						|
// pass constructor initialization.
 | 
						|
namespace llvm {
 | 
						|
void initializeX86TTIPass(PassRegistry &);
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
 | 
						|
class X86TTI final : public ImmutablePass, public TargetTransformInfo {
 | 
						|
  const X86Subtarget *ST;
 | 
						|
  const X86TargetLowering *TLI;
 | 
						|
 | 
						|
  /// Estimate the overhead of scalarizing an instruction. Insert and Extract
 | 
						|
  /// are set if the result needs to be inserted and/or extracted from vectors.
 | 
						|
  unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
 | 
						|
 | 
						|
public:
 | 
						|
  X86TTI() : ImmutablePass(ID), ST(nullptr), TLI(nullptr) {
 | 
						|
    llvm_unreachable("This pass cannot be directly constructed");
 | 
						|
  }
 | 
						|
 | 
						|
  X86TTI(const X86TargetMachine *TM)
 | 
						|
      : ImmutablePass(ID), ST(TM->getSubtargetImpl()),
 | 
						|
        TLI(TM->getSubtargetImpl()->getTargetLowering()) {
 | 
						|
    initializeX86TTIPass(*PassRegistry::getPassRegistry());
 | 
						|
  }
 | 
						|
 | 
						|
  void initializePass() override {
 | 
						|
    pushTTIStack(this);
 | 
						|
  }
 | 
						|
 | 
						|
  void getAnalysisUsage(AnalysisUsage &AU) const override {
 | 
						|
    TargetTransformInfo::getAnalysisUsage(AU);
 | 
						|
  }
 | 
						|
 | 
						|
  /// Pass identification.
 | 
						|
  static char ID;
 | 
						|
 | 
						|
  /// Provide necessary pointer adjustments for the two base classes.
 | 
						|
  void *getAdjustedAnalysisPointer(const void *ID) override {
 | 
						|
    if (ID == &TargetTransformInfo::ID)
 | 
						|
      return (TargetTransformInfo*)this;
 | 
						|
    return this;
 | 
						|
  }
 | 
						|
 | 
						|
  /// \name Scalar TTI Implementations
 | 
						|
  /// @{
 | 
						|
  PopcntSupportKind getPopcntSupport(unsigned TyWidth) const override;
 | 
						|
 | 
						|
  /// @}
 | 
						|
 | 
						|
  /// \name Vector TTI Implementations
 | 
						|
  /// @{
 | 
						|
 | 
						|
  unsigned getNumberOfRegisters(bool Vector) const override;
 | 
						|
  unsigned getRegisterBitWidth(bool Vector) const override;
 | 
						|
  unsigned getMaxInterleaveFactor() const override;
 | 
						|
  unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty, OperandValueKind,
 | 
						|
                                  OperandValueKind, OperandValueProperties,
 | 
						|
                                  OperandValueProperties) const override;
 | 
						|
  unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
 | 
						|
                          int Index, Type *SubTp) const override;
 | 
						|
  unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
 | 
						|
                            Type *Src) const override;
 | 
						|
  unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
 | 
						|
                              Type *CondTy) const override;
 | 
						|
  unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
 | 
						|
                              unsigned Index) const override;
 | 
						|
  unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
 | 
						|
                           unsigned AddressSpace) const override;
 | 
						|
  unsigned getMaskedMemoryOpCost(unsigned Opcode, Type *Src,
 | 
						|
                                 unsigned Alignment,
 | 
						|
                                 unsigned AddressSpace) const override;
 | 
						|
 | 
						|
  unsigned getAddressComputationCost(Type *PtrTy,
 | 
						|
                                     bool IsComplex) const override;
 | 
						|
 | 
						|
  unsigned getReductionCost(unsigned Opcode, Type *Ty,
 | 
						|
                            bool IsPairwiseForm) const override;
 | 
						|
 | 
						|
  unsigned getIntImmCost(int64_t) const;
 | 
						|
 | 
						|
  unsigned getIntImmCost(const APInt &Imm, Type *Ty) const override;
 | 
						|
 | 
						|
  unsigned getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
 | 
						|
                         Type *Ty) const override;
 | 
						|
  unsigned getIntImmCost(Intrinsic::ID IID, unsigned Idx, const APInt &Imm,
 | 
						|
                         Type *Ty) const override;
 | 
						|
  bool isLegalMaskedLoad (Type *DataType, int Consecutive) const override;
 | 
						|
  bool isLegalMaskedStore(Type *DataType, int Consecutive) const override;
 | 
						|
 | 
						|
  /// @}
 | 
						|
};
 | 
						|
 | 
						|
} // end anonymous namespace
 | 
						|
 | 
						|
INITIALIZE_AG_PASS(X86TTI, TargetTransformInfo, "x86tti",
 | 
						|
                   "X86 Target Transform Info", true, true, false)
 | 
						|
char X86TTI::ID = 0;
 | 
						|
 | 
						|
ImmutablePass *
 | 
						|
llvm::createX86TargetTransformInfoPass(const X86TargetMachine *TM) {
 | 
						|
  return new X86TTI(TM);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
//
 | 
						|
// X86 cost model.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
X86TTI::PopcntSupportKind X86TTI::getPopcntSupport(unsigned TyWidth) const {
 | 
						|
  assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
 | 
						|
  // TODO: Currently the __builtin_popcount() implementation using SSE3
 | 
						|
  //   instructions is inefficient. Once the problem is fixed, we should
 | 
						|
  //   call ST->hasSSE3() instead of ST->hasPOPCNT().
 | 
						|
  return ST->hasPOPCNT() ? PSK_FastHardware : PSK_Software;
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86TTI::getNumberOfRegisters(bool Vector) const {
 | 
						|
  if (Vector && !ST->hasSSE1())
 | 
						|
    return 0;
 | 
						|
 | 
						|
  if (ST->is64Bit()) {
 | 
						|
    if (Vector && ST->hasAVX512())
 | 
						|
      return 32;
 | 
						|
    return 16;
 | 
						|
  }
 | 
						|
  return 8;
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86TTI::getRegisterBitWidth(bool Vector) const {
 | 
						|
  if (Vector) {
 | 
						|
    if (ST->hasAVX512()) return 512;
 | 
						|
    if (ST->hasAVX()) return 256;
 | 
						|
    if (ST->hasSSE1()) return 128;
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ST->is64Bit())
 | 
						|
    return 64;
 | 
						|
  return 32;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86TTI::getMaxInterleaveFactor() const {
 | 
						|
  if (ST->isAtom())
 | 
						|
    return 1;
 | 
						|
 | 
						|
  // Sandybridge and Haswell have multiple execution ports and pipelined
 | 
						|
  // vector units.
 | 
						|
  if (ST->hasAVX())
 | 
						|
    return 4;
 | 
						|
 | 
						|
  return 2;
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86TTI::getArithmeticInstrCost(
 | 
						|
    unsigned Opcode, Type *Ty, OperandValueKind Op1Info,
 | 
						|
    OperandValueKind Op2Info, OperandValueProperties Opd1PropInfo,
 | 
						|
    OperandValueProperties Opd2PropInfo) const {
 | 
						|
  // Legalize the type.
 | 
						|
  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
 | 
						|
 | 
						|
  int ISD = TLI->InstructionOpcodeToISD(Opcode);
 | 
						|
  assert(ISD && "Invalid opcode");
 | 
						|
 | 
						|
  if (ISD == ISD::SDIV &&
 | 
						|
      Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
 | 
						|
      Opd2PropInfo == TargetTransformInfo::OP_PowerOf2) {
 | 
						|
    // On X86, vector signed division by constants power-of-two are
 | 
						|
    // normally expanded to the sequence SRA + SRL + ADD + SRA.
 | 
						|
    // The OperandValue properties many not be same as that of previous
 | 
						|
    // operation;conservatively assume OP_None.
 | 
						|
    unsigned Cost =
 | 
						|
        2 * getArithmeticInstrCost(Instruction::AShr, Ty, Op1Info, Op2Info,
 | 
						|
                                   TargetTransformInfo::OP_None,
 | 
						|
                                   TargetTransformInfo::OP_None);
 | 
						|
    Cost += getArithmeticInstrCost(Instruction::LShr, Ty, Op1Info, Op2Info,
 | 
						|
                                   TargetTransformInfo::OP_None,
 | 
						|
                                   TargetTransformInfo::OP_None);
 | 
						|
    Cost += getArithmeticInstrCost(Instruction::Add, Ty, Op1Info, Op2Info,
 | 
						|
                                   TargetTransformInfo::OP_None,
 | 
						|
                                   TargetTransformInfo::OP_None);
 | 
						|
 | 
						|
    return Cost;
 | 
						|
  }
 | 
						|
 | 
						|
  static const CostTblEntry<MVT::SimpleValueType>
 | 
						|
  AVX2UniformConstCostTable[] = {
 | 
						|
    { ISD::SDIV, MVT::v16i16,  6 }, // vpmulhw sequence
 | 
						|
    { ISD::UDIV, MVT::v16i16,  6 }, // vpmulhuw sequence
 | 
						|
    { ISD::SDIV, MVT::v8i32,  15 }, // vpmuldq sequence
 | 
						|
    { ISD::UDIV, MVT::v8i32,  15 }, // vpmuludq sequence
 | 
						|
  };
 | 
						|
 | 
						|
  if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
 | 
						|
      ST->hasAVX2()) {
 | 
						|
    int Idx = CostTableLookup(AVX2UniformConstCostTable, ISD, LT.second);
 | 
						|
    if (Idx != -1)
 | 
						|
      return LT.first * AVX2UniformConstCostTable[Idx].Cost;
 | 
						|
  }
 | 
						|
 | 
						|
  static const CostTblEntry<MVT::SimpleValueType> AVX512CostTable[] = {
 | 
						|
    { ISD::SHL,     MVT::v16i32,    1 },
 | 
						|
    { ISD::SRL,     MVT::v16i32,    1 },
 | 
						|
    { ISD::SRA,     MVT::v16i32,    1 },
 | 
						|
    { ISD::SHL,     MVT::v8i64,    1 },
 | 
						|
    { ISD::SRL,     MVT::v8i64,    1 },
 | 
						|
    { ISD::SRA,     MVT::v8i64,    1 },
 | 
						|
  };
 | 
						|
 | 
						|
  static const CostTblEntry<MVT::SimpleValueType> AVX2CostTable[] = {
 | 
						|
    // Shifts on v4i64/v8i32 on AVX2 is legal even though we declare to
 | 
						|
    // customize them to detect the cases where shift amount is a scalar one.
 | 
						|
    { ISD::SHL,     MVT::v4i32,    1 },
 | 
						|
    { ISD::SRL,     MVT::v4i32,    1 },
 | 
						|
    { ISD::SRA,     MVT::v4i32,    1 },
 | 
						|
    { ISD::SHL,     MVT::v8i32,    1 },
 | 
						|
    { ISD::SRL,     MVT::v8i32,    1 },
 | 
						|
    { ISD::SRA,     MVT::v8i32,    1 },
 | 
						|
    { ISD::SHL,     MVT::v2i64,    1 },
 | 
						|
    { ISD::SRL,     MVT::v2i64,    1 },
 | 
						|
    { ISD::SHL,     MVT::v4i64,    1 },
 | 
						|
    { ISD::SRL,     MVT::v4i64,    1 },
 | 
						|
 | 
						|
    { ISD::SHL,  MVT::v32i8,  42 }, // cmpeqb sequence.
 | 
						|
    { ISD::SHL,  MVT::v16i16,  16*10 }, // Scalarized.
 | 
						|
 | 
						|
    { ISD::SRL,  MVT::v32i8,  32*10 }, // Scalarized.
 | 
						|
    { ISD::SRL,  MVT::v16i16,  8*10 }, // Scalarized.
 | 
						|
 | 
						|
    { ISD::SRA,  MVT::v32i8,  32*10 }, // Scalarized.
 | 
						|
    { ISD::SRA,  MVT::v16i16,  16*10 }, // Scalarized.
 | 
						|
    { ISD::SRA,  MVT::v4i64,  4*10 }, // Scalarized.
 | 
						|
 | 
						|
    // Vectorizing division is a bad idea. See the SSE2 table for more comments.
 | 
						|
    { ISD::SDIV,  MVT::v32i8,  32*20 },
 | 
						|
    { ISD::SDIV,  MVT::v16i16, 16*20 },
 | 
						|
    { ISD::SDIV,  MVT::v8i32,  8*20 },
 | 
						|
    { ISD::SDIV,  MVT::v4i64,  4*20 },
 | 
						|
    { ISD::UDIV,  MVT::v32i8,  32*20 },
 | 
						|
    { ISD::UDIV,  MVT::v16i16, 16*20 },
 | 
						|
    { ISD::UDIV,  MVT::v8i32,  8*20 },
 | 
						|
    { ISD::UDIV,  MVT::v4i64,  4*20 },
 | 
						|
  };
 | 
						|
 | 
						|
  if (ST->hasAVX512()) {
 | 
						|
    int Idx = CostTableLookup(AVX512CostTable, ISD, LT.second);
 | 
						|
    if (Idx != -1)
 | 
						|
      return LT.first * AVX512CostTable[Idx].Cost;
 | 
						|
  }
 | 
						|
  // Look for AVX2 lowering tricks.
 | 
						|
  if (ST->hasAVX2()) {
 | 
						|
    if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
 | 
						|
        (Op2Info == TargetTransformInfo::OK_UniformConstantValue ||
 | 
						|
         Op2Info == TargetTransformInfo::OK_NonUniformConstantValue))
 | 
						|
      // On AVX2, a packed v16i16 shift left by a constant build_vector
 | 
						|
      // is lowered into a vector multiply (vpmullw).
 | 
						|
      return LT.first;
 | 
						|
 | 
						|
    int Idx = CostTableLookup(AVX2CostTable, ISD, LT.second);
 | 
						|
    if (Idx != -1)
 | 
						|
      return LT.first * AVX2CostTable[Idx].Cost;
 | 
						|
  }
 | 
						|
 | 
						|
  static const CostTblEntry<MVT::SimpleValueType>
 | 
						|
  SSE2UniformConstCostTable[] = {
 | 
						|
    // We don't correctly identify costs of casts because they are marked as
 | 
						|
    // custom.
 | 
						|
    // Constant splats are cheaper for the following instructions.
 | 
						|
    { ISD::SHL,  MVT::v16i8,  1 }, // psllw.
 | 
						|
    { ISD::SHL,  MVT::v8i16,  1 }, // psllw.
 | 
						|
    { ISD::SHL,  MVT::v4i32,  1 }, // pslld
 | 
						|
    { ISD::SHL,  MVT::v2i64,  1 }, // psllq.
 | 
						|
 | 
						|
    { ISD::SRL,  MVT::v16i8,  1 }, // psrlw.
 | 
						|
    { ISD::SRL,  MVT::v8i16,  1 }, // psrlw.
 | 
						|
    { ISD::SRL,  MVT::v4i32,  1 }, // psrld.
 | 
						|
    { ISD::SRL,  MVT::v2i64,  1 }, // psrlq.
 | 
						|
 | 
						|
    { ISD::SRA,  MVT::v16i8,  4 }, // psrlw, pand, pxor, psubb.
 | 
						|
    { ISD::SRA,  MVT::v8i16,  1 }, // psraw.
 | 
						|
    { ISD::SRA,  MVT::v4i32,  1 }, // psrad.
 | 
						|
 | 
						|
    { ISD::SDIV, MVT::v8i16,  6 }, // pmulhw sequence
 | 
						|
    { ISD::UDIV, MVT::v8i16,  6 }, // pmulhuw sequence
 | 
						|
    { ISD::SDIV, MVT::v4i32, 19 }, // pmuludq sequence
 | 
						|
    { ISD::UDIV, MVT::v4i32, 15 }, // pmuludq sequence
 | 
						|
  };
 | 
						|
 | 
						|
  if (Op2Info == TargetTransformInfo::OK_UniformConstantValue &&
 | 
						|
      ST->hasSSE2()) {
 | 
						|
    // pmuldq sequence.
 | 
						|
    if (ISD == ISD::SDIV && LT.second == MVT::v4i32 && ST->hasSSE41())
 | 
						|
      return LT.first * 15;
 | 
						|
 | 
						|
    int Idx = CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second);
 | 
						|
    if (Idx != -1)
 | 
						|
      return LT.first * SSE2UniformConstCostTable[Idx].Cost;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ISD == ISD::SHL &&
 | 
						|
      Op2Info == TargetTransformInfo::OK_NonUniformConstantValue) {
 | 
						|
    EVT VT = LT.second;
 | 
						|
    if ((VT == MVT::v8i16 && ST->hasSSE2()) ||
 | 
						|
        (VT == MVT::v4i32 && ST->hasSSE41()))
 | 
						|
      // Vector shift left by non uniform constant can be lowered
 | 
						|
      // into vector multiply (pmullw/pmulld).
 | 
						|
      return LT.first;
 | 
						|
    if (VT == MVT::v4i32 && ST->hasSSE2())
 | 
						|
      // A vector shift left by non uniform constant is converted
 | 
						|
      // into a vector multiply; the new multiply is eventually
 | 
						|
      // lowered into a sequence of shuffles and 2 x pmuludq.
 | 
						|
      ISD = ISD::MUL;
 | 
						|
  }
 | 
						|
 | 
						|
  static const CostTblEntry<MVT::SimpleValueType> SSE2CostTable[] = {
 | 
						|
    // We don't correctly identify costs of casts because they are marked as
 | 
						|
    // custom.
 | 
						|
    // For some cases, where the shift amount is a scalar we would be able
 | 
						|
    // to generate better code. Unfortunately, when this is the case the value
 | 
						|
    // (the splat) will get hoisted out of the loop, thereby making it invisible
 | 
						|
    // to ISel. The cost model must return worst case assumptions because it is
 | 
						|
    // used for vectorization and we don't want to make vectorized code worse
 | 
						|
    // than scalar code.
 | 
						|
    { ISD::SHL,  MVT::v16i8,  30 }, // cmpeqb sequence.
 | 
						|
    { ISD::SHL,  MVT::v8i16,  8*10 }, // Scalarized.
 | 
						|
    { ISD::SHL,  MVT::v4i32,  2*5 }, // We optimized this using mul.
 | 
						|
    { ISD::SHL,  MVT::v2i64,  2*10 }, // Scalarized.
 | 
						|
    { ISD::SHL,  MVT::v4i64,  4*10 }, // Scalarized.
 | 
						|
 | 
						|
    { ISD::SRL,  MVT::v16i8,  16*10 }, // Scalarized.
 | 
						|
    { ISD::SRL,  MVT::v8i16,  8*10 }, // Scalarized.
 | 
						|
    { ISD::SRL,  MVT::v4i32,  4*10 }, // Scalarized.
 | 
						|
    { ISD::SRL,  MVT::v2i64,  2*10 }, // Scalarized.
 | 
						|
 | 
						|
    { ISD::SRA,  MVT::v16i8,  16*10 }, // Scalarized.
 | 
						|
    { ISD::SRA,  MVT::v8i16,  8*10 }, // Scalarized.
 | 
						|
    { ISD::SRA,  MVT::v4i32,  4*10 }, // Scalarized.
 | 
						|
    { ISD::SRA,  MVT::v2i64,  2*10 }, // Scalarized.
 | 
						|
 | 
						|
    // It is not a good idea to vectorize division. We have to scalarize it and
 | 
						|
    // in the process we will often end up having to spilling regular
 | 
						|
    // registers. The overhead of division is going to dominate most kernels
 | 
						|
    // anyways so try hard to prevent vectorization of division - it is
 | 
						|
    // generally a bad idea. Assume somewhat arbitrarily that we have to be able
 | 
						|
    // to hide "20 cycles" for each lane.
 | 
						|
    { ISD::SDIV,  MVT::v16i8,  16*20 },
 | 
						|
    { ISD::SDIV,  MVT::v8i16,  8*20 },
 | 
						|
    { ISD::SDIV,  MVT::v4i32,  4*20 },
 | 
						|
    { ISD::SDIV,  MVT::v2i64,  2*20 },
 | 
						|
    { ISD::UDIV,  MVT::v16i8,  16*20 },
 | 
						|
    { ISD::UDIV,  MVT::v8i16,  8*20 },
 | 
						|
    { ISD::UDIV,  MVT::v4i32,  4*20 },
 | 
						|
    { ISD::UDIV,  MVT::v2i64,  2*20 },
 | 
						|
  };
 | 
						|
 | 
						|
  if (ST->hasSSE2()) {
 | 
						|
    int Idx = CostTableLookup(SSE2CostTable, ISD, LT.second);
 | 
						|
    if (Idx != -1)
 | 
						|
      return LT.first * SSE2CostTable[Idx].Cost;
 | 
						|
  }
 | 
						|
 | 
						|
  static const CostTblEntry<MVT::SimpleValueType> AVX1CostTable[] = {
 | 
						|
    // We don't have to scalarize unsupported ops. We can issue two half-sized
 | 
						|
    // operations and we only need to extract the upper YMM half.
 | 
						|
    // Two ops + 1 extract + 1 insert = 4.
 | 
						|
    { ISD::MUL,     MVT::v16i16,   4 },
 | 
						|
    { ISD::MUL,     MVT::v8i32,    4 },
 | 
						|
    { ISD::SUB,     MVT::v8i32,    4 },
 | 
						|
    { ISD::ADD,     MVT::v8i32,    4 },
 | 
						|
    { ISD::SUB,     MVT::v4i64,    4 },
 | 
						|
    { ISD::ADD,     MVT::v4i64,    4 },
 | 
						|
    // A v4i64 multiply is custom lowered as two split v2i64 vectors that then
 | 
						|
    // are lowered as a series of long multiplies(3), shifts(4) and adds(2)
 | 
						|
    // Because we believe v4i64 to be a legal type, we must also include the
 | 
						|
    // split factor of two in the cost table. Therefore, the cost here is 18
 | 
						|
    // instead of 9.
 | 
						|
    { ISD::MUL,     MVT::v4i64,    18 },
 | 
						|
  };
 | 
						|
 | 
						|
  // Look for AVX1 lowering tricks.
 | 
						|
  if (ST->hasAVX() && !ST->hasAVX2()) {
 | 
						|
    EVT VT = LT.second;
 | 
						|
 | 
						|
    // v16i16 and v8i32 shifts by non-uniform constants are lowered into a
 | 
						|
    // sequence of extract + two vector multiply + insert.
 | 
						|
    if (ISD == ISD::SHL && (VT == MVT::v8i32 || VT == MVT::v16i16) &&
 | 
						|
        Op2Info == TargetTransformInfo::OK_NonUniformConstantValue)
 | 
						|
      ISD = ISD::MUL;
 | 
						|
 | 
						|
    int Idx = CostTableLookup(AVX1CostTable, ISD, VT);
 | 
						|
    if (Idx != -1)
 | 
						|
      return LT.first * AVX1CostTable[Idx].Cost;
 | 
						|
  }
 | 
						|
 | 
						|
  // Custom lowering of vectors.
 | 
						|
  static const CostTblEntry<MVT::SimpleValueType> CustomLowered[] = {
 | 
						|
    // A v2i64/v4i64 and multiply is custom lowered as a series of long
 | 
						|
    // multiplies(3), shifts(4) and adds(2).
 | 
						|
    { ISD::MUL,     MVT::v2i64,    9 },
 | 
						|
    { ISD::MUL,     MVT::v4i64,    9 },
 | 
						|
  };
 | 
						|
  int Idx = CostTableLookup(CustomLowered, ISD, LT.second);
 | 
						|
  if (Idx != -1)
 | 
						|
    return LT.first * CustomLowered[Idx].Cost;
 | 
						|
 | 
						|
  // Special lowering of v4i32 mul on sse2, sse3: Lower v4i32 mul as 2x shuffle,
 | 
						|
  // 2x pmuludq, 2x shuffle.
 | 
						|
  if (ISD == ISD::MUL && LT.second == MVT::v4i32 && ST->hasSSE2() &&
 | 
						|
      !ST->hasSSE41())
 | 
						|
    return LT.first * 6;
 | 
						|
 | 
						|
  // Fallback to the default implementation.
 | 
						|
  return TargetTransformInfo::getArithmeticInstrCost(Opcode, Ty, Op1Info,
 | 
						|
                                                     Op2Info);
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86TTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
 | 
						|
                                Type *SubTp) const {
 | 
						|
  // We only estimate the cost of reverse and alternate shuffles.
 | 
						|
  if (Kind != SK_Reverse && Kind != SK_Alternate)
 | 
						|
    return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
 | 
						|
 | 
						|
  if (Kind == SK_Reverse) {
 | 
						|
    std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
 | 
						|
    unsigned Cost = 1;
 | 
						|
    if (LT.second.getSizeInBits() > 128)
 | 
						|
      Cost = 3; // Extract + insert + copy.
 | 
						|
 | 
						|
    // Multiple by the number of parts.
 | 
						|
    return Cost * LT.first;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Kind == SK_Alternate) {
 | 
						|
    // 64-bit packed float vectors (v2f32) are widened to type v4f32.
 | 
						|
    // 64-bit packed integer vectors (v2i32) are promoted to type v2i64.
 | 
						|
    std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
 | 
						|
 | 
						|
    // The backend knows how to generate a single VEX.256 version of
 | 
						|
    // instruction VPBLENDW if the target supports AVX2.
 | 
						|
    if (ST->hasAVX2() && LT.second == MVT::v16i16)
 | 
						|
      return LT.first;
 | 
						|
 | 
						|
    static const CostTblEntry<MVT::SimpleValueType> AVXAltShuffleTbl[] = {
 | 
						|
      {ISD::VECTOR_SHUFFLE, MVT::v4i64, 1},  // vblendpd
 | 
						|
      {ISD::VECTOR_SHUFFLE, MVT::v4f64, 1},  // vblendpd
 | 
						|
 | 
						|
      {ISD::VECTOR_SHUFFLE, MVT::v8i32, 1},  // vblendps
 | 
						|
      {ISD::VECTOR_SHUFFLE, MVT::v8f32, 1},  // vblendps
 | 
						|
 | 
						|
      // This shuffle is custom lowered into a sequence of:
 | 
						|
      //  2x  vextractf128 , 2x vpblendw , 1x vinsertf128
 | 
						|
      {ISD::VECTOR_SHUFFLE, MVT::v16i16, 5},
 | 
						|
 | 
						|
      // This shuffle is custom lowered into a long sequence of:
 | 
						|
      //  2x vextractf128 , 4x vpshufb , 2x vpor ,  1x vinsertf128
 | 
						|
      {ISD::VECTOR_SHUFFLE, MVT::v32i8, 9}
 | 
						|
    };
 | 
						|
 | 
						|
    if (ST->hasAVX()) {
 | 
						|
      int Idx = CostTableLookup(AVXAltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
 | 
						|
      if (Idx != -1)
 | 
						|
        return LT.first * AVXAltShuffleTbl[Idx].Cost;
 | 
						|
    }
 | 
						|
 | 
						|
    static const CostTblEntry<MVT::SimpleValueType> SSE41AltShuffleTbl[] = {
 | 
						|
      // These are lowered into movsd.
 | 
						|
      {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},
 | 
						|
      {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},
 | 
						|
 | 
						|
      // packed float vectors with four elements are lowered into BLENDI dag
 | 
						|
      // nodes. A v4i32/v4f32 BLENDI generates a single 'blendps'/'blendpd'.
 | 
						|
      {ISD::VECTOR_SHUFFLE, MVT::v4i32, 1},
 | 
						|
      {ISD::VECTOR_SHUFFLE, MVT::v4f32, 1},
 | 
						|
 | 
						|
      // This shuffle generates a single pshufw.
 | 
						|
      {ISD::VECTOR_SHUFFLE, MVT::v8i16, 1},
 | 
						|
 | 
						|
      // There is no instruction that matches a v16i8 alternate shuffle.
 | 
						|
      // The backend will expand it into the sequence 'pshufb + pshufb + or'.
 | 
						|
      {ISD::VECTOR_SHUFFLE, MVT::v16i8, 3}
 | 
						|
    };
 | 
						|
 | 
						|
    if (ST->hasSSE41()) {
 | 
						|
      int Idx = CostTableLookup(SSE41AltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
 | 
						|
      if (Idx != -1)
 | 
						|
        return LT.first * SSE41AltShuffleTbl[Idx].Cost;
 | 
						|
    }
 | 
						|
 | 
						|
    static const CostTblEntry<MVT::SimpleValueType> SSSE3AltShuffleTbl[] = {
 | 
						|
      {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},  // movsd
 | 
						|
      {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},  // movsd
 | 
						|
 | 
						|
      // SSE3 doesn't have 'blendps'. The following shuffles are expanded into
 | 
						|
      // the sequence 'shufps + pshufd'
 | 
						|
      {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2},
 | 
						|
      {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2},
 | 
						|
 | 
						|
      {ISD::VECTOR_SHUFFLE, MVT::v8i16, 3}, // pshufb + pshufb + or
 | 
						|
      {ISD::VECTOR_SHUFFLE, MVT::v16i8, 3}  // pshufb + pshufb + or
 | 
						|
    };
 | 
						|
 | 
						|
    if (ST->hasSSSE3()) {
 | 
						|
      int Idx = CostTableLookup(SSSE3AltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
 | 
						|
      if (Idx != -1)
 | 
						|
        return LT.first * SSSE3AltShuffleTbl[Idx].Cost;
 | 
						|
    }
 | 
						|
 | 
						|
    static const CostTblEntry<MVT::SimpleValueType> SSEAltShuffleTbl[] = {
 | 
						|
      {ISD::VECTOR_SHUFFLE, MVT::v2i64, 1},  // movsd
 | 
						|
      {ISD::VECTOR_SHUFFLE, MVT::v2f64, 1},  // movsd
 | 
						|
 | 
						|
      {ISD::VECTOR_SHUFFLE, MVT::v4i32, 2}, // shufps + pshufd
 | 
						|
      {ISD::VECTOR_SHUFFLE, MVT::v4f32, 2}, // shufps + pshufd
 | 
						|
 | 
						|
      // This is expanded into a long sequence of four extract + four insert.
 | 
						|
      {ISD::VECTOR_SHUFFLE, MVT::v8i16, 8}, // 4 x pextrw + 4 pinsrw.
 | 
						|
 | 
						|
      // 8 x (pinsrw + pextrw + and + movb + movzb + or)
 | 
						|
      {ISD::VECTOR_SHUFFLE, MVT::v16i8, 48}
 | 
						|
    };
 | 
						|
 | 
						|
    // Fall-back (SSE3 and SSE2).
 | 
						|
    int Idx = CostTableLookup(SSEAltShuffleTbl, ISD::VECTOR_SHUFFLE, LT.second);
 | 
						|
    if (Idx != -1)
 | 
						|
      return LT.first * SSEAltShuffleTbl[Idx].Cost;
 | 
						|
    return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
 | 
						|
  }
 | 
						|
 | 
						|
  return TargetTransformInfo::getShuffleCost(Kind, Tp, Index, SubTp);
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86TTI::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src) const {
 | 
						|
  int ISD = TLI->InstructionOpcodeToISD(Opcode);
 | 
						|
  assert(ISD && "Invalid opcode");
 | 
						|
 | 
						|
  std::pair<unsigned, MVT> LTSrc = TLI->getTypeLegalizationCost(Src);
 | 
						|
  std::pair<unsigned, MVT> LTDest = TLI->getTypeLegalizationCost(Dst);
 | 
						|
 | 
						|
  static const TypeConversionCostTblEntry<MVT::SimpleValueType>
 | 
						|
  SSE2ConvTbl[] = {
 | 
						|
    // These are somewhat magic numbers justified by looking at the output of
 | 
						|
    // Intel's IACA, running some kernels and making sure when we take
 | 
						|
    // legalization into account the throughput will be overestimated.
 | 
						|
    { ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
 | 
						|
    { ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
 | 
						|
    { ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
 | 
						|
    { ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
 | 
						|
    { ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 2*10 },
 | 
						|
    { ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4*10 },
 | 
						|
    { ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 8*10 },
 | 
						|
    { ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 16*10 },
 | 
						|
    // There are faster sequences for float conversions.
 | 
						|
    { ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
 | 
						|
    { ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 8 },
 | 
						|
    { ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
 | 
						|
    { ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
 | 
						|
    { ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 15 },
 | 
						|
    { ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 15 },
 | 
						|
    { ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 15 },
 | 
						|
    { ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 8 },
 | 
						|
  };
 | 
						|
 | 
						|
  if (ST->hasSSE2() && !ST->hasAVX()) {
 | 
						|
    int Idx =
 | 
						|
        ConvertCostTableLookup(SSE2ConvTbl, ISD, LTDest.second, LTSrc.second);
 | 
						|
    if (Idx != -1)
 | 
						|
      return LTSrc.first * SSE2ConvTbl[Idx].Cost;
 | 
						|
  }
 | 
						|
 | 
						|
  static const TypeConversionCostTblEntry<MVT::SimpleValueType>
 | 
						|
  AVX512ConversionTbl[] = {
 | 
						|
    { ISD::FP_EXTEND, MVT::v8f64,   MVT::v8f32,  1 },
 | 
						|
    { ISD::FP_EXTEND, MVT::v8f64,   MVT::v16f32, 3 },
 | 
						|
    { ISD::FP_ROUND,  MVT::v8f32,   MVT::v8f64,  1 },
 | 
						|
    { ISD::FP_ROUND,  MVT::v16f32,  MVT::v8f64,  3 },
 | 
						|
 | 
						|
    { ISD::TRUNCATE,  MVT::v16i8,   MVT::v16i32, 1 },
 | 
						|
    { ISD::TRUNCATE,  MVT::v16i16,  MVT::v16i32, 1 },
 | 
						|
    { ISD::TRUNCATE,  MVT::v8i16,   MVT::v8i64,  1 },
 | 
						|
    { ISD::TRUNCATE,  MVT::v8i32,   MVT::v8i64,  1 },
 | 
						|
    { ISD::TRUNCATE,  MVT::v16i32,  MVT::v8i64,  4 },
 | 
						|
 | 
						|
    // v16i1 -> v16i32 - load + broadcast
 | 
						|
    { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1,  2 },
 | 
						|
    { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1,  2 },
 | 
						|
 | 
						|
    { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
 | 
						|
    { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8,  1 },
 | 
						|
    { ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
 | 
						|
    { ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
 | 
						|
    { ISD::SIGN_EXTEND, MVT::v8i64,  MVT::v16i32, 3 },
 | 
						|
    { ISD::ZERO_EXTEND, MVT::v8i64,  MVT::v16i32, 3 },
 | 
						|
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i1,  3 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i8,  2 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i16, 2 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v16f32, MVT::v16i32, 1 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i1,   4 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i16,  2 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v8f64,  MVT::v8i32,  1 },
 | 
						|
  };
 | 
						|
 | 
						|
  if (ST->hasAVX512()) {
 | 
						|
    int Idx = ConvertCostTableLookup(AVX512ConversionTbl, ISD, LTDest.second,
 | 
						|
                                     LTSrc.second);
 | 
						|
    if (Idx != -1)
 | 
						|
      return AVX512ConversionTbl[Idx].Cost;
 | 
						|
  }
 | 
						|
  EVT SrcTy = TLI->getValueType(Src);
 | 
						|
  EVT DstTy = TLI->getValueType(Dst);
 | 
						|
 | 
						|
  // The function getSimpleVT only handles simple value types.
 | 
						|
  if (!SrcTy.isSimple() || !DstTy.isSimple())
 | 
						|
    return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
 | 
						|
 | 
						|
  static const TypeConversionCostTblEntry<MVT::SimpleValueType>
 | 
						|
  AVX2ConversionTbl[] = {
 | 
						|
    { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
 | 
						|
    { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8,  1 },
 | 
						|
    { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
 | 
						|
    { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,   3 },
 | 
						|
    { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,   3 },
 | 
						|
    { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,   3 },
 | 
						|
    { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
 | 
						|
    { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16,  1 },
 | 
						|
    { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
 | 
						|
    { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,   3 },
 | 
						|
    { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,   3 },
 | 
						|
    { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,   3 },
 | 
						|
    { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
 | 
						|
    { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16,  3 },
 | 
						|
    { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
 | 
						|
    { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32,  1 },
 | 
						|
 | 
						|
    { ISD::TRUNCATE,    MVT::v4i8,   MVT::v4i64,  2 },
 | 
						|
    { ISD::TRUNCATE,    MVT::v4i16,  MVT::v4i64,  2 },
 | 
						|
    { ISD::TRUNCATE,    MVT::v4i32,  MVT::v4i64,  2 },
 | 
						|
    { ISD::TRUNCATE,    MVT::v8i8,   MVT::v8i32,  2 },
 | 
						|
    { ISD::TRUNCATE,    MVT::v8i16,  MVT::v8i32,  2 },
 | 
						|
    { ISD::TRUNCATE,    MVT::v8i32,  MVT::v8i64,  4 },
 | 
						|
 | 
						|
    { ISD::FP_EXTEND,   MVT::v8f64,  MVT::v8f32,  3 },
 | 
						|
    { ISD::FP_ROUND,    MVT::v8f32,  MVT::v8f64,  3 },
 | 
						|
 | 
						|
    { ISD::UINT_TO_FP,  MVT::v8f32,  MVT::v8i32,  8 },
 | 
						|
  };
 | 
						|
 | 
						|
  static const TypeConversionCostTblEntry<MVT::SimpleValueType>
 | 
						|
  AVXConversionTbl[] = {
 | 
						|
    { ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
 | 
						|
    { ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 4 },
 | 
						|
    { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i1,  7 },
 | 
						|
    { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i1,  4 },
 | 
						|
    { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i8,  7 },
 | 
						|
    { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i8,  4 },
 | 
						|
    { ISD::SIGN_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
 | 
						|
    { ISD::ZERO_EXTEND, MVT::v8i32,  MVT::v8i16, 4 },
 | 
						|
    { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i1,  6 },
 | 
						|
    { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i1,  4 },
 | 
						|
    { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i8,  6 },
 | 
						|
    { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i8,  4 },
 | 
						|
    { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i16, 6 },
 | 
						|
    { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i16, 3 },
 | 
						|
    { ISD::SIGN_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
 | 
						|
    { ISD::ZERO_EXTEND, MVT::v4i64,  MVT::v4i32, 4 },
 | 
						|
 | 
						|
    { ISD::TRUNCATE,    MVT::v4i8,  MVT::v4i64,  4 },
 | 
						|
    { ISD::TRUNCATE,    MVT::v4i16, MVT::v4i64,  4 },
 | 
						|
    { ISD::TRUNCATE,    MVT::v4i32, MVT::v4i64,  4 },
 | 
						|
    { ISD::TRUNCATE,    MVT::v8i8,  MVT::v8i32,  4 },
 | 
						|
    { ISD::TRUNCATE,    MVT::v8i16, MVT::v8i32,  5 },
 | 
						|
    { ISD::TRUNCATE,    MVT::v16i8, MVT::v16i16, 4 },
 | 
						|
    { ISD::TRUNCATE,    MVT::v8i32, MVT::v8i64,  9 },
 | 
						|
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i1,  8 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i8,  8 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v8f32, MVT::v8i32, 1 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i1,  3 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i8,  3 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i16, 3 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v4f32, MVT::v4i32, 1 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i1,  3 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i8,  3 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i16, 3 },
 | 
						|
    { ISD::SINT_TO_FP,  MVT::v4f64, MVT::v4i32, 1 },
 | 
						|
 | 
						|
    { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i1,  6 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i8,  5 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i16, 5 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::v8f32, MVT::v8i32, 9 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i1,  7 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i8,  2 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i16, 2 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::v4f32, MVT::v4i32, 6 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i1,  7 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i8,  2 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i16, 2 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i32, 6 },
 | 
						|
    // The generic code to compute the scalar overhead is currently broken.
 | 
						|
    // Workaround this limitation by estimating the scalarization overhead
 | 
						|
    // here. We have roughly 10 instructions per scalar element.
 | 
						|
    // Multiply that by the vector width.
 | 
						|
    // FIXME: remove that when PR19268 is fixed.
 | 
						|
    { ISD::UINT_TO_FP,  MVT::v2f64, MVT::v2i64, 2*10 },
 | 
						|
    { ISD::UINT_TO_FP,  MVT::v4f64, MVT::v4i64, 4*10 },
 | 
						|
 | 
						|
    { ISD::FP_TO_SINT,  MVT::v8i8,  MVT::v8f32, 7 },
 | 
						|
    { ISD::FP_TO_SINT,  MVT::v4i8,  MVT::v4f32, 1 },
 | 
						|
    // This node is expanded into scalarized operations but BasicTTI is overly
 | 
						|
    // optimistic estimating its cost.  It computes 3 per element (one
 | 
						|
    // vector-extract, one scalar conversion and one vector-insert).  The
 | 
						|
    // problem is that the inserts form a read-modify-write chain so latency
 | 
						|
    // should be factored in too.  Inflating the cost per element by 1.
 | 
						|
    { ISD::FP_TO_UINT,  MVT::v8i32, MVT::v8f32, 8*4 },
 | 
						|
    { ISD::FP_TO_UINT,  MVT::v4i32, MVT::v4f64, 4*4 },
 | 
						|
  };
 | 
						|
 | 
						|
  if (ST->hasAVX2()) {
 | 
						|
    int Idx = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
 | 
						|
                                     DstTy.getSimpleVT(), SrcTy.getSimpleVT());
 | 
						|
    if (Idx != -1)
 | 
						|
      return AVX2ConversionTbl[Idx].Cost;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ST->hasAVX()) {
 | 
						|
    int Idx = ConvertCostTableLookup(AVXConversionTbl, ISD, DstTy.getSimpleVT(),
 | 
						|
                                     SrcTy.getSimpleVT());
 | 
						|
    if (Idx != -1)
 | 
						|
      return AVXConversionTbl[Idx].Cost;
 | 
						|
  }
 | 
						|
 | 
						|
  return TargetTransformInfo::getCastInstrCost(Opcode, Dst, Src);
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86TTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
 | 
						|
                                    Type *CondTy) const {
 | 
						|
  // Legalize the type.
 | 
						|
  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
 | 
						|
 | 
						|
  MVT MTy = LT.second;
 | 
						|
 | 
						|
  int ISD = TLI->InstructionOpcodeToISD(Opcode);
 | 
						|
  assert(ISD && "Invalid opcode");
 | 
						|
 | 
						|
  static const CostTblEntry<MVT::SimpleValueType> SSE42CostTbl[] = {
 | 
						|
    { ISD::SETCC,   MVT::v2f64,   1 },
 | 
						|
    { ISD::SETCC,   MVT::v4f32,   1 },
 | 
						|
    { ISD::SETCC,   MVT::v2i64,   1 },
 | 
						|
    { ISD::SETCC,   MVT::v4i32,   1 },
 | 
						|
    { ISD::SETCC,   MVT::v8i16,   1 },
 | 
						|
    { ISD::SETCC,   MVT::v16i8,   1 },
 | 
						|
  };
 | 
						|
 | 
						|
  static const CostTblEntry<MVT::SimpleValueType> AVX1CostTbl[] = {
 | 
						|
    { ISD::SETCC,   MVT::v4f64,   1 },
 | 
						|
    { ISD::SETCC,   MVT::v8f32,   1 },
 | 
						|
    // AVX1 does not support 8-wide integer compare.
 | 
						|
    { ISD::SETCC,   MVT::v4i64,   4 },
 | 
						|
    { ISD::SETCC,   MVT::v8i32,   4 },
 | 
						|
    { ISD::SETCC,   MVT::v16i16,  4 },
 | 
						|
    { ISD::SETCC,   MVT::v32i8,   4 },
 | 
						|
  };
 | 
						|
 | 
						|
  static const CostTblEntry<MVT::SimpleValueType> AVX2CostTbl[] = {
 | 
						|
    { ISD::SETCC,   MVT::v4i64,   1 },
 | 
						|
    { ISD::SETCC,   MVT::v8i32,   1 },
 | 
						|
    { ISD::SETCC,   MVT::v16i16,  1 },
 | 
						|
    { ISD::SETCC,   MVT::v32i8,   1 },
 | 
						|
  };
 | 
						|
 | 
						|
  static const CostTblEntry<MVT::SimpleValueType> AVX512CostTbl[] = {
 | 
						|
    { ISD::SETCC,   MVT::v8i64,   1 },
 | 
						|
    { ISD::SETCC,   MVT::v16i32,  1 },
 | 
						|
    { ISD::SETCC,   MVT::v8f64,   1 },
 | 
						|
    { ISD::SETCC,   MVT::v16f32,  1 },
 | 
						|
  };
 | 
						|
 | 
						|
  if (ST->hasAVX512()) {
 | 
						|
    int Idx = CostTableLookup(AVX512CostTbl, ISD, MTy);
 | 
						|
    if (Idx != -1)
 | 
						|
      return LT.first * AVX512CostTbl[Idx].Cost;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ST->hasAVX2()) {
 | 
						|
    int Idx = CostTableLookup(AVX2CostTbl, ISD, MTy);
 | 
						|
    if (Idx != -1)
 | 
						|
      return LT.first * AVX2CostTbl[Idx].Cost;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ST->hasAVX()) {
 | 
						|
    int Idx = CostTableLookup(AVX1CostTbl, ISD, MTy);
 | 
						|
    if (Idx != -1)
 | 
						|
      return LT.first * AVX1CostTbl[Idx].Cost;
 | 
						|
  }
 | 
						|
 | 
						|
  if (ST->hasSSE42()) {
 | 
						|
    int Idx = CostTableLookup(SSE42CostTbl, ISD, MTy);
 | 
						|
    if (Idx != -1)
 | 
						|
      return LT.first * SSE42CostTbl[Idx].Cost;
 | 
						|
  }
 | 
						|
 | 
						|
  return TargetTransformInfo::getCmpSelInstrCost(Opcode, ValTy, CondTy);
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86TTI::getVectorInstrCost(unsigned Opcode, Type *Val,
 | 
						|
                                    unsigned Index) const {
 | 
						|
  assert(Val->isVectorTy() && "This must be a vector type");
 | 
						|
 | 
						|
  if (Index != -1U) {
 | 
						|
    // Legalize the type.
 | 
						|
    std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Val);
 | 
						|
 | 
						|
    // This type is legalized to a scalar type.
 | 
						|
    if (!LT.second.isVector())
 | 
						|
      return 0;
 | 
						|
 | 
						|
    // The type may be split. Normalize the index to the new type.
 | 
						|
    unsigned Width = LT.second.getVectorNumElements();
 | 
						|
    Index = Index % Width;
 | 
						|
 | 
						|
    // Floating point scalars are already located in index #0.
 | 
						|
    if (Val->getScalarType()->isFloatingPointTy() && Index == 0)
 | 
						|
      return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  return TargetTransformInfo::getVectorInstrCost(Opcode, Val, Index);
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86TTI::getScalarizationOverhead(Type *Ty, bool Insert,
 | 
						|
                                            bool Extract) const {
 | 
						|
  assert (Ty->isVectorTy() && "Can only scalarize vectors");
 | 
						|
  unsigned Cost = 0;
 | 
						|
 | 
						|
  for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
 | 
						|
    if (Insert)
 | 
						|
      Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
 | 
						|
    if (Extract)
 | 
						|
      Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
 | 
						|
  }
 | 
						|
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86TTI::getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment,
 | 
						|
                                 unsigned AddressSpace) const {
 | 
						|
  // Handle non-power-of-two vectors such as <3 x float>
 | 
						|
  if (VectorType *VTy = dyn_cast<VectorType>(Src)) {
 | 
						|
    unsigned NumElem = VTy->getVectorNumElements();
 | 
						|
 | 
						|
    // Handle a few common cases:
 | 
						|
    // <3 x float>
 | 
						|
    if (NumElem == 3 && VTy->getScalarSizeInBits() == 32)
 | 
						|
      // Cost = 64 bit store + extract + 32 bit store.
 | 
						|
      return 3;
 | 
						|
 | 
						|
    // <3 x double>
 | 
						|
    if (NumElem == 3 && VTy->getScalarSizeInBits() == 64)
 | 
						|
      // Cost = 128 bit store + unpack + 64 bit store.
 | 
						|
      return 3;
 | 
						|
 | 
						|
    // Assume that all other non-power-of-two numbers are scalarized.
 | 
						|
    if (!isPowerOf2_32(NumElem)) {
 | 
						|
      unsigned Cost = TargetTransformInfo::getMemoryOpCost(Opcode,
 | 
						|
                                                           VTy->getScalarType(),
 | 
						|
                                                           Alignment,
 | 
						|
                                                           AddressSpace);
 | 
						|
      unsigned SplitCost = getScalarizationOverhead(Src,
 | 
						|
                                                    Opcode == Instruction::Load,
 | 
						|
                                                    Opcode==Instruction::Store);
 | 
						|
      return NumElem * Cost + SplitCost;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Legalize the type.
 | 
						|
  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
 | 
						|
  assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
 | 
						|
         "Invalid Opcode");
 | 
						|
 | 
						|
  // Each load/store unit costs 1.
 | 
						|
  unsigned Cost = LT.first * 1;
 | 
						|
 | 
						|
  // On Sandybridge 256bit load/stores are double pumped
 | 
						|
  // (but not on Haswell).
 | 
						|
  if (LT.second.getSizeInBits() > 128 && !ST->hasAVX2())
 | 
						|
    Cost*=2;
 | 
						|
 | 
						|
  return Cost;
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86TTI::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy,
 | 
						|
                                       unsigned Alignment,
 | 
						|
                                       unsigned AddressSpace) const {
 | 
						|
  VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy);
 | 
						|
  if (!SrcVTy)
 | 
						|
    // To calculate scalar take the regular cost, without mask
 | 
						|
    return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace);
 | 
						|
 | 
						|
  unsigned NumElem = SrcVTy->getVectorNumElements();
 | 
						|
  VectorType *MaskTy =
 | 
						|
    VectorType::get(Type::getInt8Ty(getGlobalContext()), NumElem);
 | 
						|
  if ((Opcode == Instruction::Load && !isLegalMaskedLoad(SrcVTy, 1)) ||
 | 
						|
      (Opcode == Instruction::Store && !isLegalMaskedStore(SrcVTy, 1)) ||
 | 
						|
      !isPowerOf2_32(NumElem)) {
 | 
						|
    // Scalarization
 | 
						|
    unsigned MaskSplitCost = getScalarizationOverhead(MaskTy, false, true);
 | 
						|
    unsigned ScalarCompareCost =
 | 
						|
      getCmpSelInstrCost(Instruction::ICmp,
 | 
						|
                         Type::getInt8Ty(getGlobalContext()), NULL);
 | 
						|
    unsigned BranchCost = getCFInstrCost(Instruction::Br);
 | 
						|
    unsigned MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
 | 
						|
 | 
						|
    unsigned ValueSplitCost =
 | 
						|
      getScalarizationOverhead(SrcVTy, Opcode == Instruction::Load,
 | 
						|
                               Opcode == Instruction::Store);
 | 
						|
    unsigned MemopCost = NumElem *
 | 
						|
      TargetTransformInfo::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
 | 
						|
                                           Alignment, AddressSpace);
 | 
						|
    return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
 | 
						|
  }
 | 
						|
 | 
						|
  // Legalize the type.
 | 
						|
  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(SrcVTy);
 | 
						|
  unsigned Cost = 0;
 | 
						|
  if (LT.second != TLI->getValueType(SrcVTy).getSimpleVT() &&
 | 
						|
      LT.second.getVectorNumElements() == NumElem)
 | 
						|
    // Promotion requires expand/truncate for data and a shuffle for mask.
 | 
						|
    Cost += getShuffleCost(TargetTransformInfo::SK_Alternate, SrcVTy, 0, 0) +
 | 
						|
      getShuffleCost(TargetTransformInfo::SK_Alternate, MaskTy, 0, 0);
 | 
						|
  
 | 
						|
  else if (LT.second.getVectorNumElements() > NumElem) {
 | 
						|
    VectorType *NewMaskTy = VectorType::get(MaskTy->getVectorElementType(),
 | 
						|
                                            LT.second.getVectorNumElements());
 | 
						|
    // Expanding requires fill mask with zeroes
 | 
						|
    Cost += getShuffleCost(TargetTransformInfo::SK_InsertSubvector,
 | 
						|
                           NewMaskTy, 0, MaskTy);
 | 
						|
  }
 | 
						|
  if (!ST->hasAVX512())
 | 
						|
    return Cost + LT.first*4; // Each maskmov costs 4
 | 
						|
 | 
						|
  // AVX-512 masked load/store is cheapper
 | 
						|
  return Cost+LT.first;
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86TTI::getAddressComputationCost(Type *Ty, bool IsComplex) const {
 | 
						|
  // Address computations in vectorized code with non-consecutive addresses will
 | 
						|
  // likely result in more instructions compared to scalar code where the
 | 
						|
  // computation can more often be merged into the index mode. The resulting
 | 
						|
  // extra micro-ops can significantly decrease throughput.
 | 
						|
  unsigned NumVectorInstToHideOverhead = 10;
 | 
						|
 | 
						|
  if (Ty->isVectorTy() && IsComplex)
 | 
						|
    return NumVectorInstToHideOverhead;
 | 
						|
 | 
						|
  return TargetTransformInfo::getAddressComputationCost(Ty, IsComplex);
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86TTI::getReductionCost(unsigned Opcode, Type *ValTy,
 | 
						|
                                  bool IsPairwise) const {
 | 
						|
 | 
						|
  std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
 | 
						|
 | 
						|
  MVT MTy = LT.second;
 | 
						|
 | 
						|
  int ISD = TLI->InstructionOpcodeToISD(Opcode);
 | 
						|
  assert(ISD && "Invalid opcode");
 | 
						|
 | 
						|
  // We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
 | 
						|
  // and make it as the cost.
 | 
						|
 | 
						|
  static const CostTblEntry<MVT::SimpleValueType> SSE42CostTblPairWise[] = {
 | 
						|
    { ISD::FADD,  MVT::v2f64,   2 },
 | 
						|
    { ISD::FADD,  MVT::v4f32,   4 },
 | 
						|
    { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
 | 
						|
    { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.5".
 | 
						|
    { ISD::ADD,   MVT::v8i16,   5 },
 | 
						|
  };
 | 
						|
 | 
						|
  static const CostTblEntry<MVT::SimpleValueType> AVX1CostTblPairWise[] = {
 | 
						|
    { ISD::FADD,  MVT::v4f32,   4 },
 | 
						|
    { ISD::FADD,  MVT::v4f64,   5 },
 | 
						|
    { ISD::FADD,  MVT::v8f32,   7 },
 | 
						|
    { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
 | 
						|
    { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.5".
 | 
						|
    { ISD::ADD,   MVT::v4i64,   5 },      // The data reported by the IACA tool is "4.8".
 | 
						|
    { ISD::ADD,   MVT::v8i16,   5 },
 | 
						|
    { ISD::ADD,   MVT::v8i32,   5 },
 | 
						|
  };
 | 
						|
 | 
						|
  static const CostTblEntry<MVT::SimpleValueType> SSE42CostTblNoPairWise[] = {
 | 
						|
    { ISD::FADD,  MVT::v2f64,   2 },
 | 
						|
    { ISD::FADD,  MVT::v4f32,   4 },
 | 
						|
    { ISD::ADD,   MVT::v2i64,   2 },      // The data reported by the IACA tool is "1.6".
 | 
						|
    { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "3.3".
 | 
						|
    { ISD::ADD,   MVT::v8i16,   4 },      // The data reported by the IACA tool is "4.3".
 | 
						|
  };
 | 
						|
 | 
						|
  static const CostTblEntry<MVT::SimpleValueType> AVX1CostTblNoPairWise[] = {
 | 
						|
    { ISD::FADD,  MVT::v4f32,   3 },
 | 
						|
    { ISD::FADD,  MVT::v4f64,   3 },
 | 
						|
    { ISD::FADD,  MVT::v8f32,   4 },
 | 
						|
    { ISD::ADD,   MVT::v2i64,   1 },      // The data reported by the IACA tool is "1.5".
 | 
						|
    { ISD::ADD,   MVT::v4i32,   3 },      // The data reported by the IACA tool is "2.8".
 | 
						|
    { ISD::ADD,   MVT::v4i64,   3 },
 | 
						|
    { ISD::ADD,   MVT::v8i16,   4 },
 | 
						|
    { ISD::ADD,   MVT::v8i32,   5 },
 | 
						|
  };
 | 
						|
 | 
						|
  if (IsPairwise) {
 | 
						|
    if (ST->hasAVX()) {
 | 
						|
      int Idx = CostTableLookup(AVX1CostTblPairWise, ISD, MTy);
 | 
						|
      if (Idx != -1)
 | 
						|
        return LT.first * AVX1CostTblPairWise[Idx].Cost;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ST->hasSSE42()) {
 | 
						|
      int Idx = CostTableLookup(SSE42CostTblPairWise, ISD, MTy);
 | 
						|
      if (Idx != -1)
 | 
						|
        return LT.first * SSE42CostTblPairWise[Idx].Cost;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    if (ST->hasAVX()) {
 | 
						|
      int Idx = CostTableLookup(AVX1CostTblNoPairWise, ISD, MTy);
 | 
						|
      if (Idx != -1)
 | 
						|
        return LT.first * AVX1CostTblNoPairWise[Idx].Cost;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ST->hasSSE42()) {
 | 
						|
      int Idx = CostTableLookup(SSE42CostTblNoPairWise, ISD, MTy);
 | 
						|
      if (Idx != -1)
 | 
						|
        return LT.first * SSE42CostTblNoPairWise[Idx].Cost;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return TargetTransformInfo::getReductionCost(Opcode, ValTy, IsPairwise);
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Calculate the cost of materializing a 64-bit value. This helper
 | 
						|
/// method might only calculate a fraction of a larger immediate. Therefore it
 | 
						|
/// is valid to return a cost of ZERO.
 | 
						|
unsigned X86TTI::getIntImmCost(int64_t Val) const {
 | 
						|
  if (Val == 0)
 | 
						|
    return TCC_Free;
 | 
						|
 | 
						|
  if (isInt<32>(Val))
 | 
						|
    return TCC_Basic;
 | 
						|
 | 
						|
  return 2 * TCC_Basic;
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86TTI::getIntImmCost(const APInt &Imm, Type *Ty) const {
 | 
						|
  assert(Ty->isIntegerTy());
 | 
						|
 | 
						|
  unsigned BitSize = Ty->getPrimitiveSizeInBits();
 | 
						|
  if (BitSize == 0)
 | 
						|
    return ~0U;
 | 
						|
 | 
						|
  // Never hoist constants larger than 128bit, because this might lead to
 | 
						|
  // incorrect code generation or assertions in codegen.
 | 
						|
  // Fixme: Create a cost model for types larger than i128 once the codegen
 | 
						|
  // issues have been fixed.
 | 
						|
  if (BitSize > 128)
 | 
						|
    return TCC_Free;
 | 
						|
 | 
						|
  if (Imm == 0)
 | 
						|
    return TCC_Free;
 | 
						|
 | 
						|
  // Sign-extend all constants to a multiple of 64-bit.
 | 
						|
  APInt ImmVal = Imm;
 | 
						|
  if (BitSize & 0x3f)
 | 
						|
    ImmVal = Imm.sext((BitSize + 63) & ~0x3fU);
 | 
						|
 | 
						|
  // Split the constant into 64-bit chunks and calculate the cost for each
 | 
						|
  // chunk.
 | 
						|
  unsigned Cost = 0;
 | 
						|
  for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
 | 
						|
    APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
 | 
						|
    int64_t Val = Tmp.getSExtValue();
 | 
						|
    Cost += getIntImmCost(Val);
 | 
						|
  }
 | 
						|
  // We need at least one instruction to materialze the constant.
 | 
						|
  return std::max(1U, Cost);
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86TTI::getIntImmCost(unsigned Opcode, unsigned Idx, const APInt &Imm,
 | 
						|
                               Type *Ty) const {
 | 
						|
  assert(Ty->isIntegerTy());
 | 
						|
 | 
						|
  unsigned BitSize = Ty->getPrimitiveSizeInBits();
 | 
						|
  // There is no cost model for constants with a bit size of 0. Return TCC_Free
 | 
						|
  // here, so that constant hoisting will ignore this constant.
 | 
						|
  if (BitSize == 0)
 | 
						|
    return TCC_Free;
 | 
						|
 | 
						|
  unsigned ImmIdx = ~0U;
 | 
						|
  switch (Opcode) {
 | 
						|
  default: return TCC_Free;
 | 
						|
  case Instruction::GetElementPtr:
 | 
						|
    // Always hoist the base address of a GetElementPtr. This prevents the
 | 
						|
    // creation of new constants for every base constant that gets constant
 | 
						|
    // folded with the offset.
 | 
						|
    if (Idx == 0)
 | 
						|
      return 2 * TCC_Basic;
 | 
						|
    return TCC_Free;
 | 
						|
  case Instruction::Store:
 | 
						|
    ImmIdx = 0;
 | 
						|
    break;
 | 
						|
  case Instruction::Add:
 | 
						|
  case Instruction::Sub:
 | 
						|
  case Instruction::Mul:
 | 
						|
  case Instruction::UDiv:
 | 
						|
  case Instruction::SDiv:
 | 
						|
  case Instruction::URem:
 | 
						|
  case Instruction::SRem:
 | 
						|
  case Instruction::And:
 | 
						|
  case Instruction::Or:
 | 
						|
  case Instruction::Xor:
 | 
						|
  case Instruction::ICmp:
 | 
						|
    ImmIdx = 1;
 | 
						|
    break;
 | 
						|
  // Always return TCC_Free for the shift value of a shift instruction.
 | 
						|
  case Instruction::Shl:
 | 
						|
  case Instruction::LShr:
 | 
						|
  case Instruction::AShr:
 | 
						|
    if (Idx == 1)
 | 
						|
      return TCC_Free;
 | 
						|
    break;
 | 
						|
  case Instruction::Trunc:
 | 
						|
  case Instruction::ZExt:
 | 
						|
  case Instruction::SExt:
 | 
						|
  case Instruction::IntToPtr:
 | 
						|
  case Instruction::PtrToInt:
 | 
						|
  case Instruction::BitCast:
 | 
						|
  case Instruction::PHI:
 | 
						|
  case Instruction::Call:
 | 
						|
  case Instruction::Select:
 | 
						|
  case Instruction::Ret:
 | 
						|
  case Instruction::Load:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  if (Idx == ImmIdx) {
 | 
						|
    unsigned NumConstants = (BitSize + 63) / 64;
 | 
						|
    unsigned Cost = X86TTI::getIntImmCost(Imm, Ty);
 | 
						|
    return (Cost <= NumConstants * TCC_Basic)
 | 
						|
      ? static_cast<unsigned>(TCC_Free)
 | 
						|
      : Cost;
 | 
						|
  }
 | 
						|
 | 
						|
  return X86TTI::getIntImmCost(Imm, Ty);
 | 
						|
}
 | 
						|
 | 
						|
unsigned X86TTI::getIntImmCost(Intrinsic::ID IID, unsigned Idx,
 | 
						|
                               const APInt &Imm, Type *Ty) const {
 | 
						|
  assert(Ty->isIntegerTy());
 | 
						|
 | 
						|
  unsigned BitSize = Ty->getPrimitiveSizeInBits();
 | 
						|
  // There is no cost model for constants with a bit size of 0. Return TCC_Free
 | 
						|
  // here, so that constant hoisting will ignore this constant.
 | 
						|
  if (BitSize == 0)
 | 
						|
    return TCC_Free;
 | 
						|
 | 
						|
  switch (IID) {
 | 
						|
  default: return TCC_Free;
 | 
						|
  case Intrinsic::sadd_with_overflow:
 | 
						|
  case Intrinsic::uadd_with_overflow:
 | 
						|
  case Intrinsic::ssub_with_overflow:
 | 
						|
  case Intrinsic::usub_with_overflow:
 | 
						|
  case Intrinsic::smul_with_overflow:
 | 
						|
  case Intrinsic::umul_with_overflow:
 | 
						|
    if ((Idx == 1) && Imm.getBitWidth() <= 64 && isInt<32>(Imm.getSExtValue()))
 | 
						|
      return TCC_Free;
 | 
						|
    break;
 | 
						|
  case Intrinsic::experimental_stackmap:
 | 
						|
    if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
 | 
						|
      return TCC_Free;
 | 
						|
    break;
 | 
						|
  case Intrinsic::experimental_patchpoint_void:
 | 
						|
  case Intrinsic::experimental_patchpoint_i64:
 | 
						|
    if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
 | 
						|
      return TCC_Free;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  return X86TTI::getIntImmCost(Imm, Ty);
 | 
						|
}
 | 
						|
 | 
						|
bool X86TTI::isLegalMaskedLoad(Type *DataTy, int Consecutive) const {
 | 
						|
  int DataWidth = DataTy->getPrimitiveSizeInBits();
 | 
						|
  
 | 
						|
  // Todo: AVX512 allows gather/scatter, works with strided and random as well
 | 
						|
  if ((DataWidth < 32) || (Consecutive == 0))
 | 
						|
    return false;
 | 
						|
  if (ST->hasAVX512() || ST->hasAVX2()) 
 | 
						|
    return true;
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool X86TTI::isLegalMaskedStore(Type *DataType, int Consecutive) const {
 | 
						|
  return isLegalMaskedLoad(DataType, Consecutive);
 | 
						|
}
 | 
						|
 |