mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-10 18:34:09 +00:00
3e16b022be
We've been performing the wrong operation on ARM for "atomicrmw nand" for years, since "a NAND b" is "~(a & b)" rather than ARM's very tempting "a & ~b". This bled over into the generic expansion pass. So I assume no-one has ever actually tried to do an atomic nand in the real world. Oh well. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@212443 91177308-0d34-0410-b5e6-96231b3b80d8
381 lines
14 KiB
C++
381 lines
14 KiB
C++
//===-- AtomicExpandLoadLinkedPass.cpp - Expand atomic instructions -------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains a pass (at IR level) to replace atomic instructions with
|
|
// appropriate (intrinsic-based) ldrex/strex loops.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetSubtargetInfo.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "arm-atomic-expand"
|
|
|
|
namespace {
|
|
class AtomicExpandLoadLinked : public FunctionPass {
|
|
const TargetMachine *TM;
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid
|
|
explicit AtomicExpandLoadLinked(const TargetMachine *TM = nullptr)
|
|
: FunctionPass(ID), TM(TM) {
|
|
initializeAtomicExpandLoadLinkedPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
bool expandAtomicInsts(Function &F);
|
|
|
|
bool expandAtomicLoad(LoadInst *LI);
|
|
bool expandAtomicStore(StoreInst *LI);
|
|
bool expandAtomicRMW(AtomicRMWInst *AI);
|
|
bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI);
|
|
|
|
AtomicOrdering insertLeadingFence(IRBuilder<> &Builder, AtomicOrdering Ord);
|
|
void insertTrailingFence(IRBuilder<> &Builder, AtomicOrdering Ord);
|
|
};
|
|
}
|
|
|
|
char AtomicExpandLoadLinked::ID = 0;
|
|
char &llvm::AtomicExpandLoadLinkedID = AtomicExpandLoadLinked::ID;
|
|
INITIALIZE_TM_PASS(AtomicExpandLoadLinked, "atomic-ll-sc",
|
|
"Expand Atomic calls in terms of load-linked & store-conditional",
|
|
false, false)
|
|
|
|
FunctionPass *llvm::createAtomicExpandLoadLinkedPass(const TargetMachine *TM) {
|
|
return new AtomicExpandLoadLinked(TM);
|
|
}
|
|
|
|
bool AtomicExpandLoadLinked::runOnFunction(Function &F) {
|
|
if (!TM || !TM->getSubtargetImpl()->enableAtomicExpandLoadLinked())
|
|
return false;
|
|
|
|
SmallVector<Instruction *, 1> AtomicInsts;
|
|
|
|
// Changing control-flow while iterating through it is a bad idea, so gather a
|
|
// list of all atomic instructions before we start.
|
|
for (BasicBlock &BB : F)
|
|
for (Instruction &Inst : BB) {
|
|
if (isa<AtomicRMWInst>(&Inst) || isa<AtomicCmpXchgInst>(&Inst) ||
|
|
(isa<LoadInst>(&Inst) && cast<LoadInst>(&Inst)->isAtomic()) ||
|
|
(isa<StoreInst>(&Inst) && cast<StoreInst>(&Inst)->isAtomic()))
|
|
AtomicInsts.push_back(&Inst);
|
|
}
|
|
|
|
bool MadeChange = false;
|
|
for (Instruction *Inst : AtomicInsts) {
|
|
if (!TM->getTargetLowering()->shouldExpandAtomicInIR(Inst))
|
|
continue;
|
|
|
|
if (AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(Inst))
|
|
MadeChange |= expandAtomicRMW(AI);
|
|
else if (AtomicCmpXchgInst *CI = dyn_cast<AtomicCmpXchgInst>(Inst))
|
|
MadeChange |= expandAtomicCmpXchg(CI);
|
|
else if (LoadInst *LI = dyn_cast<LoadInst>(Inst))
|
|
MadeChange |= expandAtomicLoad(LI);
|
|
else if (StoreInst *SI = dyn_cast<StoreInst>(Inst))
|
|
MadeChange |= expandAtomicStore(SI);
|
|
else
|
|
llvm_unreachable("Unknown atomic instruction");
|
|
}
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
bool AtomicExpandLoadLinked::expandAtomicLoad(LoadInst *LI) {
|
|
// Load instructions don't actually need a leading fence, even in the
|
|
// SequentiallyConsistent case.
|
|
AtomicOrdering MemOpOrder =
|
|
TM->getTargetLowering()->getInsertFencesForAtomic() ? Monotonic
|
|
: LI->getOrdering();
|
|
|
|
// The only 64-bit load guaranteed to be single-copy atomic by the ARM ARM is
|
|
// an ldrexd (A3.5.3).
|
|
IRBuilder<> Builder(LI);
|
|
Value *Val = TM->getTargetLowering()->emitLoadLinked(
|
|
Builder, LI->getPointerOperand(), MemOpOrder);
|
|
|
|
insertTrailingFence(Builder, LI->getOrdering());
|
|
|
|
LI->replaceAllUsesWith(Val);
|
|
LI->eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
|
|
bool AtomicExpandLoadLinked::expandAtomicStore(StoreInst *SI) {
|
|
// The only atomic 64-bit store on ARM is an strexd that succeeds, which means
|
|
// we need a loop and the entire instruction is essentially an "atomicrmw
|
|
// xchg" that ignores the value loaded.
|
|
IRBuilder<> Builder(SI);
|
|
AtomicRMWInst *AI =
|
|
Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, SI->getPointerOperand(),
|
|
SI->getValueOperand(), SI->getOrdering());
|
|
SI->eraseFromParent();
|
|
|
|
// Now we have an appropriate swap instruction, lower it as usual.
|
|
return expandAtomicRMW(AI);
|
|
}
|
|
|
|
bool AtomicExpandLoadLinked::expandAtomicRMW(AtomicRMWInst *AI) {
|
|
AtomicOrdering Order = AI->getOrdering();
|
|
Value *Addr = AI->getPointerOperand();
|
|
BasicBlock *BB = AI->getParent();
|
|
Function *F = BB->getParent();
|
|
LLVMContext &Ctx = F->getContext();
|
|
|
|
// Given: atomicrmw some_op iN* %addr, iN %incr ordering
|
|
//
|
|
// The standard expansion we produce is:
|
|
// [...]
|
|
// fence?
|
|
// atomicrmw.start:
|
|
// %loaded = @load.linked(%addr)
|
|
// %new = some_op iN %loaded, %incr
|
|
// %stored = @store_conditional(%new, %addr)
|
|
// %try_again = icmp i32 ne %stored, 0
|
|
// br i1 %try_again, label %loop, label %atomicrmw.end
|
|
// atomicrmw.end:
|
|
// fence?
|
|
// [...]
|
|
BasicBlock *ExitBB = BB->splitBasicBlock(AI, "atomicrmw.end");
|
|
BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
|
|
|
|
// This grabs the DebugLoc from AI.
|
|
IRBuilder<> Builder(AI);
|
|
|
|
// The split call above "helpfully" added a branch at the end of BB (to the
|
|
// wrong place), but we might want a fence too. It's easiest to just remove
|
|
// the branch entirely.
|
|
std::prev(BB->end())->eraseFromParent();
|
|
Builder.SetInsertPoint(BB);
|
|
AtomicOrdering MemOpOrder = insertLeadingFence(Builder, Order);
|
|
Builder.CreateBr(LoopBB);
|
|
|
|
// Start the main loop block now that we've taken care of the preliminaries.
|
|
Builder.SetInsertPoint(LoopBB);
|
|
Value *Loaded =
|
|
TM->getTargetLowering()->emitLoadLinked(Builder, Addr, MemOpOrder);
|
|
|
|
Value *NewVal;
|
|
switch (AI->getOperation()) {
|
|
case AtomicRMWInst::Xchg:
|
|
NewVal = AI->getValOperand();
|
|
break;
|
|
case AtomicRMWInst::Add:
|
|
NewVal = Builder.CreateAdd(Loaded, AI->getValOperand(), "new");
|
|
break;
|
|
case AtomicRMWInst::Sub:
|
|
NewVal = Builder.CreateSub(Loaded, AI->getValOperand(), "new");
|
|
break;
|
|
case AtomicRMWInst::And:
|
|
NewVal = Builder.CreateAnd(Loaded, AI->getValOperand(), "new");
|
|
break;
|
|
case AtomicRMWInst::Nand:
|
|
NewVal = Builder.CreateNot(Builder.CreateAnd(Loaded, AI->getValOperand()),
|
|
"new");
|
|
break;
|
|
case AtomicRMWInst::Or:
|
|
NewVal = Builder.CreateOr(Loaded, AI->getValOperand(), "new");
|
|
break;
|
|
case AtomicRMWInst::Xor:
|
|
NewVal = Builder.CreateXor(Loaded, AI->getValOperand(), "new");
|
|
break;
|
|
case AtomicRMWInst::Max:
|
|
NewVal = Builder.CreateICmpSGT(Loaded, AI->getValOperand());
|
|
NewVal = Builder.CreateSelect(NewVal, Loaded, AI->getValOperand(), "new");
|
|
break;
|
|
case AtomicRMWInst::Min:
|
|
NewVal = Builder.CreateICmpSLE(Loaded, AI->getValOperand());
|
|
NewVal = Builder.CreateSelect(NewVal, Loaded, AI->getValOperand(), "new");
|
|
break;
|
|
case AtomicRMWInst::UMax:
|
|
NewVal = Builder.CreateICmpUGT(Loaded, AI->getValOperand());
|
|
NewVal = Builder.CreateSelect(NewVal, Loaded, AI->getValOperand(), "new");
|
|
break;
|
|
case AtomicRMWInst::UMin:
|
|
NewVal = Builder.CreateICmpULE(Loaded, AI->getValOperand());
|
|
NewVal = Builder.CreateSelect(NewVal, Loaded, AI->getValOperand(), "new");
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unknown atomic op");
|
|
}
|
|
|
|
Value *StoreSuccess = TM->getTargetLowering()->emitStoreConditional(
|
|
Builder, NewVal, Addr, MemOpOrder);
|
|
Value *TryAgain = Builder.CreateICmpNE(
|
|
StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain");
|
|
Builder.CreateCondBr(TryAgain, LoopBB, ExitBB);
|
|
|
|
Builder.SetInsertPoint(ExitBB, ExitBB->begin());
|
|
insertTrailingFence(Builder, Order);
|
|
|
|
AI->replaceAllUsesWith(Loaded);
|
|
AI->eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
|
|
bool AtomicExpandLoadLinked::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
|
|
AtomicOrdering SuccessOrder = CI->getSuccessOrdering();
|
|
AtomicOrdering FailureOrder = CI->getFailureOrdering();
|
|
Value *Addr = CI->getPointerOperand();
|
|
BasicBlock *BB = CI->getParent();
|
|
Function *F = BB->getParent();
|
|
LLVMContext &Ctx = F->getContext();
|
|
|
|
// Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord
|
|
//
|
|
// The full expansion we produce is:
|
|
// [...]
|
|
// fence?
|
|
// cmpxchg.start:
|
|
// %loaded = @load.linked(%addr)
|
|
// %should_store = icmp eq %loaded, %desired
|
|
// br i1 %should_store, label %cmpxchg.trystore,
|
|
// label %cmpxchg.failure
|
|
// cmpxchg.trystore:
|
|
// %stored = @store_conditional(%new, %addr)
|
|
// %success = icmp eq i32 %stored, 0
|
|
// br i1 %success, label %cmpxchg.success, label %loop/%cmpxchg.failure
|
|
// cmpxchg.success:
|
|
// fence?
|
|
// br label %cmpxchg.end
|
|
// cmpxchg.failure:
|
|
// fence?
|
|
// br label %cmpxchg.end
|
|
// cmpxchg.end:
|
|
// %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure]
|
|
// %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0
|
|
// %res = insertvalue { iN, i1 } %restmp, i1 %success, 1
|
|
// [...]
|
|
BasicBlock *ExitBB = BB->splitBasicBlock(CI, "cmpxchg.end");
|
|
auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB);
|
|
auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, FailureBB);
|
|
auto TryStoreBB = BasicBlock::Create(Ctx, "cmpxchg.trystore", F, SuccessBB);
|
|
auto LoopBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, TryStoreBB);
|
|
|
|
// This grabs the DebugLoc from CI
|
|
IRBuilder<> Builder(CI);
|
|
|
|
// The split call above "helpfully" added a branch at the end of BB (to the
|
|
// wrong place), but we might want a fence too. It's easiest to just remove
|
|
// the branch entirely.
|
|
std::prev(BB->end())->eraseFromParent();
|
|
Builder.SetInsertPoint(BB);
|
|
AtomicOrdering MemOpOrder = insertLeadingFence(Builder, SuccessOrder);
|
|
Builder.CreateBr(LoopBB);
|
|
|
|
// Start the main loop block now that we've taken care of the preliminaries.
|
|
Builder.SetInsertPoint(LoopBB);
|
|
Value *Loaded =
|
|
TM->getTargetLowering()->emitLoadLinked(Builder, Addr, MemOpOrder);
|
|
Value *ShouldStore =
|
|
Builder.CreateICmpEQ(Loaded, CI->getCompareOperand(), "should_store");
|
|
|
|
// If the the cmpxchg doesn't actually need any ordering when it fails, we can
|
|
// jump straight past that fence instruction (if it exists).
|
|
Builder.CreateCondBr(ShouldStore, TryStoreBB, FailureBB);
|
|
|
|
Builder.SetInsertPoint(TryStoreBB);
|
|
Value *StoreSuccess = TM->getTargetLowering()->emitStoreConditional(
|
|
Builder, CI->getNewValOperand(), Addr, MemOpOrder);
|
|
StoreSuccess = Builder.CreateICmpEQ(
|
|
StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success");
|
|
Builder.CreateCondBr(StoreSuccess, SuccessBB,
|
|
CI->isWeak() ? FailureBB : LoopBB);
|
|
|
|
// Make sure later instructions don't get reordered with a fence if necessary.
|
|
Builder.SetInsertPoint(SuccessBB);
|
|
insertTrailingFence(Builder, SuccessOrder);
|
|
Builder.CreateBr(ExitBB);
|
|
|
|
Builder.SetInsertPoint(FailureBB);
|
|
insertTrailingFence(Builder, FailureOrder);
|
|
Builder.CreateBr(ExitBB);
|
|
|
|
// Finally, we have control-flow based knowledge of whether the cmpxchg
|
|
// succeeded or not. We expose this to later passes by converting any
|
|
// subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate PHI.
|
|
|
|
// Setup the builder so we can create any PHIs we need.
|
|
Builder.SetInsertPoint(ExitBB, ExitBB->begin());
|
|
PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2);
|
|
Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB);
|
|
Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB);
|
|
|
|
// Look for any users of the cmpxchg that are just comparing the loaded value
|
|
// against the desired one, and replace them with the CFG-derived version.
|
|
SmallVector<ExtractValueInst *, 2> PrunedInsts;
|
|
for (auto User : CI->users()) {
|
|
ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User);
|
|
if (!EV)
|
|
continue;
|
|
|
|
assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 &&
|
|
"weird extraction from { iN, i1 }");
|
|
|
|
if (EV->getIndices()[0] == 0)
|
|
EV->replaceAllUsesWith(Loaded);
|
|
else
|
|
EV->replaceAllUsesWith(Success);
|
|
|
|
PrunedInsts.push_back(EV);
|
|
}
|
|
|
|
// We can remove the instructions now we're no longer iterating through them.
|
|
for (auto EV : PrunedInsts)
|
|
EV->eraseFromParent();
|
|
|
|
if (!CI->use_empty()) {
|
|
// Some use of the full struct return that we don't understand has happened,
|
|
// so we've got to reconstruct it properly.
|
|
Value *Res;
|
|
Res = Builder.CreateInsertValue(UndefValue::get(CI->getType()), Loaded, 0);
|
|
Res = Builder.CreateInsertValue(Res, Success, 1);
|
|
|
|
CI->replaceAllUsesWith(Res);
|
|
}
|
|
|
|
CI->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
AtomicOrdering AtomicExpandLoadLinked::insertLeadingFence(IRBuilder<> &Builder,
|
|
AtomicOrdering Ord) {
|
|
if (!TM->getTargetLowering()->getInsertFencesForAtomic())
|
|
return Ord;
|
|
|
|
if (Ord == Release || Ord == AcquireRelease || Ord == SequentiallyConsistent)
|
|
Builder.CreateFence(Release);
|
|
|
|
// The exclusive operations don't need any barrier if we're adding separate
|
|
// fences.
|
|
return Monotonic;
|
|
}
|
|
|
|
void AtomicExpandLoadLinked::insertTrailingFence(IRBuilder<> &Builder,
|
|
AtomicOrdering Ord) {
|
|
if (!TM->getTargetLowering()->getInsertFencesForAtomic())
|
|
return;
|
|
|
|
if (Ord == Acquire || Ord == AcquireRelease)
|
|
Builder.CreateFence(Acquire);
|
|
else if (Ord == SequentiallyConsistent)
|
|
Builder.CreateFence(SequentiallyConsistent);
|
|
}
|