mirror of
				https://github.com/c64scene-ar/llvm-6502.git
				synced 2025-11-04 05:17:07 +00:00 
			
		
		
		
	I fixed the aforementioned problems that came up on some of the linux boxes. Major thanks to Nick Lewycky for his help debugging! rdar://14590914 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188122 91177308-0d34-0410-b5e6-96231b3b80d8
		
			
				
	
	
		
			3265 lines
		
	
	
		
			118 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			3265 lines
		
	
	
		
			118 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//===- ObjCARCOpts.cpp - ObjC ARC Optimization ----------------------------===//
 | 
						|
//
 | 
						|
//                     The LLVM Compiler Infrastructure
 | 
						|
//
 | 
						|
// This file is distributed under the University of Illinois Open Source
 | 
						|
// License. See LICENSE.TXT for details.
 | 
						|
//
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
/// \file
 | 
						|
/// This file defines ObjC ARC optimizations. ARC stands for Automatic
 | 
						|
/// Reference Counting and is a system for managing reference counts for objects
 | 
						|
/// in Objective C.
 | 
						|
///
 | 
						|
/// The optimizations performed include elimination of redundant, partially
 | 
						|
/// redundant, and inconsequential reference count operations, elimination of
 | 
						|
/// redundant weak pointer operations, and numerous minor simplifications.
 | 
						|
///
 | 
						|
/// WARNING: This file knows about certain library functions. It recognizes them
 | 
						|
/// by name, and hardwires knowledge of their semantics.
 | 
						|
///
 | 
						|
/// WARNING: This file knows about how certain Objective-C library functions are
 | 
						|
/// used. Naive LLVM IR transformations which would otherwise be
 | 
						|
/// behavior-preserving may break these assumptions.
 | 
						|
///
 | 
						|
//===----------------------------------------------------------------------===//
 | 
						|
 | 
						|
#define DEBUG_TYPE "objc-arc-opts"
 | 
						|
#include "ObjCARC.h"
 | 
						|
#include "ARCRuntimeEntryPoints.h"
 | 
						|
#include "DependencyAnalysis.h"
 | 
						|
#include "ObjCARCAliasAnalysis.h"
 | 
						|
#include "ProvenanceAnalysis.h"
 | 
						|
#include "llvm/ADT/DenseMap.h"
 | 
						|
#include "llvm/ADT/DenseSet.h"
 | 
						|
#include "llvm/ADT/STLExtras.h"
 | 
						|
#include "llvm/ADT/SmallPtrSet.h"
 | 
						|
#include "llvm/ADT/Statistic.h"
 | 
						|
#include "llvm/IR/IRBuilder.h"
 | 
						|
#include "llvm/IR/LLVMContext.h"
 | 
						|
#include "llvm/Support/CFG.h"
 | 
						|
#include "llvm/Support/Debug.h"
 | 
						|
#include "llvm/Support/raw_ostream.h"
 | 
						|
 | 
						|
using namespace llvm;
 | 
						|
using namespace llvm::objcarc;
 | 
						|
 | 
						|
/// \defgroup MiscUtils Miscellaneous utilities that are not ARC specific.
 | 
						|
/// @{
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// \brief An associative container with fast insertion-order (deterministic)
 | 
						|
  /// iteration over its elements. Plus the special blot operation.
 | 
						|
  template<class KeyT, class ValueT>
 | 
						|
  class MapVector {
 | 
						|
    /// Map keys to indices in Vector.
 | 
						|
    typedef DenseMap<KeyT, size_t> MapTy;
 | 
						|
    MapTy Map;
 | 
						|
 | 
						|
    typedef std::vector<std::pair<KeyT, ValueT> > VectorTy;
 | 
						|
    /// Keys and values.
 | 
						|
    VectorTy Vector;
 | 
						|
 | 
						|
  public:
 | 
						|
    typedef typename VectorTy::iterator iterator;
 | 
						|
    typedef typename VectorTy::const_iterator const_iterator;
 | 
						|
    iterator begin() { return Vector.begin(); }
 | 
						|
    iterator end() { return Vector.end(); }
 | 
						|
    const_iterator begin() const { return Vector.begin(); }
 | 
						|
    const_iterator end() const { return Vector.end(); }
 | 
						|
 | 
						|
#ifdef XDEBUG
 | 
						|
    ~MapVector() {
 | 
						|
      assert(Vector.size() >= Map.size()); // May differ due to blotting.
 | 
						|
      for (typename MapTy::const_iterator I = Map.begin(), E = Map.end();
 | 
						|
           I != E; ++I) {
 | 
						|
        assert(I->second < Vector.size());
 | 
						|
        assert(Vector[I->second].first == I->first);
 | 
						|
      }
 | 
						|
      for (typename VectorTy::const_iterator I = Vector.begin(),
 | 
						|
           E = Vector.end(); I != E; ++I)
 | 
						|
        assert(!I->first ||
 | 
						|
               (Map.count(I->first) &&
 | 
						|
                Map[I->first] == size_t(I - Vector.begin())));
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    ValueT &operator[](const KeyT &Arg) {
 | 
						|
      std::pair<typename MapTy::iterator, bool> Pair =
 | 
						|
        Map.insert(std::make_pair(Arg, size_t(0)));
 | 
						|
      if (Pair.second) {
 | 
						|
        size_t Num = Vector.size();
 | 
						|
        Pair.first->second = Num;
 | 
						|
        Vector.push_back(std::make_pair(Arg, ValueT()));
 | 
						|
        return Vector[Num].second;
 | 
						|
      }
 | 
						|
      return Vector[Pair.first->second].second;
 | 
						|
    }
 | 
						|
 | 
						|
    std::pair<iterator, bool>
 | 
						|
    insert(const std::pair<KeyT, ValueT> &InsertPair) {
 | 
						|
      std::pair<typename MapTy::iterator, bool> Pair =
 | 
						|
        Map.insert(std::make_pair(InsertPair.first, size_t(0)));
 | 
						|
      if (Pair.second) {
 | 
						|
        size_t Num = Vector.size();
 | 
						|
        Pair.first->second = Num;
 | 
						|
        Vector.push_back(InsertPair);
 | 
						|
        return std::make_pair(Vector.begin() + Num, true);
 | 
						|
      }
 | 
						|
      return std::make_pair(Vector.begin() + Pair.first->second, false);
 | 
						|
    }
 | 
						|
 | 
						|
    iterator find(const KeyT &Key) {
 | 
						|
      typename MapTy::iterator It = Map.find(Key);
 | 
						|
      if (It == Map.end()) return Vector.end();
 | 
						|
      return Vector.begin() + It->second;
 | 
						|
    }
 | 
						|
 | 
						|
    const_iterator find(const KeyT &Key) const {
 | 
						|
      typename MapTy::const_iterator It = Map.find(Key);
 | 
						|
      if (It == Map.end()) return Vector.end();
 | 
						|
      return Vector.begin() + It->second;
 | 
						|
    }
 | 
						|
 | 
						|
    /// This is similar to erase, but instead of removing the element from the
 | 
						|
    /// vector, it just zeros out the key in the vector. This leaves iterators
 | 
						|
    /// intact, but clients must be prepared for zeroed-out keys when iterating.
 | 
						|
    void blot(const KeyT &Key) {
 | 
						|
      typename MapTy::iterator It = Map.find(Key);
 | 
						|
      if (It == Map.end()) return;
 | 
						|
      Vector[It->second].first = KeyT();
 | 
						|
      Map.erase(It);
 | 
						|
    }
 | 
						|
 | 
						|
    void clear() {
 | 
						|
      Map.clear();
 | 
						|
      Vector.clear();
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
/// @}
 | 
						|
///
 | 
						|
/// \defgroup ARCUtilities Utility declarations/definitions specific to ARC.
 | 
						|
/// @{
 | 
						|
 | 
						|
/// \brief This is similar to StripPointerCastsAndObjCCalls but it stops as soon
 | 
						|
/// as it finds a value with multiple uses.
 | 
						|
static const Value *FindSingleUseIdentifiedObject(const Value *Arg) {
 | 
						|
  if (Arg->hasOneUse()) {
 | 
						|
    if (const BitCastInst *BC = dyn_cast<BitCastInst>(Arg))
 | 
						|
      return FindSingleUseIdentifiedObject(BC->getOperand(0));
 | 
						|
    if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Arg))
 | 
						|
      if (GEP->hasAllZeroIndices())
 | 
						|
        return FindSingleUseIdentifiedObject(GEP->getPointerOperand());
 | 
						|
    if (IsForwarding(GetBasicInstructionClass(Arg)))
 | 
						|
      return FindSingleUseIdentifiedObject(
 | 
						|
               cast<CallInst>(Arg)->getArgOperand(0));
 | 
						|
    if (!IsObjCIdentifiedObject(Arg))
 | 
						|
      return 0;
 | 
						|
    return Arg;
 | 
						|
  }
 | 
						|
 | 
						|
  // If we found an identifiable object but it has multiple uses, but they are
 | 
						|
  // trivial uses, we can still consider this to be a single-use value.
 | 
						|
  if (IsObjCIdentifiedObject(Arg)) {
 | 
						|
    for (Value::const_use_iterator UI = Arg->use_begin(), UE = Arg->use_end();
 | 
						|
         UI != UE; ++UI) {
 | 
						|
      const User *U = *UI;
 | 
						|
      if (!U->use_empty() || StripPointerCastsAndObjCCalls(U) != Arg)
 | 
						|
         return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    return Arg;
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
/// \brief Test whether the given retainable object pointer escapes.
 | 
						|
///
 | 
						|
/// This differs from regular escape analysis in that a use as an
 | 
						|
/// argument to a call is not considered an escape.
 | 
						|
///
 | 
						|
static bool DoesRetainableObjPtrEscape(const User *Ptr) {
 | 
						|
  DEBUG(dbgs() << "DoesRetainableObjPtrEscape: Target: " << *Ptr << "\n");
 | 
						|
 | 
						|
  // Walk the def-use chains.
 | 
						|
  SmallVector<const Value *, 4> Worklist;
 | 
						|
  Worklist.push_back(Ptr);
 | 
						|
  // If Ptr has any operands add them as well.
 | 
						|
  for (User::const_op_iterator I = Ptr->op_begin(), E = Ptr->op_end(); I != E;
 | 
						|
       ++I) {
 | 
						|
    Worklist.push_back(*I);
 | 
						|
  }
 | 
						|
 | 
						|
  // Ensure we do not visit any value twice.
 | 
						|
  SmallPtrSet<const Value *, 8> VisitedSet;
 | 
						|
 | 
						|
  do {
 | 
						|
    const Value *V = Worklist.pop_back_val();
 | 
						|
 | 
						|
    DEBUG(dbgs() << "Visiting: " << *V << "\n");
 | 
						|
 | 
						|
    for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
 | 
						|
         UI != UE; ++UI) {
 | 
						|
      const User *UUser = *UI;
 | 
						|
 | 
						|
      DEBUG(dbgs() << "User: " << *UUser << "\n");
 | 
						|
 | 
						|
      // Special - Use by a call (callee or argument) is not considered
 | 
						|
      // to be an escape.
 | 
						|
      switch (GetBasicInstructionClass(UUser)) {
 | 
						|
      case IC_StoreWeak:
 | 
						|
      case IC_InitWeak:
 | 
						|
      case IC_StoreStrong:
 | 
						|
      case IC_Autorelease:
 | 
						|
      case IC_AutoreleaseRV: {
 | 
						|
        DEBUG(dbgs() << "User copies pointer arguments. Pointer Escapes!\n");
 | 
						|
        // These special functions make copies of their pointer arguments.
 | 
						|
        return true;
 | 
						|
      }
 | 
						|
      case IC_IntrinsicUser:
 | 
						|
        // Use by the use intrinsic is not an escape.
 | 
						|
        continue;
 | 
						|
      case IC_User:
 | 
						|
      case IC_None:
 | 
						|
        // Use by an instruction which copies the value is an escape if the
 | 
						|
        // result is an escape.
 | 
						|
        if (isa<BitCastInst>(UUser) || isa<GetElementPtrInst>(UUser) ||
 | 
						|
            isa<PHINode>(UUser) || isa<SelectInst>(UUser)) {
 | 
						|
 | 
						|
          if (VisitedSet.insert(UUser)) {
 | 
						|
            DEBUG(dbgs() << "User copies value. Ptr escapes if result escapes."
 | 
						|
                  " Adding to list.\n");
 | 
						|
            Worklist.push_back(UUser);
 | 
						|
          } else {
 | 
						|
            DEBUG(dbgs() << "Already visited node.\n");
 | 
						|
          }
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
        // Use by a load is not an escape.
 | 
						|
        if (isa<LoadInst>(UUser))
 | 
						|
          continue;
 | 
						|
        // Use by a store is not an escape if the use is the address.
 | 
						|
        if (const StoreInst *SI = dyn_cast<StoreInst>(UUser))
 | 
						|
          if (V != SI->getValueOperand())
 | 
						|
            continue;
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        // Regular calls and other stuff are not considered escapes.
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      // Otherwise, conservatively assume an escape.
 | 
						|
      DEBUG(dbgs() << "Assuming ptr escapes.\n");
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  } while (!Worklist.empty());
 | 
						|
 | 
						|
  // No escapes found.
 | 
						|
  DEBUG(dbgs() << "Ptr does not escape.\n");
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// This is a wrapper around getUnderlyingObjCPtr along the lines of
 | 
						|
/// GetUnderlyingObjects except that it returns early when it sees the first
 | 
						|
/// alloca.
 | 
						|
static inline bool AreAnyUnderlyingObjectsAnAlloca(const Value *V) {
 | 
						|
  SmallPtrSet<const Value *, 4> Visited;
 | 
						|
  SmallVector<const Value *, 4> Worklist;
 | 
						|
  Worklist.push_back(V);
 | 
						|
  do {
 | 
						|
    const Value *P = Worklist.pop_back_val();
 | 
						|
    P = GetUnderlyingObjCPtr(P);
 | 
						|
 | 
						|
    if (isa<AllocaInst>(P))
 | 
						|
      return true;
 | 
						|
 | 
						|
    if (!Visited.insert(P))
 | 
						|
      continue;
 | 
						|
 | 
						|
    if (const SelectInst *SI = dyn_cast<const SelectInst>(P)) {
 | 
						|
      Worklist.push_back(SI->getTrueValue());
 | 
						|
      Worklist.push_back(SI->getFalseValue());
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    if (const PHINode *PN = dyn_cast<const PHINode>(P)) {
 | 
						|
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
 | 
						|
        Worklist.push_back(PN->getIncomingValue(i));
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
  } while (!Worklist.empty());
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/// @}
 | 
						|
///
 | 
						|
/// \defgroup ARCOpt ARC Optimization.
 | 
						|
/// @{
 | 
						|
 | 
						|
// TODO: On code like this:
 | 
						|
//
 | 
						|
// objc_retain(%x)
 | 
						|
// stuff_that_cannot_release()
 | 
						|
// objc_autorelease(%x)
 | 
						|
// stuff_that_cannot_release()
 | 
						|
// objc_retain(%x)
 | 
						|
// stuff_that_cannot_release()
 | 
						|
// objc_autorelease(%x)
 | 
						|
//
 | 
						|
// The second retain and autorelease can be deleted.
 | 
						|
 | 
						|
// TODO: It should be possible to delete
 | 
						|
// objc_autoreleasePoolPush and objc_autoreleasePoolPop
 | 
						|
// pairs if nothing is actually autoreleased between them. Also, autorelease
 | 
						|
// calls followed by objc_autoreleasePoolPop calls (perhaps in ObjC++ code
 | 
						|
// after inlining) can be turned into plain release calls.
 | 
						|
 | 
						|
// TODO: Critical-edge splitting. If the optimial insertion point is
 | 
						|
// a critical edge, the current algorithm has to fail, because it doesn't
 | 
						|
// know how to split edges. It should be possible to make the optimizer
 | 
						|
// think in terms of edges, rather than blocks, and then split critical
 | 
						|
// edges on demand.
 | 
						|
 | 
						|
// TODO: OptimizeSequences could generalized to be Interprocedural.
 | 
						|
 | 
						|
// TODO: Recognize that a bunch of other objc runtime calls have
 | 
						|
// non-escaping arguments and non-releasing arguments, and may be
 | 
						|
// non-autoreleasing.
 | 
						|
 | 
						|
// TODO: Sink autorelease calls as far as possible. Unfortunately we
 | 
						|
// usually can't sink them past other calls, which would be the main
 | 
						|
// case where it would be useful.
 | 
						|
 | 
						|
// TODO: The pointer returned from objc_loadWeakRetained is retained.
 | 
						|
 | 
						|
// TODO: Delete release+retain pairs (rare).
 | 
						|
 | 
						|
STATISTIC(NumNoops,       "Number of no-op objc calls eliminated");
 | 
						|
STATISTIC(NumPartialNoops, "Number of partially no-op objc calls eliminated");
 | 
						|
STATISTIC(NumAutoreleases,"Number of autoreleases converted to releases");
 | 
						|
STATISTIC(NumRets,        "Number of return value forwarding "
 | 
						|
                          "retain+autoreleases eliminated");
 | 
						|
STATISTIC(NumRRs,         "Number of retain+release paths eliminated");
 | 
						|
STATISTIC(NumPeeps,       "Number of calls peephole-optimized");
 | 
						|
#ifndef NDEBUG
 | 
						|
STATISTIC(NumRetainsBeforeOpt,
 | 
						|
          "Number of retains before optimization");
 | 
						|
STATISTIC(NumReleasesBeforeOpt,
 | 
						|
          "Number of releases before optimization");
 | 
						|
STATISTIC(NumRetainsAfterOpt,
 | 
						|
          "Number of retains after optimization");
 | 
						|
STATISTIC(NumReleasesAfterOpt,
 | 
						|
          "Number of releases after optimization");
 | 
						|
#endif
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// \enum Sequence
 | 
						|
  ///
 | 
						|
  /// \brief A sequence of states that a pointer may go through in which an
 | 
						|
  /// objc_retain and objc_release are actually needed.
 | 
						|
  enum Sequence {
 | 
						|
    S_None,
 | 
						|
    S_Retain,         ///< objc_retain(x).
 | 
						|
    S_CanRelease,     ///< foo(x) -- x could possibly see a ref count decrement.
 | 
						|
    S_Use,            ///< any use of x.
 | 
						|
    S_Stop,           ///< like S_Release, but code motion is stopped.
 | 
						|
    S_Release,        ///< objc_release(x).
 | 
						|
    S_MovableRelease  ///< objc_release(x), !clang.imprecise_release.
 | 
						|
  };
 | 
						|
 | 
						|
  raw_ostream &operator<<(raw_ostream &OS, const Sequence S)
 | 
						|
    LLVM_ATTRIBUTE_UNUSED;
 | 
						|
  raw_ostream &operator<<(raw_ostream &OS, const Sequence S) {
 | 
						|
    switch (S) {
 | 
						|
    case S_None:
 | 
						|
      return OS << "S_None";
 | 
						|
    case S_Retain:
 | 
						|
      return OS << "S_Retain";
 | 
						|
    case S_CanRelease:
 | 
						|
      return OS << "S_CanRelease";
 | 
						|
    case S_Use:
 | 
						|
      return OS << "S_Use";
 | 
						|
    case S_Release:
 | 
						|
      return OS << "S_Release";
 | 
						|
    case S_MovableRelease:
 | 
						|
      return OS << "S_MovableRelease";
 | 
						|
    case S_Stop:
 | 
						|
      return OS << "S_Stop";
 | 
						|
    }
 | 
						|
    llvm_unreachable("Unknown sequence type.");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static Sequence MergeSeqs(Sequence A, Sequence B, bool TopDown) {
 | 
						|
  // The easy cases.
 | 
						|
  if (A == B)
 | 
						|
    return A;
 | 
						|
  if (A == S_None || B == S_None)
 | 
						|
    return S_None;
 | 
						|
 | 
						|
  if (A > B) std::swap(A, B);
 | 
						|
  if (TopDown) {
 | 
						|
    // Choose the side which is further along in the sequence.
 | 
						|
    if ((A == S_Retain || A == S_CanRelease) &&
 | 
						|
        (B == S_CanRelease || B == S_Use))
 | 
						|
      return B;
 | 
						|
  } else {
 | 
						|
    // Choose the side which is further along in the sequence.
 | 
						|
    if ((A == S_Use || A == S_CanRelease) &&
 | 
						|
        (B == S_Use || B == S_Release || B == S_Stop || B == S_MovableRelease))
 | 
						|
      return A;
 | 
						|
    // If both sides are releases, choose the more conservative one.
 | 
						|
    if (A == S_Stop && (B == S_Release || B == S_MovableRelease))
 | 
						|
      return A;
 | 
						|
    if (A == S_Release && B == S_MovableRelease)
 | 
						|
      return A;
 | 
						|
  }
 | 
						|
 | 
						|
  return S_None;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// \brief Unidirectional information about either a
 | 
						|
  /// retain-decrement-use-release sequence or release-use-decrement-retain
 | 
						|
  /// reverse sequence.
 | 
						|
  struct RRInfo {
 | 
						|
    /// After an objc_retain, the reference count of the referenced
 | 
						|
    /// object is known to be positive. Similarly, before an objc_release, the
 | 
						|
    /// reference count of the referenced object is known to be positive. If
 | 
						|
    /// there are retain-release pairs in code regions where the retain count
 | 
						|
    /// is known to be positive, they can be eliminated, regardless of any side
 | 
						|
    /// effects between them.
 | 
						|
    ///
 | 
						|
    /// Also, a retain+release pair nested within another retain+release
 | 
						|
    /// pair all on the known same pointer value can be eliminated, regardless
 | 
						|
    /// of any intervening side effects.
 | 
						|
    ///
 | 
						|
    /// KnownSafe is true when either of these conditions is satisfied.
 | 
						|
    bool KnownSafe;
 | 
						|
 | 
						|
    /// True of the objc_release calls are all marked with the "tail" keyword.
 | 
						|
    bool IsTailCallRelease;
 | 
						|
 | 
						|
    /// If the Calls are objc_release calls and they all have a
 | 
						|
    /// clang.imprecise_release tag, this is the metadata tag.
 | 
						|
    MDNode *ReleaseMetadata;
 | 
						|
 | 
						|
    /// For a top-down sequence, the set of objc_retains or
 | 
						|
    /// objc_retainBlocks. For bottom-up, the set of objc_releases.
 | 
						|
    SmallPtrSet<Instruction *, 2> Calls;
 | 
						|
 | 
						|
    /// The set of optimal insert positions for moving calls in the opposite
 | 
						|
    /// sequence.
 | 
						|
    SmallPtrSet<Instruction *, 2> ReverseInsertPts;
 | 
						|
 | 
						|
    /// If this is true, we cannot perform code motion but can still remove
 | 
						|
    /// retain/release pairs.
 | 
						|
    bool CFGHazardAfflicted;
 | 
						|
 | 
						|
    RRInfo() :
 | 
						|
      KnownSafe(false), IsTailCallRelease(false), ReleaseMetadata(0),
 | 
						|
      CFGHazardAfflicted(false) {}
 | 
						|
 | 
						|
    void clear();
 | 
						|
 | 
						|
    /// Conservatively merge the two RRInfo. Returns true if a partial merge has
 | 
						|
    /// occured, false otherwise.
 | 
						|
    bool Merge(const RRInfo &Other);
 | 
						|
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
void RRInfo::clear() {
 | 
						|
  KnownSafe = false;
 | 
						|
  IsTailCallRelease = false;
 | 
						|
  ReleaseMetadata = 0;
 | 
						|
  Calls.clear();
 | 
						|
  ReverseInsertPts.clear();
 | 
						|
  CFGHazardAfflicted = false;
 | 
						|
}
 | 
						|
 | 
						|
bool RRInfo::Merge(const RRInfo &Other) {
 | 
						|
    // Conservatively merge the ReleaseMetadata information.
 | 
						|
    if (ReleaseMetadata != Other.ReleaseMetadata)
 | 
						|
      ReleaseMetadata = 0;
 | 
						|
 | 
						|
    // Conservatively merge the boolean state.
 | 
						|
    KnownSafe &= Other.KnownSafe;
 | 
						|
    IsTailCallRelease &= Other.IsTailCallRelease;
 | 
						|
    CFGHazardAfflicted |= Other.CFGHazardAfflicted;
 | 
						|
 | 
						|
    // Merge the call sets.
 | 
						|
    Calls.insert(Other.Calls.begin(), Other.Calls.end());
 | 
						|
 | 
						|
    // Merge the insert point sets. If there are any differences,
 | 
						|
    // that makes this a partial merge.
 | 
						|
    bool Partial = ReverseInsertPts.size() != Other.ReverseInsertPts.size();
 | 
						|
    for (SmallPtrSet<Instruction *, 2>::const_iterator
 | 
						|
         I = Other.ReverseInsertPts.begin(),
 | 
						|
         E = Other.ReverseInsertPts.end(); I != E; ++I)
 | 
						|
      Partial |= ReverseInsertPts.insert(*I);
 | 
						|
    return Partial;
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// \brief This class summarizes several per-pointer runtime properties which
 | 
						|
  /// are propogated through the flow graph.
 | 
						|
  class PtrState {
 | 
						|
    /// True if the reference count is known to be incremented.
 | 
						|
    bool KnownPositiveRefCount;
 | 
						|
 | 
						|
    /// True if we've seen an opportunity for partial RR elimination, such as
 | 
						|
    /// pushing calls into a CFG triangle or into one side of a CFG diamond.
 | 
						|
    bool Partial;
 | 
						|
 | 
						|
    /// The current position in the sequence.
 | 
						|
    Sequence Seq : 8;
 | 
						|
 | 
						|
    /// Unidirectional information about the current sequence.
 | 
						|
    RRInfo RRI;
 | 
						|
 | 
						|
  public:
 | 
						|
    PtrState() : KnownPositiveRefCount(false), Partial(false),
 | 
						|
                 Seq(S_None) {}
 | 
						|
 | 
						|
 | 
						|
    bool IsKnownSafe() const {
 | 
						|
      return RRI.KnownSafe;
 | 
						|
    }
 | 
						|
 | 
						|
    void SetKnownSafe(const bool NewValue) {
 | 
						|
      RRI.KnownSafe = NewValue;
 | 
						|
    }
 | 
						|
 | 
						|
    bool IsTailCallRelease() const {
 | 
						|
      return RRI.IsTailCallRelease;
 | 
						|
    }
 | 
						|
 | 
						|
    void SetTailCallRelease(const bool NewValue) {
 | 
						|
      RRI.IsTailCallRelease = NewValue;
 | 
						|
    }
 | 
						|
 | 
						|
    bool IsTrackingImpreciseReleases() const {
 | 
						|
      return RRI.ReleaseMetadata != 0;
 | 
						|
    }
 | 
						|
 | 
						|
    const MDNode *GetReleaseMetadata() const {
 | 
						|
      return RRI.ReleaseMetadata;
 | 
						|
    }
 | 
						|
 | 
						|
    void SetReleaseMetadata(MDNode *NewValue) {
 | 
						|
      RRI.ReleaseMetadata = NewValue;
 | 
						|
    }
 | 
						|
 | 
						|
    bool IsCFGHazardAfflicted() const {
 | 
						|
      return RRI.CFGHazardAfflicted;
 | 
						|
    }
 | 
						|
 | 
						|
    void SetCFGHazardAfflicted(const bool NewValue) {
 | 
						|
      RRI.CFGHazardAfflicted = NewValue;
 | 
						|
    }
 | 
						|
 | 
						|
    void SetKnownPositiveRefCount() {
 | 
						|
      DEBUG(dbgs() << "Setting Known Positive.\n");
 | 
						|
      KnownPositiveRefCount = true;
 | 
						|
    }
 | 
						|
 | 
						|
    void ClearKnownPositiveRefCount() {
 | 
						|
      DEBUG(dbgs() << "Clearing Known Positive.\n");
 | 
						|
      KnownPositiveRefCount = false;
 | 
						|
    }
 | 
						|
 | 
						|
    bool HasKnownPositiveRefCount() const {
 | 
						|
      return KnownPositiveRefCount;
 | 
						|
    }
 | 
						|
 | 
						|
    void SetSeq(Sequence NewSeq) {
 | 
						|
      DEBUG(dbgs() << "Old: " << Seq << "; New: " << NewSeq << "\n");
 | 
						|
      Seq = NewSeq;
 | 
						|
    }
 | 
						|
 | 
						|
    Sequence GetSeq() const {
 | 
						|
      return Seq;
 | 
						|
    }
 | 
						|
 | 
						|
    void ClearSequenceProgress() {
 | 
						|
      ResetSequenceProgress(S_None);
 | 
						|
    }
 | 
						|
 | 
						|
    void ResetSequenceProgress(Sequence NewSeq) {
 | 
						|
      DEBUG(dbgs() << "Resetting sequence progress.\n");
 | 
						|
      SetSeq(NewSeq);
 | 
						|
      Partial = false;
 | 
						|
      RRI.clear();
 | 
						|
    }
 | 
						|
 | 
						|
    void Merge(const PtrState &Other, bool TopDown);
 | 
						|
 | 
						|
    void InsertCall(Instruction *I) {
 | 
						|
      RRI.Calls.insert(I);
 | 
						|
    }
 | 
						|
 | 
						|
    void InsertReverseInsertPt(Instruction *I) {
 | 
						|
      RRI.ReverseInsertPts.insert(I);
 | 
						|
    }
 | 
						|
 | 
						|
    void ClearReverseInsertPts() {
 | 
						|
      RRI.ReverseInsertPts.clear();
 | 
						|
    }
 | 
						|
 | 
						|
    bool HasReverseInsertPts() const {
 | 
						|
      return !RRI.ReverseInsertPts.empty();
 | 
						|
    }
 | 
						|
 | 
						|
    const RRInfo &GetRRInfo() const {
 | 
						|
      return RRI;
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
void
 | 
						|
PtrState::Merge(const PtrState &Other, bool TopDown) {
 | 
						|
  Seq = MergeSeqs(Seq, Other.Seq, TopDown);
 | 
						|
  KnownPositiveRefCount &= Other.KnownPositiveRefCount;
 | 
						|
 | 
						|
  // If we're not in a sequence (anymore), drop all associated state.
 | 
						|
  if (Seq == S_None) {
 | 
						|
    Partial = false;
 | 
						|
    RRI.clear();
 | 
						|
  } else if (Partial || Other.Partial) {
 | 
						|
    // If we're doing a merge on a path that's previously seen a partial
 | 
						|
    // merge, conservatively drop the sequence, to avoid doing partial
 | 
						|
    // RR elimination. If the branch predicates for the two merge differ,
 | 
						|
    // mixing them is unsafe.
 | 
						|
    ClearSequenceProgress();
 | 
						|
  } else {
 | 
						|
    // Otherwise merge the other PtrState's RRInfo into our RRInfo. At this
 | 
						|
    // point, we know that currently we are not partial. Stash whether or not
 | 
						|
    // the merge operation caused us to undergo a partial merging of reverse
 | 
						|
    // insertion points.
 | 
						|
    Partial = RRI.Merge(Other.RRI);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// \brief Per-BasicBlock state.
 | 
						|
  class BBState {
 | 
						|
    /// The number of unique control paths from the entry which can reach this
 | 
						|
    /// block.
 | 
						|
    unsigned TopDownPathCount;
 | 
						|
 | 
						|
    /// The number of unique control paths to exits from this block.
 | 
						|
    unsigned BottomUpPathCount;
 | 
						|
 | 
						|
    /// A type for PerPtrTopDown and PerPtrBottomUp.
 | 
						|
    typedef MapVector<const Value *, PtrState> MapTy;
 | 
						|
 | 
						|
    /// The top-down traversal uses this to record information known about a
 | 
						|
    /// pointer at the bottom of each block.
 | 
						|
    MapTy PerPtrTopDown;
 | 
						|
 | 
						|
    /// The bottom-up traversal uses this to record information known about a
 | 
						|
    /// pointer at the top of each block.
 | 
						|
    MapTy PerPtrBottomUp;
 | 
						|
 | 
						|
    /// Effective predecessors of the current block ignoring ignorable edges and
 | 
						|
    /// ignored backedges.
 | 
						|
    SmallVector<BasicBlock *, 2> Preds;
 | 
						|
    /// Effective successors of the current block ignoring ignorable edges and
 | 
						|
    /// ignored backedges.
 | 
						|
    SmallVector<BasicBlock *, 2> Succs;
 | 
						|
 | 
						|
  public:
 | 
						|
    static const unsigned OverflowOccurredValue;
 | 
						|
 | 
						|
    BBState() : TopDownPathCount(0), BottomUpPathCount(0) { }
 | 
						|
 | 
						|
    typedef MapTy::iterator ptr_iterator;
 | 
						|
    typedef MapTy::const_iterator ptr_const_iterator;
 | 
						|
 | 
						|
    ptr_iterator top_down_ptr_begin() { return PerPtrTopDown.begin(); }
 | 
						|
    ptr_iterator top_down_ptr_end() { return PerPtrTopDown.end(); }
 | 
						|
    ptr_const_iterator top_down_ptr_begin() const {
 | 
						|
      return PerPtrTopDown.begin();
 | 
						|
    }
 | 
						|
    ptr_const_iterator top_down_ptr_end() const {
 | 
						|
      return PerPtrTopDown.end();
 | 
						|
    }
 | 
						|
 | 
						|
    ptr_iterator bottom_up_ptr_begin() { return PerPtrBottomUp.begin(); }
 | 
						|
    ptr_iterator bottom_up_ptr_end() { return PerPtrBottomUp.end(); }
 | 
						|
    ptr_const_iterator bottom_up_ptr_begin() const {
 | 
						|
      return PerPtrBottomUp.begin();
 | 
						|
    }
 | 
						|
    ptr_const_iterator bottom_up_ptr_end() const {
 | 
						|
      return PerPtrBottomUp.end();
 | 
						|
    }
 | 
						|
 | 
						|
    /// Mark this block as being an entry block, which has one path from the
 | 
						|
    /// entry by definition.
 | 
						|
    void SetAsEntry() { TopDownPathCount = 1; }
 | 
						|
 | 
						|
    /// Mark this block as being an exit block, which has one path to an exit by
 | 
						|
    /// definition.
 | 
						|
    void SetAsExit()  { BottomUpPathCount = 1; }
 | 
						|
 | 
						|
    /// Attempt to find the PtrState object describing the top down state for
 | 
						|
    /// pointer Arg. Return a new initialized PtrState describing the top down
 | 
						|
    /// state for Arg if we do not find one.
 | 
						|
    PtrState &getPtrTopDownState(const Value *Arg) {
 | 
						|
      return PerPtrTopDown[Arg];
 | 
						|
    }
 | 
						|
 | 
						|
    /// Attempt to find the PtrState object describing the bottom up state for
 | 
						|
    /// pointer Arg. Return a new initialized PtrState describing the bottom up
 | 
						|
    /// state for Arg if we do not find one.
 | 
						|
    PtrState &getPtrBottomUpState(const Value *Arg) {
 | 
						|
      return PerPtrBottomUp[Arg];
 | 
						|
    }
 | 
						|
 | 
						|
    /// Attempt to find the PtrState object describing the bottom up state for
 | 
						|
    /// pointer Arg.
 | 
						|
    ptr_iterator findPtrBottomUpState(const Value *Arg) {
 | 
						|
      return PerPtrBottomUp.find(Arg);
 | 
						|
    }
 | 
						|
 | 
						|
    void clearBottomUpPointers() {
 | 
						|
      PerPtrBottomUp.clear();
 | 
						|
    }
 | 
						|
 | 
						|
    void clearTopDownPointers() {
 | 
						|
      PerPtrTopDown.clear();
 | 
						|
    }
 | 
						|
 | 
						|
    void InitFromPred(const BBState &Other);
 | 
						|
    void InitFromSucc(const BBState &Other);
 | 
						|
    void MergePred(const BBState &Other);
 | 
						|
    void MergeSucc(const BBState &Other);
 | 
						|
 | 
						|
    /// Compute the number of possible unique paths from an entry to an exit
 | 
						|
    /// which pass through this block. This is only valid after both the
 | 
						|
    /// top-down and bottom-up traversals are complete.
 | 
						|
    ///
 | 
						|
    /// Returns true if overflow occured. Returns false if overflow did not
 | 
						|
    /// occur.
 | 
						|
    bool GetAllPathCountWithOverflow(unsigned &PathCount) const {
 | 
						|
      if (TopDownPathCount == OverflowOccurredValue ||
 | 
						|
          BottomUpPathCount == OverflowOccurredValue)
 | 
						|
        return true;
 | 
						|
      unsigned long long Product =
 | 
						|
        (unsigned long long)TopDownPathCount*BottomUpPathCount;
 | 
						|
      // Overflow occured if any of the upper bits of Product are set or if all
 | 
						|
      // the lower bits of Product are all set.
 | 
						|
      return (Product >> 32) ||
 | 
						|
             ((PathCount = Product) == OverflowOccurredValue);
 | 
						|
    }
 | 
						|
 | 
						|
    // Specialized CFG utilities.
 | 
						|
    typedef SmallVectorImpl<BasicBlock *>::const_iterator edge_iterator;
 | 
						|
    edge_iterator pred_begin() const { return Preds.begin(); }
 | 
						|
    edge_iterator pred_end() const { return Preds.end(); }
 | 
						|
    edge_iterator succ_begin() const { return Succs.begin(); }
 | 
						|
    edge_iterator succ_end() const { return Succs.end(); }
 | 
						|
 | 
						|
    void addSucc(BasicBlock *Succ) { Succs.push_back(Succ); }
 | 
						|
    void addPred(BasicBlock *Pred) { Preds.push_back(Pred); }
 | 
						|
 | 
						|
    bool isExit() const { return Succs.empty(); }
 | 
						|
  };
 | 
						|
 | 
						|
  const unsigned BBState::OverflowOccurredValue = 0xffffffff;
 | 
						|
}
 | 
						|
 | 
						|
void BBState::InitFromPred(const BBState &Other) {
 | 
						|
  PerPtrTopDown = Other.PerPtrTopDown;
 | 
						|
  TopDownPathCount = Other.TopDownPathCount;
 | 
						|
}
 | 
						|
 | 
						|
void BBState::InitFromSucc(const BBState &Other) {
 | 
						|
  PerPtrBottomUp = Other.PerPtrBottomUp;
 | 
						|
  BottomUpPathCount = Other.BottomUpPathCount;
 | 
						|
}
 | 
						|
 | 
						|
/// The top-down traversal uses this to merge information about predecessors to
 | 
						|
/// form the initial state for a new block.
 | 
						|
void BBState::MergePred(const BBState &Other) {
 | 
						|
  if (TopDownPathCount == OverflowOccurredValue)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Other.TopDownPathCount can be 0, in which case it is either dead or a
 | 
						|
  // loop backedge. Loop backedges are special.
 | 
						|
  TopDownPathCount += Other.TopDownPathCount;
 | 
						|
 | 
						|
  // In order to be consistent, we clear the top down pointers when by adding
 | 
						|
  // TopDownPathCount becomes OverflowOccurredValue even though "true" overflow
 | 
						|
  // has not occured.
 | 
						|
  if (TopDownPathCount == OverflowOccurredValue) {
 | 
						|
    clearTopDownPointers();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for overflow. If we have overflow, fall back to conservative
 | 
						|
  // behavior.
 | 
						|
  if (TopDownPathCount < Other.TopDownPathCount) {
 | 
						|
    TopDownPathCount = OverflowOccurredValue;
 | 
						|
    clearTopDownPointers();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // For each entry in the other set, if our set has an entry with the same key,
 | 
						|
  // merge the entries. Otherwise, copy the entry and merge it with an empty
 | 
						|
  // entry.
 | 
						|
  for (ptr_const_iterator MI = Other.top_down_ptr_begin(),
 | 
						|
       ME = Other.top_down_ptr_end(); MI != ME; ++MI) {
 | 
						|
    std::pair<ptr_iterator, bool> Pair = PerPtrTopDown.insert(*MI);
 | 
						|
    Pair.first->second.Merge(Pair.second ? PtrState() : MI->second,
 | 
						|
                             /*TopDown=*/true);
 | 
						|
  }
 | 
						|
 | 
						|
  // For each entry in our set, if the other set doesn't have an entry with the
 | 
						|
  // same key, force it to merge with an empty entry.
 | 
						|
  for (ptr_iterator MI = top_down_ptr_begin(),
 | 
						|
       ME = top_down_ptr_end(); MI != ME; ++MI)
 | 
						|
    if (Other.PerPtrTopDown.find(MI->first) == Other.PerPtrTopDown.end())
 | 
						|
      MI->second.Merge(PtrState(), /*TopDown=*/true);
 | 
						|
}
 | 
						|
 | 
						|
/// The bottom-up traversal uses this to merge information about successors to
 | 
						|
/// form the initial state for a new block.
 | 
						|
void BBState::MergeSucc(const BBState &Other) {
 | 
						|
  if (BottomUpPathCount == OverflowOccurredValue)
 | 
						|
    return;
 | 
						|
 | 
						|
  // Other.BottomUpPathCount can be 0, in which case it is either dead or a
 | 
						|
  // loop backedge. Loop backedges are special.
 | 
						|
  BottomUpPathCount += Other.BottomUpPathCount;
 | 
						|
 | 
						|
  // In order to be consistent, we clear the top down pointers when by adding
 | 
						|
  // BottomUpPathCount becomes OverflowOccurredValue even though "true" overflow
 | 
						|
  // has not occured.
 | 
						|
  if (BottomUpPathCount == OverflowOccurredValue) {
 | 
						|
    clearBottomUpPointers();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for overflow. If we have overflow, fall back to conservative
 | 
						|
  // behavior.
 | 
						|
  if (BottomUpPathCount < Other.BottomUpPathCount) {
 | 
						|
    BottomUpPathCount = OverflowOccurredValue;
 | 
						|
    clearBottomUpPointers();
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  // For each entry in the other set, if our set has an entry with the
 | 
						|
  // same key, merge the entries. Otherwise, copy the entry and merge
 | 
						|
  // it with an empty entry.
 | 
						|
  for (ptr_const_iterator MI = Other.bottom_up_ptr_begin(),
 | 
						|
       ME = Other.bottom_up_ptr_end(); MI != ME; ++MI) {
 | 
						|
    std::pair<ptr_iterator, bool> Pair = PerPtrBottomUp.insert(*MI);
 | 
						|
    Pair.first->second.Merge(Pair.second ? PtrState() : MI->second,
 | 
						|
                             /*TopDown=*/false);
 | 
						|
  }
 | 
						|
 | 
						|
  // For each entry in our set, if the other set doesn't have an entry
 | 
						|
  // with the same key, force it to merge with an empty entry.
 | 
						|
  for (ptr_iterator MI = bottom_up_ptr_begin(),
 | 
						|
       ME = bottom_up_ptr_end(); MI != ME; ++MI)
 | 
						|
    if (Other.PerPtrBottomUp.find(MI->first) == Other.PerPtrBottomUp.end())
 | 
						|
      MI->second.Merge(PtrState(), /*TopDown=*/false);
 | 
						|
}
 | 
						|
 | 
						|
// Only enable ARC Annotations if we are building a debug version of
 | 
						|
// libObjCARCOpts.
 | 
						|
#ifndef NDEBUG
 | 
						|
#define ARC_ANNOTATIONS
 | 
						|
#endif
 | 
						|
 | 
						|
// Define some macros along the lines of DEBUG and some helper functions to make
 | 
						|
// it cleaner to create annotations in the source code and to no-op when not
 | 
						|
// building in debug mode.
 | 
						|
#ifdef ARC_ANNOTATIONS
 | 
						|
 | 
						|
#include "llvm/Support/CommandLine.h"
 | 
						|
 | 
						|
/// Enable/disable ARC sequence annotations.
 | 
						|
static cl::opt<bool>
 | 
						|
EnableARCAnnotations("enable-objc-arc-annotations", cl::init(false),
 | 
						|
                     cl::desc("Enable emission of arc data flow analysis "
 | 
						|
                              "annotations"));
 | 
						|
static cl::opt<bool>
 | 
						|
DisableCheckForCFGHazards("disable-objc-arc-checkforcfghazards", cl::init(false),
 | 
						|
                          cl::desc("Disable check for cfg hazards when "
 | 
						|
                                   "annotating"));
 | 
						|
static cl::opt<std::string>
 | 
						|
ARCAnnotationTargetIdentifier("objc-arc-annotation-target-identifier",
 | 
						|
                              cl::init(""),
 | 
						|
                              cl::desc("filter out all data flow annotations "
 | 
						|
                                       "but those that apply to the given "
 | 
						|
                                       "target llvm identifier."));
 | 
						|
 | 
						|
/// This function appends a unique ARCAnnotationProvenanceSourceMDKind id to an
 | 
						|
/// instruction so that we can track backwards when post processing via the llvm
 | 
						|
/// arc annotation processor tool. If the function is an
 | 
						|
static MDString *AppendMDNodeToSourcePtr(unsigned NodeId,
 | 
						|
                                         Value *Ptr) {
 | 
						|
  MDString *Hash = 0;
 | 
						|
 | 
						|
  // If pointer is a result of an instruction and it does not have a source
 | 
						|
  // MDNode it, attach a new MDNode onto it. If pointer is a result of
 | 
						|
  // an instruction and does have a source MDNode attached to it, return a
 | 
						|
  // reference to said Node. Otherwise just return 0.
 | 
						|
  if (Instruction *Inst = dyn_cast<Instruction>(Ptr)) {
 | 
						|
    MDNode *Node;
 | 
						|
    if (!(Node = Inst->getMetadata(NodeId))) {
 | 
						|
      // We do not have any node. Generate and attatch the hash MDString to the
 | 
						|
      // instruction.
 | 
						|
 | 
						|
      // We just use an MDString to ensure that this metadata gets written out
 | 
						|
      // of line at the module level and to provide a very simple format
 | 
						|
      // encoding the information herein. Both of these makes it simpler to
 | 
						|
      // parse the annotations by a simple external program.
 | 
						|
      std::string Str;
 | 
						|
      raw_string_ostream os(Str);
 | 
						|
      os << "(" << Inst->getParent()->getParent()->getName() << ",%"
 | 
						|
         << Inst->getName() << ")";
 | 
						|
 | 
						|
      Hash = MDString::get(Inst->getContext(), os.str());
 | 
						|
      Inst->setMetadata(NodeId, MDNode::get(Inst->getContext(),Hash));
 | 
						|
    } else {
 | 
						|
      // We have a node. Grab its hash and return it.
 | 
						|
      assert(Node->getNumOperands() == 1 &&
 | 
						|
        "An ARCAnnotationProvenanceSourceMDKind can only have 1 operand.");
 | 
						|
      Hash = cast<MDString>(Node->getOperand(0));
 | 
						|
    }
 | 
						|
  } else if (Argument *Arg = dyn_cast<Argument>(Ptr)) {
 | 
						|
    std::string str;
 | 
						|
    raw_string_ostream os(str);
 | 
						|
    os << "(" << Arg->getParent()->getName() << ",%" << Arg->getName()
 | 
						|
       << ")";
 | 
						|
    Hash = MDString::get(Arg->getContext(), os.str());
 | 
						|
  }
 | 
						|
 | 
						|
  return Hash;
 | 
						|
}
 | 
						|
 | 
						|
static std::string SequenceToString(Sequence A) {
 | 
						|
  std::string str;
 | 
						|
  raw_string_ostream os(str);
 | 
						|
  os << A;
 | 
						|
  return os.str();
 | 
						|
}
 | 
						|
 | 
						|
/// Helper function to change a Sequence into a String object using our overload
 | 
						|
/// for raw_ostream so we only have printing code in one location.
 | 
						|
static MDString *SequenceToMDString(LLVMContext &Context,
 | 
						|
                                    Sequence A) {
 | 
						|
  return MDString::get(Context, SequenceToString(A));
 | 
						|
}
 | 
						|
 | 
						|
/// A simple function to generate a MDNode which describes the change in state
 | 
						|
/// for Value *Ptr caused by Instruction *Inst.
 | 
						|
static void AppendMDNodeToInstForPtr(unsigned NodeId,
 | 
						|
                                     Instruction *Inst,
 | 
						|
                                     Value *Ptr,
 | 
						|
                                     MDString *PtrSourceMDNodeID,
 | 
						|
                                     Sequence OldSeq,
 | 
						|
                                     Sequence NewSeq) {
 | 
						|
  MDNode *Node = 0;
 | 
						|
  Value *tmp[3] = {PtrSourceMDNodeID,
 | 
						|
                   SequenceToMDString(Inst->getContext(),
 | 
						|
                                      OldSeq),
 | 
						|
                   SequenceToMDString(Inst->getContext(),
 | 
						|
                                      NewSeq)};
 | 
						|
  Node = MDNode::get(Inst->getContext(),
 | 
						|
                     ArrayRef<Value*>(tmp, 3));
 | 
						|
 | 
						|
  Inst->setMetadata(NodeId, Node);
 | 
						|
}
 | 
						|
 | 
						|
/// Add to the beginning of the basic block llvm.ptr.annotations which show the
 | 
						|
/// state of a pointer at the entrance to a basic block.
 | 
						|
static void GenerateARCBBEntranceAnnotation(const char *Name, BasicBlock *BB,
 | 
						|
                                            Value *Ptr, Sequence Seq) {
 | 
						|
  // If we have a target identifier, make sure that we match it before
 | 
						|
  // continuing.
 | 
						|
  if(!ARCAnnotationTargetIdentifier.empty() &&
 | 
						|
     !Ptr->getName().equals(ARCAnnotationTargetIdentifier))
 | 
						|
    return;
 | 
						|
 | 
						|
  Module *M = BB->getParent()->getParent();
 | 
						|
  LLVMContext &C = M->getContext();
 | 
						|
  Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
 | 
						|
  Type *I8XX = PointerType::getUnqual(I8X);
 | 
						|
  Type *Params[] = {I8XX, I8XX};
 | 
						|
  FunctionType *FTy = FunctionType::get(Type::getVoidTy(C),
 | 
						|
                                        ArrayRef<Type*>(Params, 2),
 | 
						|
                                        /*isVarArg=*/false);
 | 
						|
  Constant *Callee = M->getOrInsertFunction(Name, FTy);
 | 
						|
 | 
						|
  IRBuilder<> Builder(BB, BB->getFirstInsertionPt());
 | 
						|
 | 
						|
  Value *PtrName;
 | 
						|
  StringRef Tmp = Ptr->getName();
 | 
						|
  if (0 == (PtrName = M->getGlobalVariable(Tmp, true))) {
 | 
						|
    Value *ActualPtrName = Builder.CreateGlobalStringPtr(Tmp,
 | 
						|
                                                         Tmp + "_STR");
 | 
						|
    PtrName = new GlobalVariable(*M, I8X, true, GlobalVariable::InternalLinkage,
 | 
						|
                                 cast<Constant>(ActualPtrName), Tmp);
 | 
						|
  }
 | 
						|
 | 
						|
  Value *S;
 | 
						|
  std::string SeqStr = SequenceToString(Seq);
 | 
						|
  if (0 == (S = M->getGlobalVariable(SeqStr, true))) {
 | 
						|
    Value *ActualPtrName = Builder.CreateGlobalStringPtr(SeqStr,
 | 
						|
                                                         SeqStr + "_STR");
 | 
						|
    S = new GlobalVariable(*M, I8X, true, GlobalVariable::InternalLinkage,
 | 
						|
                           cast<Constant>(ActualPtrName), SeqStr);
 | 
						|
  }
 | 
						|
 | 
						|
  Builder.CreateCall2(Callee, PtrName, S);
 | 
						|
}
 | 
						|
 | 
						|
/// Add to the end of the basic block llvm.ptr.annotations which show the state
 | 
						|
/// of the pointer at the bottom of the basic block.
 | 
						|
static void GenerateARCBBTerminatorAnnotation(const char *Name, BasicBlock *BB,
 | 
						|
                                              Value *Ptr, Sequence Seq) {
 | 
						|
  // If we have a target identifier, make sure that we match it before emitting
 | 
						|
  // an annotation.
 | 
						|
  if(!ARCAnnotationTargetIdentifier.empty() &&
 | 
						|
     !Ptr->getName().equals(ARCAnnotationTargetIdentifier))
 | 
						|
    return;
 | 
						|
 | 
						|
  Module *M = BB->getParent()->getParent();
 | 
						|
  LLVMContext &C = M->getContext();
 | 
						|
  Type *I8X = PointerType::getUnqual(Type::getInt8Ty(C));
 | 
						|
  Type *I8XX = PointerType::getUnqual(I8X);
 | 
						|
  Type *Params[] = {I8XX, I8XX};
 | 
						|
  FunctionType *FTy = FunctionType::get(Type::getVoidTy(C),
 | 
						|
                                        ArrayRef<Type*>(Params, 2),
 | 
						|
                                        /*isVarArg=*/false);
 | 
						|
  Constant *Callee = M->getOrInsertFunction(Name, FTy);
 | 
						|
 | 
						|
  IRBuilder<> Builder(BB, llvm::prior(BB->end()));
 | 
						|
 | 
						|
  Value *PtrName;
 | 
						|
  StringRef Tmp = Ptr->getName();
 | 
						|
  if (0 == (PtrName = M->getGlobalVariable(Tmp, true))) {
 | 
						|
    Value *ActualPtrName = Builder.CreateGlobalStringPtr(Tmp,
 | 
						|
                                                         Tmp + "_STR");
 | 
						|
    PtrName = new GlobalVariable(*M, I8X, true, GlobalVariable::InternalLinkage,
 | 
						|
                                 cast<Constant>(ActualPtrName), Tmp);
 | 
						|
  }
 | 
						|
 | 
						|
  Value *S;
 | 
						|
  std::string SeqStr = SequenceToString(Seq);
 | 
						|
  if (0 == (S = M->getGlobalVariable(SeqStr, true))) {
 | 
						|
    Value *ActualPtrName = Builder.CreateGlobalStringPtr(SeqStr,
 | 
						|
                                                         SeqStr + "_STR");
 | 
						|
    S = new GlobalVariable(*M, I8X, true, GlobalVariable::InternalLinkage,
 | 
						|
                           cast<Constant>(ActualPtrName), SeqStr);
 | 
						|
  }
 | 
						|
  Builder.CreateCall2(Callee, PtrName, S);
 | 
						|
}
 | 
						|
 | 
						|
/// Adds a source annotation to pointer and a state change annotation to Inst
 | 
						|
/// referencing the source annotation and the old/new state of pointer.
 | 
						|
static void GenerateARCAnnotation(unsigned InstMDId,
 | 
						|
                                  unsigned PtrMDId,
 | 
						|
                                  Instruction *Inst,
 | 
						|
                                  Value *Ptr,
 | 
						|
                                  Sequence OldSeq,
 | 
						|
                                  Sequence NewSeq) {
 | 
						|
  if (EnableARCAnnotations) {
 | 
						|
    // If we have a target identifier, make sure that we match it before
 | 
						|
    // emitting an annotation.
 | 
						|
    if(!ARCAnnotationTargetIdentifier.empty() &&
 | 
						|
       !Ptr->getName().equals(ARCAnnotationTargetIdentifier))
 | 
						|
      return;
 | 
						|
 | 
						|
    // First generate the source annotation on our pointer. This will return an
 | 
						|
    // MDString* if Ptr actually comes from an instruction implying we can put
 | 
						|
    // in a source annotation. If AppendMDNodeToSourcePtr returns 0 (i.e. NULL),
 | 
						|
    // then we know that our pointer is from an Argument so we put a reference
 | 
						|
    // to the argument number.
 | 
						|
    //
 | 
						|
    // The point of this is to make it easy for the
 | 
						|
    // llvm-arc-annotation-processor tool to cross reference where the source
 | 
						|
    // pointer is in the LLVM IR since the LLVM IR parser does not submit such
 | 
						|
    // information via debug info for backends to use (since why would anyone
 | 
						|
    // need such a thing from LLVM IR besides in non standard cases
 | 
						|
    // [i.e. this]).
 | 
						|
    MDString *SourcePtrMDNode =
 | 
						|
      AppendMDNodeToSourcePtr(PtrMDId, Ptr);
 | 
						|
    AppendMDNodeToInstForPtr(InstMDId, Inst, Ptr, SourcePtrMDNode, OldSeq,
 | 
						|
                             NewSeq);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// The actual interface for accessing the above functionality is defined via
 | 
						|
// some simple macros which are defined below. We do this so that the user does
 | 
						|
// not need to pass in what metadata id is needed resulting in cleaner code and
 | 
						|
// additionally since it provides an easy way to conditionally no-op all
 | 
						|
// annotation support in a non-debug build.
 | 
						|
 | 
						|
/// Use this macro to annotate a sequence state change when processing
 | 
						|
/// instructions bottom up,
 | 
						|
#define ANNOTATE_BOTTOMUP(inst, ptr, old, new)                          \
 | 
						|
  GenerateARCAnnotation(ARCAnnotationBottomUpMDKind,                    \
 | 
						|
                        ARCAnnotationProvenanceSourceMDKind, (inst),    \
 | 
						|
                        const_cast<Value*>(ptr), (old), (new))
 | 
						|
/// Use this macro to annotate a sequence state change when processing
 | 
						|
/// instructions top down.
 | 
						|
#define ANNOTATE_TOPDOWN(inst, ptr, old, new)                           \
 | 
						|
  GenerateARCAnnotation(ARCAnnotationTopDownMDKind,                     \
 | 
						|
                        ARCAnnotationProvenanceSourceMDKind, (inst),    \
 | 
						|
                        const_cast<Value*>(ptr), (old), (new))
 | 
						|
 | 
						|
#define ANNOTATE_BB(_states, _bb, _name, _type, _direction)                   \
 | 
						|
  do {                                                                        \
 | 
						|
    if (EnableARCAnnotations) {                                               \
 | 
						|
      for(BBState::ptr_const_iterator I = (_states)._direction##_ptr_begin(), \
 | 
						|
          E = (_states)._direction##_ptr_end(); I != E; ++I) {                \
 | 
						|
        Value *Ptr = const_cast<Value*>(I->first);                            \
 | 
						|
        Sequence Seq = I->second.GetSeq();                                    \
 | 
						|
        GenerateARCBB ## _type ## Annotation(_name, (_bb), Ptr, Seq);         \
 | 
						|
      }                                                                       \
 | 
						|
    }                                                                         \
 | 
						|
  } while (0)
 | 
						|
 | 
						|
#define ANNOTATE_BOTTOMUP_BBSTART(_states, _basicblock)                       \
 | 
						|
    ANNOTATE_BB(_states, _basicblock, "llvm.arc.annotation.bottomup.bbstart", \
 | 
						|
                Entrance, bottom_up)
 | 
						|
#define ANNOTATE_BOTTOMUP_BBEND(_states, _basicblock)                         \
 | 
						|
    ANNOTATE_BB(_states, _basicblock, "llvm.arc.annotation.bottomup.bbend",   \
 | 
						|
                Terminator, bottom_up)
 | 
						|
#define ANNOTATE_TOPDOWN_BBSTART(_states, _basicblock)                        \
 | 
						|
    ANNOTATE_BB(_states, _basicblock, "llvm.arc.annotation.topdown.bbstart",  \
 | 
						|
                Entrance, top_down)
 | 
						|
#define ANNOTATE_TOPDOWN_BBEND(_states, _basicblock)                          \
 | 
						|
    ANNOTATE_BB(_states, _basicblock, "llvm.arc.annotation.topdown.bbend",    \
 | 
						|
                Terminator, top_down)
 | 
						|
 | 
						|
#else // !ARC_ANNOTATION
 | 
						|
// If annotations are off, noop.
 | 
						|
#define ANNOTATE_BOTTOMUP(inst, ptr, old, new)
 | 
						|
#define ANNOTATE_TOPDOWN(inst, ptr, old, new)
 | 
						|
#define ANNOTATE_BOTTOMUP_BBSTART(states, basicblock)
 | 
						|
#define ANNOTATE_BOTTOMUP_BBEND(states, basicblock)
 | 
						|
#define ANNOTATE_TOPDOWN_BBSTART(states, basicblock)
 | 
						|
#define ANNOTATE_TOPDOWN_BBEND(states, basicblock)
 | 
						|
#endif // !ARC_ANNOTATION
 | 
						|
 | 
						|
namespace {
 | 
						|
  /// \brief The main ARC optimization pass.
 | 
						|
  class ObjCARCOpt : public FunctionPass {
 | 
						|
    bool Changed;
 | 
						|
    ProvenanceAnalysis PA;
 | 
						|
    ARCRuntimeEntryPoints EP;
 | 
						|
 | 
						|
    // This is used to track if a pointer is stored into an alloca.
 | 
						|
    DenseSet<const Value *> MultiOwnersSet;
 | 
						|
 | 
						|
    /// A flag indicating whether this optimization pass should run.
 | 
						|
    bool Run;
 | 
						|
 | 
						|
    /// Flags which determine whether each of the interesting runtine functions
 | 
						|
    /// is in fact used in the current function.
 | 
						|
    unsigned UsedInThisFunction;
 | 
						|
 | 
						|
    /// The Metadata Kind for clang.imprecise_release metadata.
 | 
						|
    unsigned ImpreciseReleaseMDKind;
 | 
						|
 | 
						|
    /// The Metadata Kind for clang.arc.copy_on_escape metadata.
 | 
						|
    unsigned CopyOnEscapeMDKind;
 | 
						|
 | 
						|
    /// The Metadata Kind for clang.arc.no_objc_arc_exceptions metadata.
 | 
						|
    unsigned NoObjCARCExceptionsMDKind;
 | 
						|
 | 
						|
#ifdef ARC_ANNOTATIONS
 | 
						|
    /// The Metadata Kind for llvm.arc.annotation.bottomup metadata.
 | 
						|
    unsigned ARCAnnotationBottomUpMDKind;
 | 
						|
    /// The Metadata Kind for llvm.arc.annotation.topdown metadata.
 | 
						|
    unsigned ARCAnnotationTopDownMDKind;
 | 
						|
    /// The Metadata Kind for llvm.arc.annotation.provenancesource metadata.
 | 
						|
    unsigned ARCAnnotationProvenanceSourceMDKind;
 | 
						|
#endif // ARC_ANNOATIONS
 | 
						|
 | 
						|
    bool IsRetainBlockOptimizable(const Instruction *Inst);
 | 
						|
 | 
						|
    bool OptimizeRetainRVCall(Function &F, Instruction *RetainRV);
 | 
						|
    void OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV,
 | 
						|
                                   InstructionClass &Class);
 | 
						|
    bool OptimizeRetainBlockCall(Function &F, Instruction *RetainBlock,
 | 
						|
                                 InstructionClass &Class);
 | 
						|
    void OptimizeIndividualCalls(Function &F);
 | 
						|
 | 
						|
    void CheckForCFGHazards(const BasicBlock *BB,
 | 
						|
                            DenseMap<const BasicBlock *, BBState> &BBStates,
 | 
						|
                            BBState &MyStates) const;
 | 
						|
    bool VisitInstructionBottomUp(Instruction *Inst,
 | 
						|
                                  BasicBlock *BB,
 | 
						|
                                  MapVector<Value *, RRInfo> &Retains,
 | 
						|
                                  BBState &MyStates);
 | 
						|
    bool VisitBottomUp(BasicBlock *BB,
 | 
						|
                       DenseMap<const BasicBlock *, BBState> &BBStates,
 | 
						|
                       MapVector<Value *, RRInfo> &Retains);
 | 
						|
    bool VisitInstructionTopDown(Instruction *Inst,
 | 
						|
                                 DenseMap<Value *, RRInfo> &Releases,
 | 
						|
                                 BBState &MyStates);
 | 
						|
    bool VisitTopDown(BasicBlock *BB,
 | 
						|
                      DenseMap<const BasicBlock *, BBState> &BBStates,
 | 
						|
                      DenseMap<Value *, RRInfo> &Releases);
 | 
						|
    bool Visit(Function &F,
 | 
						|
               DenseMap<const BasicBlock *, BBState> &BBStates,
 | 
						|
               MapVector<Value *, RRInfo> &Retains,
 | 
						|
               DenseMap<Value *, RRInfo> &Releases);
 | 
						|
 | 
						|
    void MoveCalls(Value *Arg, RRInfo &RetainsToMove, RRInfo &ReleasesToMove,
 | 
						|
                   MapVector<Value *, RRInfo> &Retains,
 | 
						|
                   DenseMap<Value *, RRInfo> &Releases,
 | 
						|
                   SmallVectorImpl<Instruction *> &DeadInsts,
 | 
						|
                   Module *M);
 | 
						|
 | 
						|
    bool ConnectTDBUTraversals(DenseMap<const BasicBlock *, BBState> &BBStates,
 | 
						|
                               MapVector<Value *, RRInfo> &Retains,
 | 
						|
                               DenseMap<Value *, RRInfo> &Releases,
 | 
						|
                               Module *M,
 | 
						|
                               SmallVectorImpl<Instruction *> &NewRetains,
 | 
						|
                               SmallVectorImpl<Instruction *> &NewReleases,
 | 
						|
                               SmallVectorImpl<Instruction *> &DeadInsts,
 | 
						|
                               RRInfo &RetainsToMove,
 | 
						|
                               RRInfo &ReleasesToMove,
 | 
						|
                               Value *Arg,
 | 
						|
                               bool KnownSafe,
 | 
						|
                               bool &AnyPairsCompletelyEliminated);
 | 
						|
 | 
						|
    bool PerformCodePlacement(DenseMap<const BasicBlock *, BBState> &BBStates,
 | 
						|
                              MapVector<Value *, RRInfo> &Retains,
 | 
						|
                              DenseMap<Value *, RRInfo> &Releases,
 | 
						|
                              Module *M);
 | 
						|
 | 
						|
    void OptimizeWeakCalls(Function &F);
 | 
						|
 | 
						|
    bool OptimizeSequences(Function &F);
 | 
						|
 | 
						|
    void OptimizeReturns(Function &F);
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
    void GatherStatistics(Function &F, bool AfterOptimization = false);
 | 
						|
#endif
 | 
						|
 | 
						|
    virtual void getAnalysisUsage(AnalysisUsage &AU) const;
 | 
						|
    virtual bool doInitialization(Module &M);
 | 
						|
    virtual bool runOnFunction(Function &F);
 | 
						|
    virtual void releaseMemory();
 | 
						|
 | 
						|
  public:
 | 
						|
    static char ID;
 | 
						|
    ObjCARCOpt() : FunctionPass(ID) {
 | 
						|
      initializeObjCARCOptPass(*PassRegistry::getPassRegistry());
 | 
						|
    }
 | 
						|
  };
 | 
						|
}
 | 
						|
 | 
						|
char ObjCARCOpt::ID = 0;
 | 
						|
INITIALIZE_PASS_BEGIN(ObjCARCOpt,
 | 
						|
                      "objc-arc", "ObjC ARC optimization", false, false)
 | 
						|
INITIALIZE_PASS_DEPENDENCY(ObjCARCAliasAnalysis)
 | 
						|
INITIALIZE_PASS_END(ObjCARCOpt,
 | 
						|
                    "objc-arc", "ObjC ARC optimization", false, false)
 | 
						|
 | 
						|
Pass *llvm::createObjCARCOptPass() {
 | 
						|
  return new ObjCARCOpt();
 | 
						|
}
 | 
						|
 | 
						|
void ObjCARCOpt::getAnalysisUsage(AnalysisUsage &AU) const {
 | 
						|
  AU.addRequired<ObjCARCAliasAnalysis>();
 | 
						|
  AU.addRequired<AliasAnalysis>();
 | 
						|
  // ARC optimization doesn't currently split critical edges.
 | 
						|
  AU.setPreservesCFG();
 | 
						|
}
 | 
						|
 | 
						|
bool ObjCARCOpt::IsRetainBlockOptimizable(const Instruction *Inst) {
 | 
						|
  // Without the magic metadata tag, we have to assume this might be an
 | 
						|
  // objc_retainBlock call inserted to convert a block pointer to an id,
 | 
						|
  // in which case it really is needed.
 | 
						|
  if (!Inst->getMetadata(CopyOnEscapeMDKind))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If the pointer "escapes" (not including being used in a call),
 | 
						|
  // the copy may be needed.
 | 
						|
  if (DoesRetainableObjPtrEscape(Inst))
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Otherwise, it's not needed.
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Turn objc_retainAutoreleasedReturnValue into objc_retain if the operand is
 | 
						|
/// not a return value.  Or, if it can be paired with an
 | 
						|
/// objc_autoreleaseReturnValue, delete the pair and return true.
 | 
						|
bool
 | 
						|
ObjCARCOpt::OptimizeRetainRVCall(Function &F, Instruction *RetainRV) {
 | 
						|
  // Check for the argument being from an immediately preceding call or invoke.
 | 
						|
  const Value *Arg = GetObjCArg(RetainRV);
 | 
						|
  ImmutableCallSite CS(Arg);
 | 
						|
  if (const Instruction *Call = CS.getInstruction()) {
 | 
						|
    if (Call->getParent() == RetainRV->getParent()) {
 | 
						|
      BasicBlock::const_iterator I = Call;
 | 
						|
      ++I;
 | 
						|
      while (IsNoopInstruction(I)) ++I;
 | 
						|
      if (&*I == RetainRV)
 | 
						|
        return false;
 | 
						|
    } else if (const InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
 | 
						|
      BasicBlock *RetainRVParent = RetainRV->getParent();
 | 
						|
      if (II->getNormalDest() == RetainRVParent) {
 | 
						|
        BasicBlock::const_iterator I = RetainRVParent->begin();
 | 
						|
        while (IsNoopInstruction(I)) ++I;
 | 
						|
        if (&*I == RetainRV)
 | 
						|
          return false;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Check for being preceded by an objc_autoreleaseReturnValue on the same
 | 
						|
  // pointer. In this case, we can delete the pair.
 | 
						|
  BasicBlock::iterator I = RetainRV, Begin = RetainRV->getParent()->begin();
 | 
						|
  if (I != Begin) {
 | 
						|
    do --I; while (I != Begin && IsNoopInstruction(I));
 | 
						|
    if (GetBasicInstructionClass(I) == IC_AutoreleaseRV &&
 | 
						|
        GetObjCArg(I) == Arg) {
 | 
						|
      Changed = true;
 | 
						|
      ++NumPeeps;
 | 
						|
 | 
						|
      DEBUG(dbgs() << "Erasing autoreleaseRV,retainRV pair: " << *I << "\n"
 | 
						|
                   << "Erasing " << *RetainRV << "\n");
 | 
						|
 | 
						|
      EraseInstruction(I);
 | 
						|
      EraseInstruction(RetainRV);
 | 
						|
      return true;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Turn it to a plain objc_retain.
 | 
						|
  Changed = true;
 | 
						|
  ++NumPeeps;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Transforming objc_retainAutoreleasedReturnValue => "
 | 
						|
                  "objc_retain since the operand is not a return value.\n"
 | 
						|
                  "Old = " << *RetainRV << "\n");
 | 
						|
 | 
						|
  Constant *NewDecl = EP.get(ARCRuntimeEntryPoints::EPT_Retain);
 | 
						|
  cast<CallInst>(RetainRV)->setCalledFunction(NewDecl);
 | 
						|
 | 
						|
  DEBUG(dbgs() << "New = " << *RetainRV << "\n");
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
/// Turn objc_autoreleaseReturnValue into objc_autorelease if the result is not
 | 
						|
/// used as a return value.
 | 
						|
void
 | 
						|
ObjCARCOpt::OptimizeAutoreleaseRVCall(Function &F, Instruction *AutoreleaseRV,
 | 
						|
                                      InstructionClass &Class) {
 | 
						|
  // Check for a return of the pointer value.
 | 
						|
  const Value *Ptr = GetObjCArg(AutoreleaseRV);
 | 
						|
  SmallVector<const Value *, 2> Users;
 | 
						|
  Users.push_back(Ptr);
 | 
						|
  do {
 | 
						|
    Ptr = Users.pop_back_val();
 | 
						|
    for (Value::const_use_iterator UI = Ptr->use_begin(), UE = Ptr->use_end();
 | 
						|
         UI != UE; ++UI) {
 | 
						|
      const User *I = *UI;
 | 
						|
      if (isa<ReturnInst>(I) || GetBasicInstructionClass(I) == IC_RetainRV)
 | 
						|
        return;
 | 
						|
      if (isa<BitCastInst>(I))
 | 
						|
        Users.push_back(I);
 | 
						|
    }
 | 
						|
  } while (!Users.empty());
 | 
						|
 | 
						|
  Changed = true;
 | 
						|
  ++NumPeeps;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Transforming objc_autoreleaseReturnValue => "
 | 
						|
                  "objc_autorelease since its operand is not used as a return "
 | 
						|
                  "value.\n"
 | 
						|
                  "Old = " << *AutoreleaseRV << "\n");
 | 
						|
 | 
						|
  CallInst *AutoreleaseRVCI = cast<CallInst>(AutoreleaseRV);
 | 
						|
  Constant *NewDecl = EP.get(ARCRuntimeEntryPoints::EPT_Autorelease);
 | 
						|
  AutoreleaseRVCI->setCalledFunction(NewDecl);
 | 
						|
  AutoreleaseRVCI->setTailCall(false); // Never tail call objc_autorelease.
 | 
						|
  Class = IC_Autorelease;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "New: " << *AutoreleaseRV << "\n");
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
// \brief Attempt to strength reduce objc_retainBlock calls to objc_retain
 | 
						|
// calls.
 | 
						|
//
 | 
						|
// Specifically: If an objc_retainBlock call has the copy_on_escape metadata and
 | 
						|
// does not escape (following the rules of block escaping), strength reduce the
 | 
						|
// objc_retainBlock to an objc_retain.
 | 
						|
//
 | 
						|
// TODO: If an objc_retainBlock call is dominated period by a previous
 | 
						|
// objc_retainBlock call, strength reduce the objc_retainBlock to an
 | 
						|
// objc_retain.
 | 
						|
bool
 | 
						|
ObjCARCOpt::OptimizeRetainBlockCall(Function &F, Instruction *Inst,
 | 
						|
                                    InstructionClass &Class) {
 | 
						|
  assert(GetBasicInstructionClass(Inst) == Class);
 | 
						|
  assert(IC_RetainBlock == Class);
 | 
						|
 | 
						|
  // If we can not optimize Inst, return false.
 | 
						|
  if (!IsRetainBlockOptimizable(Inst))
 | 
						|
    return false;
 | 
						|
 | 
						|
  Changed = true;
 | 
						|
  ++NumPeeps;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Strength reduced retainBlock => retain.\n");
 | 
						|
  DEBUG(dbgs() << "Old: " << *Inst << "\n");
 | 
						|
  CallInst *RetainBlock = cast<CallInst>(Inst);
 | 
						|
  Constant *NewDecl = EP.get(ARCRuntimeEntryPoints::EPT_Retain);
 | 
						|
  RetainBlock->setCalledFunction(NewDecl);
 | 
						|
  // Remove copy_on_escape metadata.
 | 
						|
  RetainBlock->setMetadata(CopyOnEscapeMDKind, 0);
 | 
						|
  Class = IC_Retain;
 | 
						|
  DEBUG(dbgs() << "New: " << *Inst << "\n");
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Visit each call, one at a time, and make simplifications without doing any
 | 
						|
/// additional analysis.
 | 
						|
void ObjCARCOpt::OptimizeIndividualCalls(Function &F) {
 | 
						|
  DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeIndividualCalls ==\n");
 | 
						|
  // Reset all the flags in preparation for recomputing them.
 | 
						|
  UsedInThisFunction = 0;
 | 
						|
 | 
						|
  // Visit all objc_* calls in F.
 | 
						|
  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
 | 
						|
    Instruction *Inst = &*I++;
 | 
						|
 | 
						|
    InstructionClass Class = GetBasicInstructionClass(Inst);
 | 
						|
 | 
						|
    DEBUG(dbgs() << "Visiting: Class: " << Class << "; " << *Inst << "\n");
 | 
						|
 | 
						|
    switch (Class) {
 | 
						|
    default: break;
 | 
						|
 | 
						|
    // Delete no-op casts. These function calls have special semantics, but
 | 
						|
    // the semantics are entirely implemented via lowering in the front-end,
 | 
						|
    // so by the time they reach the optimizer, they are just no-op calls
 | 
						|
    // which return their argument.
 | 
						|
    //
 | 
						|
    // There are gray areas here, as the ability to cast reference-counted
 | 
						|
    // pointers to raw void* and back allows code to break ARC assumptions,
 | 
						|
    // however these are currently considered to be unimportant.
 | 
						|
    case IC_NoopCast:
 | 
						|
      Changed = true;
 | 
						|
      ++NumNoops;
 | 
						|
      DEBUG(dbgs() << "Erasing no-op cast: " << *Inst << "\n");
 | 
						|
      EraseInstruction(Inst);
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If the pointer-to-weak-pointer is null, it's undefined behavior.
 | 
						|
    case IC_StoreWeak:
 | 
						|
    case IC_LoadWeak:
 | 
						|
    case IC_LoadWeakRetained:
 | 
						|
    case IC_InitWeak:
 | 
						|
    case IC_DestroyWeak: {
 | 
						|
      CallInst *CI = cast<CallInst>(Inst);
 | 
						|
      if (IsNullOrUndef(CI->getArgOperand(0))) {
 | 
						|
        Changed = true;
 | 
						|
        Type *Ty = CI->getArgOperand(0)->getType();
 | 
						|
        new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
 | 
						|
                      Constant::getNullValue(Ty),
 | 
						|
                      CI);
 | 
						|
        llvm::Value *NewValue = UndefValue::get(CI->getType());
 | 
						|
        DEBUG(dbgs() << "A null pointer-to-weak-pointer is undefined behavior."
 | 
						|
                       "\nOld = " << *CI << "\nNew = " << *NewValue << "\n");
 | 
						|
        CI->replaceAllUsesWith(NewValue);
 | 
						|
        CI->eraseFromParent();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case IC_CopyWeak:
 | 
						|
    case IC_MoveWeak: {
 | 
						|
      CallInst *CI = cast<CallInst>(Inst);
 | 
						|
      if (IsNullOrUndef(CI->getArgOperand(0)) ||
 | 
						|
          IsNullOrUndef(CI->getArgOperand(1))) {
 | 
						|
        Changed = true;
 | 
						|
        Type *Ty = CI->getArgOperand(0)->getType();
 | 
						|
        new StoreInst(UndefValue::get(cast<PointerType>(Ty)->getElementType()),
 | 
						|
                      Constant::getNullValue(Ty),
 | 
						|
                      CI);
 | 
						|
 | 
						|
        llvm::Value *NewValue = UndefValue::get(CI->getType());
 | 
						|
        DEBUG(dbgs() << "A null pointer-to-weak-pointer is undefined behavior."
 | 
						|
                        "\nOld = " << *CI << "\nNew = " << *NewValue << "\n");
 | 
						|
 | 
						|
        CI->replaceAllUsesWith(NewValue);
 | 
						|
        CI->eraseFromParent();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    case IC_RetainBlock:
 | 
						|
      // If we strength reduce an objc_retainBlock to an objc_retain, continue
 | 
						|
      // onto the objc_retain peephole optimizations. Otherwise break.
 | 
						|
      OptimizeRetainBlockCall(F, Inst, Class);
 | 
						|
      break;
 | 
						|
    case IC_RetainRV:
 | 
						|
      if (OptimizeRetainRVCall(F, Inst))
 | 
						|
        continue;
 | 
						|
      break;
 | 
						|
    case IC_AutoreleaseRV:
 | 
						|
      OptimizeAutoreleaseRVCall(F, Inst, Class);
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // objc_autorelease(x) -> objc_release(x) if x is otherwise unused.
 | 
						|
    if (IsAutorelease(Class) && Inst->use_empty()) {
 | 
						|
      CallInst *Call = cast<CallInst>(Inst);
 | 
						|
      const Value *Arg = Call->getArgOperand(0);
 | 
						|
      Arg = FindSingleUseIdentifiedObject(Arg);
 | 
						|
      if (Arg) {
 | 
						|
        Changed = true;
 | 
						|
        ++NumAutoreleases;
 | 
						|
 | 
						|
        // Create the declaration lazily.
 | 
						|
        LLVMContext &C = Inst->getContext();
 | 
						|
 | 
						|
        Constant *Decl = EP.get(ARCRuntimeEntryPoints::EPT_Release);
 | 
						|
        CallInst *NewCall = CallInst::Create(Decl, Call->getArgOperand(0), "",
 | 
						|
                                             Call);
 | 
						|
        NewCall->setMetadata(ImpreciseReleaseMDKind, MDNode::get(C, None));
 | 
						|
 | 
						|
        DEBUG(dbgs() << "Replacing autorelease{,RV}(x) with objc_release(x) "
 | 
						|
              "since x is otherwise unused.\nOld: " << *Call << "\nNew: "
 | 
						|
              << *NewCall << "\n");
 | 
						|
 | 
						|
        EraseInstruction(Call);
 | 
						|
        Inst = NewCall;
 | 
						|
        Class = IC_Release;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // For functions which can never be passed stack arguments, add
 | 
						|
    // a tail keyword.
 | 
						|
    if (IsAlwaysTail(Class)) {
 | 
						|
      Changed = true;
 | 
						|
      DEBUG(dbgs() << "Adding tail keyword to function since it can never be "
 | 
						|
                      "passed stack args: " << *Inst << "\n");
 | 
						|
      cast<CallInst>(Inst)->setTailCall();
 | 
						|
    }
 | 
						|
 | 
						|
    // Ensure that functions that can never have a "tail" keyword due to the
 | 
						|
    // semantics of ARC truly do not do so.
 | 
						|
    if (IsNeverTail(Class)) {
 | 
						|
      Changed = true;
 | 
						|
      DEBUG(dbgs() << "Removing tail keyword from function: " << *Inst <<
 | 
						|
            "\n");
 | 
						|
      cast<CallInst>(Inst)->setTailCall(false);
 | 
						|
    }
 | 
						|
 | 
						|
    // Set nounwind as needed.
 | 
						|
    if (IsNoThrow(Class)) {
 | 
						|
      Changed = true;
 | 
						|
      DEBUG(dbgs() << "Found no throw class. Setting nounwind on: " << *Inst
 | 
						|
                   << "\n");
 | 
						|
      cast<CallInst>(Inst)->setDoesNotThrow();
 | 
						|
    }
 | 
						|
 | 
						|
    if (!IsNoopOnNull(Class)) {
 | 
						|
      UsedInThisFunction |= 1 << Class;
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    const Value *Arg = GetObjCArg(Inst);
 | 
						|
 | 
						|
    // ARC calls with null are no-ops. Delete them.
 | 
						|
    if (IsNullOrUndef(Arg)) {
 | 
						|
      Changed = true;
 | 
						|
      ++NumNoops;
 | 
						|
      DEBUG(dbgs() << "ARC calls with  null are no-ops. Erasing: " << *Inst
 | 
						|
            << "\n");
 | 
						|
      EraseInstruction(Inst);
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // Keep track of which of retain, release, autorelease, and retain_block
 | 
						|
    // are actually present in this function.
 | 
						|
    UsedInThisFunction |= 1 << Class;
 | 
						|
 | 
						|
    // If Arg is a PHI, and one or more incoming values to the
 | 
						|
    // PHI are null, and the call is control-equivalent to the PHI, and there
 | 
						|
    // are no relevant side effects between the PHI and the call, the call
 | 
						|
    // could be pushed up to just those paths with non-null incoming values.
 | 
						|
    // For now, don't bother splitting critical edges for this.
 | 
						|
    SmallVector<std::pair<Instruction *, const Value *>, 4> Worklist;
 | 
						|
    Worklist.push_back(std::make_pair(Inst, Arg));
 | 
						|
    do {
 | 
						|
      std::pair<Instruction *, const Value *> Pair = Worklist.pop_back_val();
 | 
						|
      Inst = Pair.first;
 | 
						|
      Arg = Pair.second;
 | 
						|
 | 
						|
      const PHINode *PN = dyn_cast<PHINode>(Arg);
 | 
						|
      if (!PN) continue;
 | 
						|
 | 
						|
      // Determine if the PHI has any null operands, or any incoming
 | 
						|
      // critical edges.
 | 
						|
      bool HasNull = false;
 | 
						|
      bool HasCriticalEdges = false;
 | 
						|
      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
        Value *Incoming =
 | 
						|
          StripPointerCastsAndObjCCalls(PN->getIncomingValue(i));
 | 
						|
        if (IsNullOrUndef(Incoming))
 | 
						|
          HasNull = true;
 | 
						|
        else if (cast<TerminatorInst>(PN->getIncomingBlock(i)->back())
 | 
						|
                   .getNumSuccessors() != 1) {
 | 
						|
          HasCriticalEdges = true;
 | 
						|
          break;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      // If we have null operands and no critical edges, optimize.
 | 
						|
      if (!HasCriticalEdges && HasNull) {
 | 
						|
        SmallPtrSet<Instruction *, 4> DependingInstructions;
 | 
						|
        SmallPtrSet<const BasicBlock *, 4> Visited;
 | 
						|
 | 
						|
        // Check that there is nothing that cares about the reference
 | 
						|
        // count between the call and the phi.
 | 
						|
        switch (Class) {
 | 
						|
        case IC_Retain:
 | 
						|
        case IC_RetainBlock:
 | 
						|
          // These can always be moved up.
 | 
						|
          break;
 | 
						|
        case IC_Release:
 | 
						|
          // These can't be moved across things that care about the retain
 | 
						|
          // count.
 | 
						|
          FindDependencies(NeedsPositiveRetainCount, Arg,
 | 
						|
                           Inst->getParent(), Inst,
 | 
						|
                           DependingInstructions, Visited, PA);
 | 
						|
          break;
 | 
						|
        case IC_Autorelease:
 | 
						|
          // These can't be moved across autorelease pool scope boundaries.
 | 
						|
          FindDependencies(AutoreleasePoolBoundary, Arg,
 | 
						|
                           Inst->getParent(), Inst,
 | 
						|
                           DependingInstructions, Visited, PA);
 | 
						|
          break;
 | 
						|
        case IC_RetainRV:
 | 
						|
        case IC_AutoreleaseRV:
 | 
						|
          // Don't move these; the RV optimization depends on the autoreleaseRV
 | 
						|
          // being tail called, and the retainRV being immediately after a call
 | 
						|
          // (which might still happen if we get lucky with codegen layout, but
 | 
						|
          // it's not worth taking the chance).
 | 
						|
          continue;
 | 
						|
        default:
 | 
						|
          llvm_unreachable("Invalid dependence flavor");
 | 
						|
        }
 | 
						|
 | 
						|
        if (DependingInstructions.size() == 1 &&
 | 
						|
            *DependingInstructions.begin() == PN) {
 | 
						|
          Changed = true;
 | 
						|
          ++NumPartialNoops;
 | 
						|
          // Clone the call into each predecessor that has a non-null value.
 | 
						|
          CallInst *CInst = cast<CallInst>(Inst);
 | 
						|
          Type *ParamTy = CInst->getArgOperand(0)->getType();
 | 
						|
          for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
 | 
						|
            Value *Incoming =
 | 
						|
              StripPointerCastsAndObjCCalls(PN->getIncomingValue(i));
 | 
						|
            if (!IsNullOrUndef(Incoming)) {
 | 
						|
              CallInst *Clone = cast<CallInst>(CInst->clone());
 | 
						|
              Value *Op = PN->getIncomingValue(i);
 | 
						|
              Instruction *InsertPos = &PN->getIncomingBlock(i)->back();
 | 
						|
              if (Op->getType() != ParamTy)
 | 
						|
                Op = new BitCastInst(Op, ParamTy, "", InsertPos);
 | 
						|
              Clone->setArgOperand(0, Op);
 | 
						|
              Clone->insertBefore(InsertPos);
 | 
						|
 | 
						|
              DEBUG(dbgs() << "Cloning "
 | 
						|
                           << *CInst << "\n"
 | 
						|
                           "And inserting clone at " << *InsertPos << "\n");
 | 
						|
              Worklist.push_back(std::make_pair(Clone, Incoming));
 | 
						|
            }
 | 
						|
          }
 | 
						|
          // Erase the original call.
 | 
						|
          DEBUG(dbgs() << "Erasing: " << *CInst << "\n");
 | 
						|
          EraseInstruction(CInst);
 | 
						|
          continue;
 | 
						|
        }
 | 
						|
      }
 | 
						|
    } while (!Worklist.empty());
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// If we have a top down pointer in the S_Use state, make sure that there are
 | 
						|
/// no CFG hazards by checking the states of various bottom up pointers.
 | 
						|
static void CheckForUseCFGHazard(const Sequence SuccSSeq,
 | 
						|
                                 const bool SuccSRRIKnownSafe,
 | 
						|
                                 PtrState &S,
 | 
						|
                                 bool &SomeSuccHasSame,
 | 
						|
                                 bool &AllSuccsHaveSame,
 | 
						|
                                 bool &NotAllSeqEqualButKnownSafe,
 | 
						|
                                 bool &ShouldContinue) {
 | 
						|
  switch (SuccSSeq) {
 | 
						|
  case S_CanRelease: {
 | 
						|
    if (!S.IsKnownSafe() && !SuccSRRIKnownSafe) {
 | 
						|
      S.ClearSequenceProgress();
 | 
						|
      break;
 | 
						|
    }
 | 
						|
    S.SetCFGHazardAfflicted(true);
 | 
						|
    ShouldContinue = true;
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case S_Use:
 | 
						|
    SomeSuccHasSame = true;
 | 
						|
    break;
 | 
						|
  case S_Stop:
 | 
						|
  case S_Release:
 | 
						|
  case S_MovableRelease:
 | 
						|
    if (!S.IsKnownSafe() && !SuccSRRIKnownSafe)
 | 
						|
      AllSuccsHaveSame = false;
 | 
						|
    else
 | 
						|
      NotAllSeqEqualButKnownSafe = true;
 | 
						|
    break;
 | 
						|
  case S_Retain:
 | 
						|
    llvm_unreachable("bottom-up pointer in retain state!");
 | 
						|
  case S_None:
 | 
						|
    llvm_unreachable("This should have been handled earlier.");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// If we have a Top Down pointer in the S_CanRelease state, make sure that
 | 
						|
/// there are no CFG hazards by checking the states of various bottom up
 | 
						|
/// pointers.
 | 
						|
static void CheckForCanReleaseCFGHazard(const Sequence SuccSSeq,
 | 
						|
                                        const bool SuccSRRIKnownSafe,
 | 
						|
                                        PtrState &S,
 | 
						|
                                        bool &SomeSuccHasSame,
 | 
						|
                                        bool &AllSuccsHaveSame,
 | 
						|
                                        bool &NotAllSeqEqualButKnownSafe) {
 | 
						|
  switch (SuccSSeq) {
 | 
						|
  case S_CanRelease:
 | 
						|
    SomeSuccHasSame = true;
 | 
						|
    break;
 | 
						|
  case S_Stop:
 | 
						|
  case S_Release:
 | 
						|
  case S_MovableRelease:
 | 
						|
  case S_Use:
 | 
						|
    if (!S.IsKnownSafe() && !SuccSRRIKnownSafe)
 | 
						|
      AllSuccsHaveSame = false;
 | 
						|
    else
 | 
						|
      NotAllSeqEqualButKnownSafe = true;
 | 
						|
    break;
 | 
						|
  case S_Retain:
 | 
						|
    llvm_unreachable("bottom-up pointer in retain state!");
 | 
						|
  case S_None:
 | 
						|
    llvm_unreachable("This should have been handled earlier.");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Check for critical edges, loop boundaries, irreducible control flow, or
 | 
						|
/// other CFG structures where moving code across the edge would result in it
 | 
						|
/// being executed more.
 | 
						|
void
 | 
						|
ObjCARCOpt::CheckForCFGHazards(const BasicBlock *BB,
 | 
						|
                               DenseMap<const BasicBlock *, BBState> &BBStates,
 | 
						|
                               BBState &MyStates) const {
 | 
						|
  // If any top-down local-use or possible-dec has a succ which is earlier in
 | 
						|
  // the sequence, forget it.
 | 
						|
  for (BBState::ptr_iterator I = MyStates.top_down_ptr_begin(),
 | 
						|
         E = MyStates.top_down_ptr_end(); I != E; ++I) {
 | 
						|
    PtrState &S = I->second;
 | 
						|
    const Sequence Seq = I->second.GetSeq();
 | 
						|
 | 
						|
    // We only care about S_Retain, S_CanRelease, and S_Use.
 | 
						|
    if (Seq == S_None)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Make sure that if extra top down states are added in the future that this
 | 
						|
    // code is updated to handle it.
 | 
						|
    assert((Seq == S_Retain || Seq == S_CanRelease || Seq == S_Use) &&
 | 
						|
           "Unknown top down sequence state.");
 | 
						|
 | 
						|
    const Value *Arg = I->first;
 | 
						|
    const TerminatorInst *TI = cast<TerminatorInst>(&BB->back());
 | 
						|
    bool SomeSuccHasSame = false;
 | 
						|
    bool AllSuccsHaveSame = true;
 | 
						|
    bool NotAllSeqEqualButKnownSafe = false;
 | 
						|
 | 
						|
    succ_const_iterator SI(TI), SE(TI, false);
 | 
						|
 | 
						|
    for (; SI != SE; ++SI) {
 | 
						|
      // If VisitBottomUp has pointer information for this successor, take
 | 
						|
      // what we know about it.
 | 
						|
      const DenseMap<const BasicBlock *, BBState>::iterator BBI =
 | 
						|
        BBStates.find(*SI);
 | 
						|
      assert(BBI != BBStates.end());
 | 
						|
      const PtrState &SuccS = BBI->second.getPtrBottomUpState(Arg);
 | 
						|
      const Sequence SuccSSeq = SuccS.GetSeq();
 | 
						|
 | 
						|
      // If bottom up, the pointer is in an S_None state, clear the sequence
 | 
						|
      // progress since the sequence in the bottom up state finished
 | 
						|
      // suggesting a mismatch in between retains/releases. This is true for
 | 
						|
      // all three cases that we are handling here: S_Retain, S_Use, and
 | 
						|
      // S_CanRelease.
 | 
						|
      if (SuccSSeq == S_None) {
 | 
						|
        S.ClearSequenceProgress();
 | 
						|
        continue;
 | 
						|
      }
 | 
						|
 | 
						|
      // If we have S_Use or S_CanRelease, perform our check for cfg hazard
 | 
						|
      // checks.
 | 
						|
      const bool SuccSRRIKnownSafe = SuccS.IsKnownSafe();
 | 
						|
 | 
						|
      // *NOTE* We do not use Seq from above here since we are allowing for
 | 
						|
      // S.GetSeq() to change while we are visiting basic blocks.
 | 
						|
      switch(S.GetSeq()) {
 | 
						|
      case S_Use: {
 | 
						|
        bool ShouldContinue = false;
 | 
						|
        CheckForUseCFGHazard(SuccSSeq, SuccSRRIKnownSafe, S, SomeSuccHasSame,
 | 
						|
                             AllSuccsHaveSame, NotAllSeqEqualButKnownSafe,
 | 
						|
                             ShouldContinue);
 | 
						|
        if (ShouldContinue)
 | 
						|
          continue;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case S_CanRelease: {
 | 
						|
        CheckForCanReleaseCFGHazard(SuccSSeq, SuccSRRIKnownSafe, S,
 | 
						|
                                    SomeSuccHasSame, AllSuccsHaveSame,
 | 
						|
                                    NotAllSeqEqualButKnownSafe);
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case S_Retain:
 | 
						|
      case S_None:
 | 
						|
      case S_Stop:
 | 
						|
      case S_Release:
 | 
						|
      case S_MovableRelease:
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // If the state at the other end of any of the successor edges
 | 
						|
    // matches the current state, require all edges to match. This
 | 
						|
    // guards against loops in the middle of a sequence.
 | 
						|
    if (SomeSuccHasSame && !AllSuccsHaveSame) {
 | 
						|
      S.ClearSequenceProgress();
 | 
						|
    } else if (NotAllSeqEqualButKnownSafe) {
 | 
						|
      // If we would have cleared the state foregoing the fact that we are known
 | 
						|
      // safe, stop code motion. This is because whether or not it is safe to
 | 
						|
      // remove RR pairs via KnownSafe is an orthogonal concept to whether we
 | 
						|
      // are allowed to perform code motion.
 | 
						|
      S.SetCFGHazardAfflicted(true);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
ObjCARCOpt::VisitInstructionBottomUp(Instruction *Inst,
 | 
						|
                                     BasicBlock *BB,
 | 
						|
                                     MapVector<Value *, RRInfo> &Retains,
 | 
						|
                                     BBState &MyStates) {
 | 
						|
  bool NestingDetected = false;
 | 
						|
  InstructionClass Class = GetInstructionClass(Inst);
 | 
						|
  const Value *Arg = 0;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "Class: " << Class << "\n");
 | 
						|
 | 
						|
  switch (Class) {
 | 
						|
  case IC_Release: {
 | 
						|
    Arg = GetObjCArg(Inst);
 | 
						|
 | 
						|
    PtrState &S = MyStates.getPtrBottomUpState(Arg);
 | 
						|
 | 
						|
    // If we see two releases in a row on the same pointer. If so, make
 | 
						|
    // a note, and we'll cicle back to revisit it after we've
 | 
						|
    // hopefully eliminated the second release, which may allow us to
 | 
						|
    // eliminate the first release too.
 | 
						|
    // Theoretically we could implement removal of nested retain+release
 | 
						|
    // pairs by making PtrState hold a stack of states, but this is
 | 
						|
    // simple and avoids adding overhead for the non-nested case.
 | 
						|
    if (S.GetSeq() == S_Release || S.GetSeq() == S_MovableRelease) {
 | 
						|
      DEBUG(dbgs() << "Found nested releases (i.e. a release pair)\n");
 | 
						|
      NestingDetected = true;
 | 
						|
    }
 | 
						|
 | 
						|
    MDNode *ReleaseMetadata = Inst->getMetadata(ImpreciseReleaseMDKind);
 | 
						|
    Sequence NewSeq = ReleaseMetadata ? S_MovableRelease : S_Release;
 | 
						|
    ANNOTATE_BOTTOMUP(Inst, Arg, S.GetSeq(), NewSeq);
 | 
						|
    S.ResetSequenceProgress(NewSeq);
 | 
						|
    S.SetReleaseMetadata(ReleaseMetadata);
 | 
						|
    S.SetKnownSafe(S.HasKnownPositiveRefCount());
 | 
						|
    S.SetTailCallRelease(cast<CallInst>(Inst)->isTailCall());
 | 
						|
    S.InsertCall(Inst);
 | 
						|
    S.SetKnownPositiveRefCount();
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case IC_RetainBlock:
 | 
						|
    // In OptimizeIndividualCalls, we have strength reduced all optimizable
 | 
						|
    // objc_retainBlocks to objc_retains. Thus at this point any
 | 
						|
    // objc_retainBlocks that we see are not optimizable.
 | 
						|
    break;
 | 
						|
  case IC_Retain:
 | 
						|
  case IC_RetainRV: {
 | 
						|
    Arg = GetObjCArg(Inst);
 | 
						|
 | 
						|
    PtrState &S = MyStates.getPtrBottomUpState(Arg);
 | 
						|
    S.SetKnownPositiveRefCount();
 | 
						|
 | 
						|
    Sequence OldSeq = S.GetSeq();
 | 
						|
    switch (OldSeq) {
 | 
						|
    case S_Stop:
 | 
						|
    case S_Release:
 | 
						|
    case S_MovableRelease:
 | 
						|
    case S_Use:
 | 
						|
      // If OldSeq is not S_Use or OldSeq is S_Use and we are tracking an
 | 
						|
      // imprecise release, clear our reverse insertion points.
 | 
						|
      if (OldSeq != S_Use || S.IsTrackingImpreciseReleases())
 | 
						|
        S.ClearReverseInsertPts();
 | 
						|
      // FALL THROUGH
 | 
						|
    case S_CanRelease:
 | 
						|
      // Don't do retain+release tracking for IC_RetainRV, because it's
 | 
						|
      // better to let it remain as the first instruction after a call.
 | 
						|
      if (Class != IC_RetainRV)
 | 
						|
        Retains[Inst] = S.GetRRInfo();
 | 
						|
      S.ClearSequenceProgress();
 | 
						|
      break;
 | 
						|
    case S_None:
 | 
						|
      break;
 | 
						|
    case S_Retain:
 | 
						|
      llvm_unreachable("bottom-up pointer in retain state!");
 | 
						|
    }
 | 
						|
    ANNOTATE_BOTTOMUP(Inst, Arg, OldSeq, S.GetSeq());
 | 
						|
    // A retain moving bottom up can be a use.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case IC_AutoreleasepoolPop:
 | 
						|
    // Conservatively, clear MyStates for all known pointers.
 | 
						|
    MyStates.clearBottomUpPointers();
 | 
						|
    return NestingDetected;
 | 
						|
  case IC_AutoreleasepoolPush:
 | 
						|
  case IC_None:
 | 
						|
    // These are irrelevant.
 | 
						|
    return NestingDetected;
 | 
						|
  case IC_User:
 | 
						|
    // If we have a store into an alloca of a pointer we are tracking, the
 | 
						|
    // pointer has multiple owners implying that we must be more conservative.
 | 
						|
    //
 | 
						|
    // This comes up in the context of a pointer being ``KnownSafe''. In the
 | 
						|
    // presense of a block being initialized, the frontend will emit the
 | 
						|
    // objc_retain on the original pointer and the release on the pointer loaded
 | 
						|
    // from the alloca. The optimizer will through the provenance analysis
 | 
						|
    // realize that the two are related, but since we only require KnownSafe in
 | 
						|
    // one direction, will match the inner retain on the original pointer with
 | 
						|
    // the guard release on the original pointer. This is fixed by ensuring that
 | 
						|
    // in the presense of allocas we only unconditionally remove pointers if
 | 
						|
    // both our retain and our release are KnownSafe.
 | 
						|
    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
 | 
						|
      if (AreAnyUnderlyingObjectsAnAlloca(SI->getPointerOperand())) {
 | 
						|
        BBState::ptr_iterator I = MyStates.findPtrBottomUpState(
 | 
						|
          StripPointerCastsAndObjCCalls(SI->getValueOperand()));
 | 
						|
        if (I != MyStates.bottom_up_ptr_end())
 | 
						|
          MultiOwnersSet.insert(I->first);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Consider any other possible effects of this instruction on each
 | 
						|
  // pointer being tracked.
 | 
						|
  for (BBState::ptr_iterator MI = MyStates.bottom_up_ptr_begin(),
 | 
						|
       ME = MyStates.bottom_up_ptr_end(); MI != ME; ++MI) {
 | 
						|
    const Value *Ptr = MI->first;
 | 
						|
    if (Ptr == Arg)
 | 
						|
      continue; // Handled above.
 | 
						|
    PtrState &S = MI->second;
 | 
						|
    Sequence Seq = S.GetSeq();
 | 
						|
 | 
						|
    // Check for possible releases.
 | 
						|
    if (CanAlterRefCount(Inst, Ptr, PA, Class)) {
 | 
						|
      DEBUG(dbgs() << "CanAlterRefCount: Seq: " << Seq << "; " << *Ptr
 | 
						|
            << "\n");
 | 
						|
      S.ClearKnownPositiveRefCount();
 | 
						|
      switch (Seq) {
 | 
						|
      case S_Use:
 | 
						|
        S.SetSeq(S_CanRelease);
 | 
						|
        ANNOTATE_BOTTOMUP(Inst, Ptr, Seq, S.GetSeq());
 | 
						|
        continue;
 | 
						|
      case S_CanRelease:
 | 
						|
      case S_Release:
 | 
						|
      case S_MovableRelease:
 | 
						|
      case S_Stop:
 | 
						|
      case S_None:
 | 
						|
        break;
 | 
						|
      case S_Retain:
 | 
						|
        llvm_unreachable("bottom-up pointer in retain state!");
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Check for possible direct uses.
 | 
						|
    switch (Seq) {
 | 
						|
    case S_Release:
 | 
						|
    case S_MovableRelease:
 | 
						|
      if (CanUse(Inst, Ptr, PA, Class)) {
 | 
						|
        DEBUG(dbgs() << "CanUse: Seq: " << Seq << "; " << *Ptr
 | 
						|
              << "\n");
 | 
						|
        assert(!S.HasReverseInsertPts());
 | 
						|
        // If this is an invoke instruction, we're scanning it as part of
 | 
						|
        // one of its successor blocks, since we can't insert code after it
 | 
						|
        // in its own block, and we don't want to split critical edges.
 | 
						|
        if (isa<InvokeInst>(Inst))
 | 
						|
          S.InsertReverseInsertPt(BB->getFirstInsertionPt());
 | 
						|
        else
 | 
						|
          S.InsertReverseInsertPt(llvm::next(BasicBlock::iterator(Inst)));
 | 
						|
        S.SetSeq(S_Use);
 | 
						|
        ANNOTATE_BOTTOMUP(Inst, Ptr, Seq, S_Use);
 | 
						|
      } else if (Seq == S_Release && IsUser(Class)) {
 | 
						|
        DEBUG(dbgs() << "PreciseReleaseUse: Seq: " << Seq << "; " << *Ptr
 | 
						|
              << "\n");
 | 
						|
        // Non-movable releases depend on any possible objc pointer use.
 | 
						|
        S.SetSeq(S_Stop);
 | 
						|
        ANNOTATE_BOTTOMUP(Inst, Ptr, S_Release, S_Stop);
 | 
						|
        assert(!S.HasReverseInsertPts());
 | 
						|
        // As above; handle invoke specially.
 | 
						|
        if (isa<InvokeInst>(Inst))
 | 
						|
          S.InsertReverseInsertPt(BB->getFirstInsertionPt());
 | 
						|
        else
 | 
						|
          S.InsertReverseInsertPt(llvm::next(BasicBlock::iterator(Inst)));
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case S_Stop:
 | 
						|
      if (CanUse(Inst, Ptr, PA, Class)) {
 | 
						|
        DEBUG(dbgs() << "PreciseStopUse: Seq: " << Seq << "; " << *Ptr
 | 
						|
              << "\n");
 | 
						|
        S.SetSeq(S_Use);
 | 
						|
        ANNOTATE_BOTTOMUP(Inst, Ptr, Seq, S_Use);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case S_CanRelease:
 | 
						|
    case S_Use:
 | 
						|
    case S_None:
 | 
						|
      break;
 | 
						|
    case S_Retain:
 | 
						|
      llvm_unreachable("bottom-up pointer in retain state!");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return NestingDetected;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
ObjCARCOpt::VisitBottomUp(BasicBlock *BB,
 | 
						|
                          DenseMap<const BasicBlock *, BBState> &BBStates,
 | 
						|
                          MapVector<Value *, RRInfo> &Retains) {
 | 
						|
 | 
						|
  DEBUG(dbgs() << "\n== ObjCARCOpt::VisitBottomUp ==\n");
 | 
						|
 | 
						|
  bool NestingDetected = false;
 | 
						|
  BBState &MyStates = BBStates[BB];
 | 
						|
 | 
						|
  // Merge the states from each successor to compute the initial state
 | 
						|
  // for the current block.
 | 
						|
  BBState::edge_iterator SI(MyStates.succ_begin()),
 | 
						|
                         SE(MyStates.succ_end());
 | 
						|
  if (SI != SE) {
 | 
						|
    const BasicBlock *Succ = *SI;
 | 
						|
    DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Succ);
 | 
						|
    assert(I != BBStates.end());
 | 
						|
    MyStates.InitFromSucc(I->second);
 | 
						|
    ++SI;
 | 
						|
    for (; SI != SE; ++SI) {
 | 
						|
      Succ = *SI;
 | 
						|
      I = BBStates.find(Succ);
 | 
						|
      assert(I != BBStates.end());
 | 
						|
      MyStates.MergeSucc(I->second);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If ARC Annotations are enabled, output the current state of pointers at the
 | 
						|
  // bottom of the basic block.
 | 
						|
  ANNOTATE_BOTTOMUP_BBEND(MyStates, BB);
 | 
						|
 | 
						|
  // Visit all the instructions, bottom-up.
 | 
						|
  for (BasicBlock::iterator I = BB->end(), E = BB->begin(); I != E; --I) {
 | 
						|
    Instruction *Inst = llvm::prior(I);
 | 
						|
 | 
						|
    // Invoke instructions are visited as part of their successors (below).
 | 
						|
    if (isa<InvokeInst>(Inst))
 | 
						|
      continue;
 | 
						|
 | 
						|
    DEBUG(dbgs() << "Visiting " << *Inst << "\n");
 | 
						|
 | 
						|
    NestingDetected |= VisitInstructionBottomUp(Inst, BB, Retains, MyStates);
 | 
						|
  }
 | 
						|
 | 
						|
  // If there's a predecessor with an invoke, visit the invoke as if it were
 | 
						|
  // part of this block, since we can't insert code after an invoke in its own
 | 
						|
  // block, and we don't want to split critical edges.
 | 
						|
  for (BBState::edge_iterator PI(MyStates.pred_begin()),
 | 
						|
       PE(MyStates.pred_end()); PI != PE; ++PI) {
 | 
						|
    BasicBlock *Pred = *PI;
 | 
						|
    if (InvokeInst *II = dyn_cast<InvokeInst>(&Pred->back()))
 | 
						|
      NestingDetected |= VisitInstructionBottomUp(II, BB, Retains, MyStates);
 | 
						|
  }
 | 
						|
 | 
						|
  // If ARC Annotations are enabled, output the current state of pointers at the
 | 
						|
  // top of the basic block.
 | 
						|
  ANNOTATE_BOTTOMUP_BBSTART(MyStates, BB);
 | 
						|
 | 
						|
  return NestingDetected;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
ObjCARCOpt::VisitInstructionTopDown(Instruction *Inst,
 | 
						|
                                    DenseMap<Value *, RRInfo> &Releases,
 | 
						|
                                    BBState &MyStates) {
 | 
						|
  bool NestingDetected = false;
 | 
						|
  InstructionClass Class = GetInstructionClass(Inst);
 | 
						|
  const Value *Arg = 0;
 | 
						|
 | 
						|
  switch (Class) {
 | 
						|
  case IC_RetainBlock:
 | 
						|
    // In OptimizeIndividualCalls, we have strength reduced all optimizable
 | 
						|
    // objc_retainBlocks to objc_retains. Thus at this point any
 | 
						|
    // objc_retainBlocks that we see are not optimizable.
 | 
						|
    break;
 | 
						|
  case IC_Retain:
 | 
						|
  case IC_RetainRV: {
 | 
						|
    Arg = GetObjCArg(Inst);
 | 
						|
 | 
						|
    PtrState &S = MyStates.getPtrTopDownState(Arg);
 | 
						|
 | 
						|
    // Don't do retain+release tracking for IC_RetainRV, because it's
 | 
						|
    // better to let it remain as the first instruction after a call.
 | 
						|
    if (Class != IC_RetainRV) {
 | 
						|
      // If we see two retains in a row on the same pointer. If so, make
 | 
						|
      // a note, and we'll cicle back to revisit it after we've
 | 
						|
      // hopefully eliminated the second retain, which may allow us to
 | 
						|
      // eliminate the first retain too.
 | 
						|
      // Theoretically we could implement removal of nested retain+release
 | 
						|
      // pairs by making PtrState hold a stack of states, but this is
 | 
						|
      // simple and avoids adding overhead for the non-nested case.
 | 
						|
      if (S.GetSeq() == S_Retain)
 | 
						|
        NestingDetected = true;
 | 
						|
 | 
						|
      ANNOTATE_TOPDOWN(Inst, Arg, S.GetSeq(), S_Retain);
 | 
						|
      S.ResetSequenceProgress(S_Retain);
 | 
						|
      S.SetKnownSafe(S.HasKnownPositiveRefCount());
 | 
						|
      S.InsertCall(Inst);
 | 
						|
    }
 | 
						|
 | 
						|
    S.SetKnownPositiveRefCount();
 | 
						|
 | 
						|
    // A retain can be a potential use; procede to the generic checking
 | 
						|
    // code below.
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case IC_Release: {
 | 
						|
    Arg = GetObjCArg(Inst);
 | 
						|
 | 
						|
    PtrState &S = MyStates.getPtrTopDownState(Arg);
 | 
						|
    S.ClearKnownPositiveRefCount();
 | 
						|
 | 
						|
    Sequence OldSeq = S.GetSeq();
 | 
						|
 | 
						|
    MDNode *ReleaseMetadata = Inst->getMetadata(ImpreciseReleaseMDKind);
 | 
						|
 | 
						|
    switch (OldSeq) {
 | 
						|
    case S_Retain:
 | 
						|
    case S_CanRelease:
 | 
						|
      if (OldSeq == S_Retain || ReleaseMetadata != 0)
 | 
						|
        S.ClearReverseInsertPts();
 | 
						|
      // FALL THROUGH
 | 
						|
    case S_Use:
 | 
						|
      S.SetReleaseMetadata(ReleaseMetadata);
 | 
						|
      S.SetTailCallRelease(cast<CallInst>(Inst)->isTailCall());
 | 
						|
      Releases[Inst] = S.GetRRInfo();
 | 
						|
      ANNOTATE_TOPDOWN(Inst, Arg, S.GetSeq(), S_None);
 | 
						|
      S.ClearSequenceProgress();
 | 
						|
      break;
 | 
						|
    case S_None:
 | 
						|
      break;
 | 
						|
    case S_Stop:
 | 
						|
    case S_Release:
 | 
						|
    case S_MovableRelease:
 | 
						|
      llvm_unreachable("top-down pointer in release state!");
 | 
						|
    }
 | 
						|
    break;
 | 
						|
  }
 | 
						|
  case IC_AutoreleasepoolPop:
 | 
						|
    // Conservatively, clear MyStates for all known pointers.
 | 
						|
    MyStates.clearTopDownPointers();
 | 
						|
    return NestingDetected;
 | 
						|
  case IC_AutoreleasepoolPush:
 | 
						|
  case IC_None:
 | 
						|
    // These are irrelevant.
 | 
						|
    return NestingDetected;
 | 
						|
  default:
 | 
						|
    break;
 | 
						|
  }
 | 
						|
 | 
						|
  // Consider any other possible effects of this instruction on each
 | 
						|
  // pointer being tracked.
 | 
						|
  for (BBState::ptr_iterator MI = MyStates.top_down_ptr_begin(),
 | 
						|
       ME = MyStates.top_down_ptr_end(); MI != ME; ++MI) {
 | 
						|
    const Value *Ptr = MI->first;
 | 
						|
    if (Ptr == Arg)
 | 
						|
      continue; // Handled above.
 | 
						|
    PtrState &S = MI->second;
 | 
						|
    Sequence Seq = S.GetSeq();
 | 
						|
 | 
						|
    // Check for possible releases.
 | 
						|
    if (CanAlterRefCount(Inst, Ptr, PA, Class)) {
 | 
						|
      DEBUG(dbgs() << "CanAlterRefCount: Seq: " << Seq << "; " << *Ptr
 | 
						|
            << "\n");
 | 
						|
      S.ClearKnownPositiveRefCount();
 | 
						|
      switch (Seq) {
 | 
						|
      case S_Retain:
 | 
						|
        S.SetSeq(S_CanRelease);
 | 
						|
        ANNOTATE_TOPDOWN(Inst, Ptr, Seq, S_CanRelease);
 | 
						|
        assert(!S.HasReverseInsertPts());
 | 
						|
        S.InsertReverseInsertPt(Inst);
 | 
						|
 | 
						|
        // One call can't cause a transition from S_Retain to S_CanRelease
 | 
						|
        // and S_CanRelease to S_Use. If we've made the first transition,
 | 
						|
        // we're done.
 | 
						|
        continue;
 | 
						|
      case S_Use:
 | 
						|
      case S_CanRelease:
 | 
						|
      case S_None:
 | 
						|
        break;
 | 
						|
      case S_Stop:
 | 
						|
      case S_Release:
 | 
						|
      case S_MovableRelease:
 | 
						|
        llvm_unreachable("top-down pointer in release state!");
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Check for possible direct uses.
 | 
						|
    switch (Seq) {
 | 
						|
    case S_CanRelease:
 | 
						|
      if (CanUse(Inst, Ptr, PA, Class)) {
 | 
						|
        DEBUG(dbgs() << "CanUse: Seq: " << Seq << "; " << *Ptr
 | 
						|
              << "\n");
 | 
						|
        S.SetSeq(S_Use);
 | 
						|
        ANNOTATE_TOPDOWN(Inst, Ptr, Seq, S_Use);
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case S_Retain:
 | 
						|
    case S_Use:
 | 
						|
    case S_None:
 | 
						|
      break;
 | 
						|
    case S_Stop:
 | 
						|
    case S_Release:
 | 
						|
    case S_MovableRelease:
 | 
						|
      llvm_unreachable("top-down pointer in release state!");
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return NestingDetected;
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
ObjCARCOpt::VisitTopDown(BasicBlock *BB,
 | 
						|
                         DenseMap<const BasicBlock *, BBState> &BBStates,
 | 
						|
                         DenseMap<Value *, RRInfo> &Releases) {
 | 
						|
  DEBUG(dbgs() << "\n== ObjCARCOpt::VisitTopDown ==\n");
 | 
						|
  bool NestingDetected = false;
 | 
						|
  BBState &MyStates = BBStates[BB];
 | 
						|
 | 
						|
  // Merge the states from each predecessor to compute the initial state
 | 
						|
  // for the current block.
 | 
						|
  BBState::edge_iterator PI(MyStates.pred_begin()),
 | 
						|
                         PE(MyStates.pred_end());
 | 
						|
  if (PI != PE) {
 | 
						|
    const BasicBlock *Pred = *PI;
 | 
						|
    DenseMap<const BasicBlock *, BBState>::iterator I = BBStates.find(Pred);
 | 
						|
    assert(I != BBStates.end());
 | 
						|
    MyStates.InitFromPred(I->second);
 | 
						|
    ++PI;
 | 
						|
    for (; PI != PE; ++PI) {
 | 
						|
      Pred = *PI;
 | 
						|
      I = BBStates.find(Pred);
 | 
						|
      assert(I != BBStates.end());
 | 
						|
      MyStates.MergePred(I->second);
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // If ARC Annotations are enabled, output the current state of pointers at the
 | 
						|
  // top of the basic block.
 | 
						|
  ANNOTATE_TOPDOWN_BBSTART(MyStates, BB);
 | 
						|
 | 
						|
  // Visit all the instructions, top-down.
 | 
						|
  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
 | 
						|
    Instruction *Inst = I;
 | 
						|
 | 
						|
    DEBUG(dbgs() << "Visiting " << *Inst << "\n");
 | 
						|
 | 
						|
    NestingDetected |= VisitInstructionTopDown(Inst, Releases, MyStates);
 | 
						|
  }
 | 
						|
 | 
						|
  // If ARC Annotations are enabled, output the current state of pointers at the
 | 
						|
  // bottom of the basic block.
 | 
						|
  ANNOTATE_TOPDOWN_BBEND(MyStates, BB);
 | 
						|
 | 
						|
#ifdef ARC_ANNOTATIONS
 | 
						|
  if (!(EnableARCAnnotations && DisableCheckForCFGHazards))
 | 
						|
#endif
 | 
						|
  CheckForCFGHazards(BB, BBStates, MyStates);
 | 
						|
  return NestingDetected;
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
ComputePostOrders(Function &F,
 | 
						|
                  SmallVectorImpl<BasicBlock *> &PostOrder,
 | 
						|
                  SmallVectorImpl<BasicBlock *> &ReverseCFGPostOrder,
 | 
						|
                  unsigned NoObjCARCExceptionsMDKind,
 | 
						|
                  DenseMap<const BasicBlock *, BBState> &BBStates) {
 | 
						|
  /// The visited set, for doing DFS walks.
 | 
						|
  SmallPtrSet<BasicBlock *, 16> Visited;
 | 
						|
 | 
						|
  // Do DFS, computing the PostOrder.
 | 
						|
  SmallPtrSet<BasicBlock *, 16> OnStack;
 | 
						|
  SmallVector<std::pair<BasicBlock *, succ_iterator>, 16> SuccStack;
 | 
						|
 | 
						|
  // Functions always have exactly one entry block, and we don't have
 | 
						|
  // any other block that we treat like an entry block.
 | 
						|
  BasicBlock *EntryBB = &F.getEntryBlock();
 | 
						|
  BBState &MyStates = BBStates[EntryBB];
 | 
						|
  MyStates.SetAsEntry();
 | 
						|
  TerminatorInst *EntryTI = cast<TerminatorInst>(&EntryBB->back());
 | 
						|
  SuccStack.push_back(std::make_pair(EntryBB, succ_iterator(EntryTI)));
 | 
						|
  Visited.insert(EntryBB);
 | 
						|
  OnStack.insert(EntryBB);
 | 
						|
  do {
 | 
						|
  dfs_next_succ:
 | 
						|
    BasicBlock *CurrBB = SuccStack.back().first;
 | 
						|
    TerminatorInst *TI = cast<TerminatorInst>(&CurrBB->back());
 | 
						|
    succ_iterator SE(TI, false);
 | 
						|
 | 
						|
    while (SuccStack.back().second != SE) {
 | 
						|
      BasicBlock *SuccBB = *SuccStack.back().second++;
 | 
						|
      if (Visited.insert(SuccBB)) {
 | 
						|
        TerminatorInst *TI = cast<TerminatorInst>(&SuccBB->back());
 | 
						|
        SuccStack.push_back(std::make_pair(SuccBB, succ_iterator(TI)));
 | 
						|
        BBStates[CurrBB].addSucc(SuccBB);
 | 
						|
        BBState &SuccStates = BBStates[SuccBB];
 | 
						|
        SuccStates.addPred(CurrBB);
 | 
						|
        OnStack.insert(SuccBB);
 | 
						|
        goto dfs_next_succ;
 | 
						|
      }
 | 
						|
 | 
						|
      if (!OnStack.count(SuccBB)) {
 | 
						|
        BBStates[CurrBB].addSucc(SuccBB);
 | 
						|
        BBStates[SuccBB].addPred(CurrBB);
 | 
						|
      }
 | 
						|
    }
 | 
						|
    OnStack.erase(CurrBB);
 | 
						|
    PostOrder.push_back(CurrBB);
 | 
						|
    SuccStack.pop_back();
 | 
						|
  } while (!SuccStack.empty());
 | 
						|
 | 
						|
  Visited.clear();
 | 
						|
 | 
						|
  // Do reverse-CFG DFS, computing the reverse-CFG PostOrder.
 | 
						|
  // Functions may have many exits, and there also blocks which we treat
 | 
						|
  // as exits due to ignored edges.
 | 
						|
  SmallVector<std::pair<BasicBlock *, BBState::edge_iterator>, 16> PredStack;
 | 
						|
  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
 | 
						|
    BasicBlock *ExitBB = I;
 | 
						|
    BBState &MyStates = BBStates[ExitBB];
 | 
						|
    if (!MyStates.isExit())
 | 
						|
      continue;
 | 
						|
 | 
						|
    MyStates.SetAsExit();
 | 
						|
 | 
						|
    PredStack.push_back(std::make_pair(ExitBB, MyStates.pred_begin()));
 | 
						|
    Visited.insert(ExitBB);
 | 
						|
    while (!PredStack.empty()) {
 | 
						|
    reverse_dfs_next_succ:
 | 
						|
      BBState::edge_iterator PE = BBStates[PredStack.back().first].pred_end();
 | 
						|
      while (PredStack.back().second != PE) {
 | 
						|
        BasicBlock *BB = *PredStack.back().second++;
 | 
						|
        if (Visited.insert(BB)) {
 | 
						|
          PredStack.push_back(std::make_pair(BB, BBStates[BB].pred_begin()));
 | 
						|
          goto reverse_dfs_next_succ;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      ReverseCFGPostOrder.push_back(PredStack.pop_back_val().first);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Visit the function both top-down and bottom-up.
 | 
						|
bool
 | 
						|
ObjCARCOpt::Visit(Function &F,
 | 
						|
                  DenseMap<const BasicBlock *, BBState> &BBStates,
 | 
						|
                  MapVector<Value *, RRInfo> &Retains,
 | 
						|
                  DenseMap<Value *, RRInfo> &Releases) {
 | 
						|
 | 
						|
  // Use reverse-postorder traversals, because we magically know that loops
 | 
						|
  // will be well behaved, i.e. they won't repeatedly call retain on a single
 | 
						|
  // pointer without doing a release. We can't use the ReversePostOrderTraversal
 | 
						|
  // class here because we want the reverse-CFG postorder to consider each
 | 
						|
  // function exit point, and we want to ignore selected cycle edges.
 | 
						|
  SmallVector<BasicBlock *, 16> PostOrder;
 | 
						|
  SmallVector<BasicBlock *, 16> ReverseCFGPostOrder;
 | 
						|
  ComputePostOrders(F, PostOrder, ReverseCFGPostOrder,
 | 
						|
                    NoObjCARCExceptionsMDKind,
 | 
						|
                    BBStates);
 | 
						|
 | 
						|
  // Use reverse-postorder on the reverse CFG for bottom-up.
 | 
						|
  bool BottomUpNestingDetected = false;
 | 
						|
  for (SmallVectorImpl<BasicBlock *>::const_reverse_iterator I =
 | 
						|
       ReverseCFGPostOrder.rbegin(), E = ReverseCFGPostOrder.rend();
 | 
						|
       I != E; ++I)
 | 
						|
    BottomUpNestingDetected |= VisitBottomUp(*I, BBStates, Retains);
 | 
						|
 | 
						|
  // Use reverse-postorder for top-down.
 | 
						|
  bool TopDownNestingDetected = false;
 | 
						|
  for (SmallVectorImpl<BasicBlock *>::const_reverse_iterator I =
 | 
						|
       PostOrder.rbegin(), E = PostOrder.rend();
 | 
						|
       I != E; ++I)
 | 
						|
    TopDownNestingDetected |= VisitTopDown(*I, BBStates, Releases);
 | 
						|
 | 
						|
  return TopDownNestingDetected && BottomUpNestingDetected;
 | 
						|
}
 | 
						|
 | 
						|
/// Move the calls in RetainsToMove and ReleasesToMove.
 | 
						|
void ObjCARCOpt::MoveCalls(Value *Arg,
 | 
						|
                           RRInfo &RetainsToMove,
 | 
						|
                           RRInfo &ReleasesToMove,
 | 
						|
                           MapVector<Value *, RRInfo> &Retains,
 | 
						|
                           DenseMap<Value *, RRInfo> &Releases,
 | 
						|
                           SmallVectorImpl<Instruction *> &DeadInsts,
 | 
						|
                           Module *M) {
 | 
						|
  Type *ArgTy = Arg->getType();
 | 
						|
  Type *ParamTy = PointerType::getUnqual(Type::getInt8Ty(ArgTy->getContext()));
 | 
						|
 | 
						|
  DEBUG(dbgs() << "== ObjCARCOpt::MoveCalls ==\n");
 | 
						|
 | 
						|
  // Insert the new retain and release calls.
 | 
						|
  for (SmallPtrSet<Instruction *, 2>::const_iterator
 | 
						|
       PI = ReleasesToMove.ReverseInsertPts.begin(),
 | 
						|
       PE = ReleasesToMove.ReverseInsertPts.end(); PI != PE; ++PI) {
 | 
						|
    Instruction *InsertPt = *PI;
 | 
						|
    Value *MyArg = ArgTy == ParamTy ? Arg :
 | 
						|
                   new BitCastInst(Arg, ParamTy, "", InsertPt);
 | 
						|
    Constant *Decl = EP.get(ARCRuntimeEntryPoints::EPT_Retain);
 | 
						|
    CallInst *Call = CallInst::Create(Decl, MyArg, "", InsertPt);
 | 
						|
    Call->setDoesNotThrow();
 | 
						|
    Call->setTailCall();
 | 
						|
 | 
						|
    DEBUG(dbgs() << "Inserting new Retain: " << *Call << "\n"
 | 
						|
                    "At insertion point: " << *InsertPt << "\n");
 | 
						|
  }
 | 
						|
  for (SmallPtrSet<Instruction *, 2>::const_iterator
 | 
						|
       PI = RetainsToMove.ReverseInsertPts.begin(),
 | 
						|
       PE = RetainsToMove.ReverseInsertPts.end(); PI != PE; ++PI) {
 | 
						|
    Instruction *InsertPt = *PI;
 | 
						|
    Value *MyArg = ArgTy == ParamTy ? Arg :
 | 
						|
                   new BitCastInst(Arg, ParamTy, "", InsertPt);
 | 
						|
    Constant *Decl = EP.get(ARCRuntimeEntryPoints::EPT_Release);
 | 
						|
    CallInst *Call = CallInst::Create(Decl, MyArg, "", InsertPt);
 | 
						|
    // Attach a clang.imprecise_release metadata tag, if appropriate.
 | 
						|
    if (MDNode *M = ReleasesToMove.ReleaseMetadata)
 | 
						|
      Call->setMetadata(ImpreciseReleaseMDKind, M);
 | 
						|
    Call->setDoesNotThrow();
 | 
						|
    if (ReleasesToMove.IsTailCallRelease)
 | 
						|
      Call->setTailCall();
 | 
						|
 | 
						|
    DEBUG(dbgs() << "Inserting new Release: " << *Call << "\n"
 | 
						|
                    "At insertion point: " << *InsertPt << "\n");
 | 
						|
  }
 | 
						|
 | 
						|
  // Delete the original retain and release calls.
 | 
						|
  for (SmallPtrSet<Instruction *, 2>::const_iterator
 | 
						|
       AI = RetainsToMove.Calls.begin(),
 | 
						|
       AE = RetainsToMove.Calls.end(); AI != AE; ++AI) {
 | 
						|
    Instruction *OrigRetain = *AI;
 | 
						|
    Retains.blot(OrigRetain);
 | 
						|
    DeadInsts.push_back(OrigRetain);
 | 
						|
    DEBUG(dbgs() << "Deleting retain: " << *OrigRetain << "\n");
 | 
						|
  }
 | 
						|
  for (SmallPtrSet<Instruction *, 2>::const_iterator
 | 
						|
       AI = ReleasesToMove.Calls.begin(),
 | 
						|
       AE = ReleasesToMove.Calls.end(); AI != AE; ++AI) {
 | 
						|
    Instruction *OrigRelease = *AI;
 | 
						|
    Releases.erase(OrigRelease);
 | 
						|
    DeadInsts.push_back(OrigRelease);
 | 
						|
    DEBUG(dbgs() << "Deleting release: " << *OrigRelease << "\n");
 | 
						|
  }
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
bool
 | 
						|
ObjCARCOpt::ConnectTDBUTraversals(DenseMap<const BasicBlock *, BBState>
 | 
						|
                                    &BBStates,
 | 
						|
                                  MapVector<Value *, RRInfo> &Retains,
 | 
						|
                                  DenseMap<Value *, RRInfo> &Releases,
 | 
						|
                                  Module *M,
 | 
						|
                                  SmallVectorImpl<Instruction *> &NewRetains,
 | 
						|
                                  SmallVectorImpl<Instruction *> &NewReleases,
 | 
						|
                                  SmallVectorImpl<Instruction *> &DeadInsts,
 | 
						|
                                  RRInfo &RetainsToMove,
 | 
						|
                                  RRInfo &ReleasesToMove,
 | 
						|
                                  Value *Arg,
 | 
						|
                                  bool KnownSafe,
 | 
						|
                                  bool &AnyPairsCompletelyEliminated) {
 | 
						|
  // If a pair happens in a region where it is known that the reference count
 | 
						|
  // is already incremented, we can similarly ignore possible decrements unless
 | 
						|
  // we are dealing with a retainable object with multiple provenance sources.
 | 
						|
  bool KnownSafeTD = true, KnownSafeBU = true;
 | 
						|
  bool MultipleOwners = false;
 | 
						|
  bool CFGHazardAfflicted = false;
 | 
						|
 | 
						|
  // Connect the dots between the top-down-collected RetainsToMove and
 | 
						|
  // bottom-up-collected ReleasesToMove to form sets of related calls.
 | 
						|
  // This is an iterative process so that we connect multiple releases
 | 
						|
  // to multiple retains if needed.
 | 
						|
  unsigned OldDelta = 0;
 | 
						|
  unsigned NewDelta = 0;
 | 
						|
  unsigned OldCount = 0;
 | 
						|
  unsigned NewCount = 0;
 | 
						|
  bool FirstRelease = true;
 | 
						|
  for (;;) {
 | 
						|
    for (SmallVectorImpl<Instruction *>::const_iterator
 | 
						|
           NI = NewRetains.begin(), NE = NewRetains.end(); NI != NE; ++NI) {
 | 
						|
      Instruction *NewRetain = *NI;
 | 
						|
      MapVector<Value *, RRInfo>::const_iterator It = Retains.find(NewRetain);
 | 
						|
      assert(It != Retains.end());
 | 
						|
      const RRInfo &NewRetainRRI = It->second;
 | 
						|
      KnownSafeTD &= NewRetainRRI.KnownSafe;
 | 
						|
      MultipleOwners =
 | 
						|
        MultipleOwners || MultiOwnersSet.count(GetObjCArg(NewRetain));
 | 
						|
      for (SmallPtrSet<Instruction *, 2>::const_iterator
 | 
						|
             LI = NewRetainRRI.Calls.begin(),
 | 
						|
             LE = NewRetainRRI.Calls.end(); LI != LE; ++LI) {
 | 
						|
        Instruction *NewRetainRelease = *LI;
 | 
						|
        DenseMap<Value *, RRInfo>::const_iterator Jt =
 | 
						|
          Releases.find(NewRetainRelease);
 | 
						|
        if (Jt == Releases.end())
 | 
						|
          return false;
 | 
						|
        const RRInfo &NewRetainReleaseRRI = Jt->second;
 | 
						|
        assert(NewRetainReleaseRRI.Calls.count(NewRetain));
 | 
						|
        if (ReleasesToMove.Calls.insert(NewRetainRelease)) {
 | 
						|
 | 
						|
          // If we overflow when we compute the path count, don't remove/move
 | 
						|
          // anything.
 | 
						|
          const BBState &NRRBBState = BBStates[NewRetainRelease->getParent()];
 | 
						|
          unsigned PathCount = BBState::OverflowOccurredValue;
 | 
						|
          if (NRRBBState.GetAllPathCountWithOverflow(PathCount))
 | 
						|
            return false;
 | 
						|
          assert(PathCount != BBState::OverflowOccurredValue &&
 | 
						|
                 "PathCount at this point can not be "
 | 
						|
                 "OverflowOccurredValue.");
 | 
						|
          OldDelta -= PathCount;
 | 
						|
 | 
						|
          // Merge the ReleaseMetadata and IsTailCallRelease values.
 | 
						|
          if (FirstRelease) {
 | 
						|
            ReleasesToMove.ReleaseMetadata =
 | 
						|
              NewRetainReleaseRRI.ReleaseMetadata;
 | 
						|
            ReleasesToMove.IsTailCallRelease =
 | 
						|
              NewRetainReleaseRRI.IsTailCallRelease;
 | 
						|
            FirstRelease = false;
 | 
						|
          } else {
 | 
						|
            if (ReleasesToMove.ReleaseMetadata !=
 | 
						|
                NewRetainReleaseRRI.ReleaseMetadata)
 | 
						|
              ReleasesToMove.ReleaseMetadata = 0;
 | 
						|
            if (ReleasesToMove.IsTailCallRelease !=
 | 
						|
                NewRetainReleaseRRI.IsTailCallRelease)
 | 
						|
              ReleasesToMove.IsTailCallRelease = false;
 | 
						|
          }
 | 
						|
 | 
						|
          // Collect the optimal insertion points.
 | 
						|
          if (!KnownSafe)
 | 
						|
            for (SmallPtrSet<Instruction *, 2>::const_iterator
 | 
						|
                   RI = NewRetainReleaseRRI.ReverseInsertPts.begin(),
 | 
						|
                   RE = NewRetainReleaseRRI.ReverseInsertPts.end();
 | 
						|
                 RI != RE; ++RI) {
 | 
						|
              Instruction *RIP = *RI;
 | 
						|
              if (ReleasesToMove.ReverseInsertPts.insert(RIP)) {
 | 
						|
                // If we overflow when we compute the path count, don't
 | 
						|
                // remove/move anything.
 | 
						|
                const BBState &RIPBBState = BBStates[RIP->getParent()];
 | 
						|
                PathCount = BBState::OverflowOccurredValue;
 | 
						|
                if (RIPBBState.GetAllPathCountWithOverflow(PathCount))
 | 
						|
                  return false;
 | 
						|
                assert(PathCount != BBState::OverflowOccurredValue &&
 | 
						|
                       "PathCount at this point can not be "
 | 
						|
                       "OverflowOccurredValue.");
 | 
						|
                NewDelta -= PathCount;
 | 
						|
              }
 | 
						|
            }
 | 
						|
          NewReleases.push_back(NewRetainRelease);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    NewRetains.clear();
 | 
						|
    if (NewReleases.empty()) break;
 | 
						|
 | 
						|
    // Back the other way.
 | 
						|
    for (SmallVectorImpl<Instruction *>::const_iterator
 | 
						|
           NI = NewReleases.begin(), NE = NewReleases.end(); NI != NE; ++NI) {
 | 
						|
      Instruction *NewRelease = *NI;
 | 
						|
      DenseMap<Value *, RRInfo>::const_iterator It =
 | 
						|
        Releases.find(NewRelease);
 | 
						|
      assert(It != Releases.end());
 | 
						|
      const RRInfo &NewReleaseRRI = It->second;
 | 
						|
      KnownSafeBU &= NewReleaseRRI.KnownSafe;
 | 
						|
      CFGHazardAfflicted |= NewReleaseRRI.CFGHazardAfflicted;
 | 
						|
      for (SmallPtrSet<Instruction *, 2>::const_iterator
 | 
						|
             LI = NewReleaseRRI.Calls.begin(),
 | 
						|
             LE = NewReleaseRRI.Calls.end(); LI != LE; ++LI) {
 | 
						|
        Instruction *NewReleaseRetain = *LI;
 | 
						|
        MapVector<Value *, RRInfo>::const_iterator Jt =
 | 
						|
          Retains.find(NewReleaseRetain);
 | 
						|
        if (Jt == Retains.end())
 | 
						|
          return false;
 | 
						|
        const RRInfo &NewReleaseRetainRRI = Jt->second;
 | 
						|
        assert(NewReleaseRetainRRI.Calls.count(NewRelease));
 | 
						|
        if (RetainsToMove.Calls.insert(NewReleaseRetain)) {
 | 
						|
 | 
						|
          // If we overflow when we compute the path count, don't remove/move
 | 
						|
          // anything.
 | 
						|
          const BBState &NRRBBState = BBStates[NewReleaseRetain->getParent()];
 | 
						|
          unsigned PathCount = BBState::OverflowOccurredValue;
 | 
						|
          if (NRRBBState.GetAllPathCountWithOverflow(PathCount))
 | 
						|
            return false;
 | 
						|
          assert(PathCount != BBState::OverflowOccurredValue &&
 | 
						|
                 "PathCount at this point can not be "
 | 
						|
                 "OverflowOccurredValue.");
 | 
						|
          OldDelta += PathCount;
 | 
						|
          OldCount += PathCount;
 | 
						|
 | 
						|
          // Collect the optimal insertion points.
 | 
						|
          if (!KnownSafe)
 | 
						|
            for (SmallPtrSet<Instruction *, 2>::const_iterator
 | 
						|
                   RI = NewReleaseRetainRRI.ReverseInsertPts.begin(),
 | 
						|
                   RE = NewReleaseRetainRRI.ReverseInsertPts.end();
 | 
						|
                 RI != RE; ++RI) {
 | 
						|
              Instruction *RIP = *RI;
 | 
						|
              if (RetainsToMove.ReverseInsertPts.insert(RIP)) {
 | 
						|
                // If we overflow when we compute the path count, don't
 | 
						|
                // remove/move anything.
 | 
						|
                const BBState &RIPBBState = BBStates[RIP->getParent()];
 | 
						|
 | 
						|
                PathCount = BBState::OverflowOccurredValue;
 | 
						|
                if (RIPBBState.GetAllPathCountWithOverflow(PathCount))
 | 
						|
                  return false;
 | 
						|
                assert(PathCount != BBState::OverflowOccurredValue &&
 | 
						|
                       "PathCount at this point can not be "
 | 
						|
                       "OverflowOccurredValue.");
 | 
						|
                NewDelta += PathCount;
 | 
						|
                NewCount += PathCount;
 | 
						|
              }
 | 
						|
            }
 | 
						|
          NewRetains.push_back(NewReleaseRetain);
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
    NewReleases.clear();
 | 
						|
    if (NewRetains.empty()) break;
 | 
						|
  }
 | 
						|
 | 
						|
  // If the pointer is known incremented in 1 direction and we do not have
 | 
						|
  // MultipleOwners, we can safely remove the retain/releases. Otherwise we need
 | 
						|
  // to be known safe in both directions.
 | 
						|
  bool UnconditionallySafe = (KnownSafeTD && KnownSafeBU) ||
 | 
						|
    ((KnownSafeTD || KnownSafeBU) && !MultipleOwners);
 | 
						|
  if (UnconditionallySafe) {
 | 
						|
    RetainsToMove.ReverseInsertPts.clear();
 | 
						|
    ReleasesToMove.ReverseInsertPts.clear();
 | 
						|
    NewCount = 0;
 | 
						|
  } else {
 | 
						|
    // Determine whether the new insertion points we computed preserve the
 | 
						|
    // balance of retain and release calls through the program.
 | 
						|
    // TODO: If the fully aggressive solution isn't valid, try to find a
 | 
						|
    // less aggressive solution which is.
 | 
						|
    if (NewDelta != 0)
 | 
						|
      return false;
 | 
						|
 | 
						|
    // At this point, we are not going to remove any RR pairs, but we still are
 | 
						|
    // able to move RR pairs. If one of our pointers is afflicted with
 | 
						|
    // CFGHazards, we cannot perform such code motion so exit early.
 | 
						|
    const bool WillPerformCodeMotion = RetainsToMove.ReverseInsertPts.size() ||
 | 
						|
      ReleasesToMove.ReverseInsertPts.size();
 | 
						|
    if (CFGHazardAfflicted && WillPerformCodeMotion)
 | 
						|
      return false;
 | 
						|
  }
 | 
						|
 | 
						|
  // Determine whether the original call points are balanced in the retain and
 | 
						|
  // release calls through the program. If not, conservatively don't touch
 | 
						|
  // them.
 | 
						|
  // TODO: It's theoretically possible to do code motion in this case, as
 | 
						|
  // long as the existing imbalances are maintained.
 | 
						|
  if (OldDelta != 0)
 | 
						|
    return false;
 | 
						|
 | 
						|
#ifdef ARC_ANNOTATIONS
 | 
						|
  // Do not move calls if ARC annotations are requested.
 | 
						|
  if (EnableARCAnnotations)
 | 
						|
    return false;
 | 
						|
#endif // ARC_ANNOTATIONS
 | 
						|
 | 
						|
  Changed = true;
 | 
						|
  assert(OldCount != 0 && "Unreachable code?");
 | 
						|
  NumRRs += OldCount - NewCount;
 | 
						|
  // Set to true if we completely removed any RR pairs.
 | 
						|
  AnyPairsCompletelyEliminated = NewCount == 0;
 | 
						|
 | 
						|
  // We can move calls!
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Identify pairings between the retains and releases, and delete and/or move
 | 
						|
/// them.
 | 
						|
bool
 | 
						|
ObjCARCOpt::PerformCodePlacement(DenseMap<const BasicBlock *, BBState>
 | 
						|
                                   &BBStates,
 | 
						|
                                 MapVector<Value *, RRInfo> &Retains,
 | 
						|
                                 DenseMap<Value *, RRInfo> &Releases,
 | 
						|
                                 Module *M) {
 | 
						|
  DEBUG(dbgs() << "\n== ObjCARCOpt::PerformCodePlacement ==\n");
 | 
						|
 | 
						|
  bool AnyPairsCompletelyEliminated = false;
 | 
						|
  RRInfo RetainsToMove;
 | 
						|
  RRInfo ReleasesToMove;
 | 
						|
  SmallVector<Instruction *, 4> NewRetains;
 | 
						|
  SmallVector<Instruction *, 4> NewReleases;
 | 
						|
  SmallVector<Instruction *, 8> DeadInsts;
 | 
						|
 | 
						|
  // Visit each retain.
 | 
						|
  for (MapVector<Value *, RRInfo>::const_iterator I = Retains.begin(),
 | 
						|
       E = Retains.end(); I != E; ++I) {
 | 
						|
    Value *V = I->first;
 | 
						|
    if (!V) continue; // blotted
 | 
						|
 | 
						|
    Instruction *Retain = cast<Instruction>(V);
 | 
						|
 | 
						|
    DEBUG(dbgs() << "Visiting: " << *Retain << "\n");
 | 
						|
 | 
						|
    Value *Arg = GetObjCArg(Retain);
 | 
						|
 | 
						|
    // If the object being released is in static or stack storage, we know it's
 | 
						|
    // not being managed by ObjC reference counting, so we can delete pairs
 | 
						|
    // regardless of what possible decrements or uses lie between them.
 | 
						|
    bool KnownSafe = isa<Constant>(Arg) || isa<AllocaInst>(Arg);
 | 
						|
 | 
						|
    // A constant pointer can't be pointing to an object on the heap. It may
 | 
						|
    // be reference-counted, but it won't be deleted.
 | 
						|
    if (const LoadInst *LI = dyn_cast<LoadInst>(Arg))
 | 
						|
      if (const GlobalVariable *GV =
 | 
						|
            dyn_cast<GlobalVariable>(
 | 
						|
              StripPointerCastsAndObjCCalls(LI->getPointerOperand())))
 | 
						|
        if (GV->isConstant())
 | 
						|
          KnownSafe = true;
 | 
						|
 | 
						|
    // Connect the dots between the top-down-collected RetainsToMove and
 | 
						|
    // bottom-up-collected ReleasesToMove to form sets of related calls.
 | 
						|
    NewRetains.push_back(Retain);
 | 
						|
    bool PerformMoveCalls =
 | 
						|
      ConnectTDBUTraversals(BBStates, Retains, Releases, M, NewRetains,
 | 
						|
                            NewReleases, DeadInsts, RetainsToMove,
 | 
						|
                            ReleasesToMove, Arg, KnownSafe,
 | 
						|
                            AnyPairsCompletelyEliminated);
 | 
						|
 | 
						|
    if (PerformMoveCalls) {
 | 
						|
      // Ok, everything checks out and we're all set. Let's move/delete some
 | 
						|
      // code!
 | 
						|
      MoveCalls(Arg, RetainsToMove, ReleasesToMove,
 | 
						|
                Retains, Releases, DeadInsts, M);
 | 
						|
    }
 | 
						|
 | 
						|
    // Clean up state for next retain.
 | 
						|
    NewReleases.clear();
 | 
						|
    NewRetains.clear();
 | 
						|
    RetainsToMove.clear();
 | 
						|
    ReleasesToMove.clear();
 | 
						|
  }
 | 
						|
 | 
						|
  // Now that we're done moving everything, we can delete the newly dead
 | 
						|
  // instructions, as we no longer need them as insert points.
 | 
						|
  while (!DeadInsts.empty())
 | 
						|
    EraseInstruction(DeadInsts.pop_back_val());
 | 
						|
 | 
						|
  return AnyPairsCompletelyEliminated;
 | 
						|
}
 | 
						|
 | 
						|
/// Weak pointer optimizations.
 | 
						|
void ObjCARCOpt::OptimizeWeakCalls(Function &F) {
 | 
						|
  DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeWeakCalls ==\n");
 | 
						|
 | 
						|
  // First, do memdep-style RLE and S2L optimizations. We can't use memdep
 | 
						|
  // itself because it uses AliasAnalysis and we need to do provenance
 | 
						|
  // queries instead.
 | 
						|
  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
 | 
						|
    Instruction *Inst = &*I++;
 | 
						|
 | 
						|
    DEBUG(dbgs() << "Visiting: " << *Inst << "\n");
 | 
						|
 | 
						|
    InstructionClass Class = GetBasicInstructionClass(Inst);
 | 
						|
    if (Class != IC_LoadWeak && Class != IC_LoadWeakRetained)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Delete objc_loadWeak calls with no users.
 | 
						|
    if (Class == IC_LoadWeak && Inst->use_empty()) {
 | 
						|
      Inst->eraseFromParent();
 | 
						|
      continue;
 | 
						|
    }
 | 
						|
 | 
						|
    // TODO: For now, just look for an earlier available version of this value
 | 
						|
    // within the same block. Theoretically, we could do memdep-style non-local
 | 
						|
    // analysis too, but that would want caching. A better approach would be to
 | 
						|
    // use the technique that EarlyCSE uses.
 | 
						|
    inst_iterator Current = llvm::prior(I);
 | 
						|
    BasicBlock *CurrentBB = Current.getBasicBlockIterator();
 | 
						|
    for (BasicBlock::iterator B = CurrentBB->begin(),
 | 
						|
                              J = Current.getInstructionIterator();
 | 
						|
         J != B; --J) {
 | 
						|
      Instruction *EarlierInst = &*llvm::prior(J);
 | 
						|
      InstructionClass EarlierClass = GetInstructionClass(EarlierInst);
 | 
						|
      switch (EarlierClass) {
 | 
						|
      case IC_LoadWeak:
 | 
						|
      case IC_LoadWeakRetained: {
 | 
						|
        // If this is loading from the same pointer, replace this load's value
 | 
						|
        // with that one.
 | 
						|
        CallInst *Call = cast<CallInst>(Inst);
 | 
						|
        CallInst *EarlierCall = cast<CallInst>(EarlierInst);
 | 
						|
        Value *Arg = Call->getArgOperand(0);
 | 
						|
        Value *EarlierArg = EarlierCall->getArgOperand(0);
 | 
						|
        switch (PA.getAA()->alias(Arg, EarlierArg)) {
 | 
						|
        case AliasAnalysis::MustAlias:
 | 
						|
          Changed = true;
 | 
						|
          // If the load has a builtin retain, insert a plain retain for it.
 | 
						|
          if (Class == IC_LoadWeakRetained) {
 | 
						|
            Constant *Decl = EP.get(ARCRuntimeEntryPoints::EPT_Retain);
 | 
						|
            CallInst *CI = CallInst::Create(Decl, EarlierCall, "", Call);
 | 
						|
            CI->setTailCall();
 | 
						|
          }
 | 
						|
          // Zap the fully redundant load.
 | 
						|
          Call->replaceAllUsesWith(EarlierCall);
 | 
						|
          Call->eraseFromParent();
 | 
						|
          goto clobbered;
 | 
						|
        case AliasAnalysis::MayAlias:
 | 
						|
        case AliasAnalysis::PartialAlias:
 | 
						|
          goto clobbered;
 | 
						|
        case AliasAnalysis::NoAlias:
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case IC_StoreWeak:
 | 
						|
      case IC_InitWeak: {
 | 
						|
        // If this is storing to the same pointer and has the same size etc.
 | 
						|
        // replace this load's value with the stored value.
 | 
						|
        CallInst *Call = cast<CallInst>(Inst);
 | 
						|
        CallInst *EarlierCall = cast<CallInst>(EarlierInst);
 | 
						|
        Value *Arg = Call->getArgOperand(0);
 | 
						|
        Value *EarlierArg = EarlierCall->getArgOperand(0);
 | 
						|
        switch (PA.getAA()->alias(Arg, EarlierArg)) {
 | 
						|
        case AliasAnalysis::MustAlias:
 | 
						|
          Changed = true;
 | 
						|
          // If the load has a builtin retain, insert a plain retain for it.
 | 
						|
          if (Class == IC_LoadWeakRetained) {
 | 
						|
            Constant *Decl = EP.get(ARCRuntimeEntryPoints::EPT_Retain);
 | 
						|
            CallInst *CI = CallInst::Create(Decl, EarlierCall, "", Call);
 | 
						|
            CI->setTailCall();
 | 
						|
          }
 | 
						|
          // Zap the fully redundant load.
 | 
						|
          Call->replaceAllUsesWith(EarlierCall->getArgOperand(1));
 | 
						|
          Call->eraseFromParent();
 | 
						|
          goto clobbered;
 | 
						|
        case AliasAnalysis::MayAlias:
 | 
						|
        case AliasAnalysis::PartialAlias:
 | 
						|
          goto clobbered;
 | 
						|
        case AliasAnalysis::NoAlias:
 | 
						|
          break;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
      }
 | 
						|
      case IC_MoveWeak:
 | 
						|
      case IC_CopyWeak:
 | 
						|
        // TOOD: Grab the copied value.
 | 
						|
        goto clobbered;
 | 
						|
      case IC_AutoreleasepoolPush:
 | 
						|
      case IC_None:
 | 
						|
      case IC_IntrinsicUser:
 | 
						|
      case IC_User:
 | 
						|
        // Weak pointers are only modified through the weak entry points
 | 
						|
        // (and arbitrary calls, which could call the weak entry points).
 | 
						|
        break;
 | 
						|
      default:
 | 
						|
        // Anything else could modify the weak pointer.
 | 
						|
        goto clobbered;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  clobbered:;
 | 
						|
  }
 | 
						|
 | 
						|
  // Then, for each destroyWeak with an alloca operand, check to see if
 | 
						|
  // the alloca and all its users can be zapped.
 | 
						|
  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
 | 
						|
    Instruction *Inst = &*I++;
 | 
						|
    InstructionClass Class = GetBasicInstructionClass(Inst);
 | 
						|
    if (Class != IC_DestroyWeak)
 | 
						|
      continue;
 | 
						|
 | 
						|
    CallInst *Call = cast<CallInst>(Inst);
 | 
						|
    Value *Arg = Call->getArgOperand(0);
 | 
						|
    if (AllocaInst *Alloca = dyn_cast<AllocaInst>(Arg)) {
 | 
						|
      for (Value::use_iterator UI = Alloca->use_begin(),
 | 
						|
           UE = Alloca->use_end(); UI != UE; ++UI) {
 | 
						|
        const Instruction *UserInst = cast<Instruction>(*UI);
 | 
						|
        switch (GetBasicInstructionClass(UserInst)) {
 | 
						|
        case IC_InitWeak:
 | 
						|
        case IC_StoreWeak:
 | 
						|
        case IC_DestroyWeak:
 | 
						|
          continue;
 | 
						|
        default:
 | 
						|
          goto done;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      Changed = true;
 | 
						|
      for (Value::use_iterator UI = Alloca->use_begin(),
 | 
						|
           UE = Alloca->use_end(); UI != UE; ) {
 | 
						|
        CallInst *UserInst = cast<CallInst>(*UI++);
 | 
						|
        switch (GetBasicInstructionClass(UserInst)) {
 | 
						|
        case IC_InitWeak:
 | 
						|
        case IC_StoreWeak:
 | 
						|
          // These functions return their second argument.
 | 
						|
          UserInst->replaceAllUsesWith(UserInst->getArgOperand(1));
 | 
						|
          break;
 | 
						|
        case IC_DestroyWeak:
 | 
						|
          // No return value.
 | 
						|
          break;
 | 
						|
        default:
 | 
						|
          llvm_unreachable("alloca really is used!");
 | 
						|
        }
 | 
						|
        UserInst->eraseFromParent();
 | 
						|
      }
 | 
						|
      Alloca->eraseFromParent();
 | 
						|
    done:;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/// Identify program paths which execute sequences of retains and releases which
 | 
						|
/// can be eliminated.
 | 
						|
bool ObjCARCOpt::OptimizeSequences(Function &F) {
 | 
						|
  // Releases, Retains - These are used to store the results of the main flow
 | 
						|
  // analysis. These use Value* as the key instead of Instruction* so that the
 | 
						|
  // map stays valid when we get around to rewriting code and calls get
 | 
						|
  // replaced by arguments.
 | 
						|
  DenseMap<Value *, RRInfo> Releases;
 | 
						|
  MapVector<Value *, RRInfo> Retains;
 | 
						|
 | 
						|
  // This is used during the traversal of the function to track the
 | 
						|
  // states for each identified object at each block.
 | 
						|
  DenseMap<const BasicBlock *, BBState> BBStates;
 | 
						|
 | 
						|
  // Analyze the CFG of the function, and all instructions.
 | 
						|
  bool NestingDetected = Visit(F, BBStates, Retains, Releases);
 | 
						|
 | 
						|
  // Transform.
 | 
						|
  bool AnyPairsCompletelyEliminated = PerformCodePlacement(BBStates, Retains,
 | 
						|
                                                           Releases,
 | 
						|
                                                           F.getParent());
 | 
						|
 | 
						|
  // Cleanup.
 | 
						|
  MultiOwnersSet.clear();
 | 
						|
 | 
						|
  return AnyPairsCompletelyEliminated && NestingDetected;
 | 
						|
}
 | 
						|
 | 
						|
/// Check if there is a dependent call earlier that does not have anything in
 | 
						|
/// between the Retain and the call that can affect the reference count of their
 | 
						|
/// shared pointer argument. Note that Retain need not be in BB.
 | 
						|
static bool
 | 
						|
HasSafePathToPredecessorCall(const Value *Arg, Instruction *Retain,
 | 
						|
                             SmallPtrSet<Instruction *, 4> &DepInsts,
 | 
						|
                             SmallPtrSet<const BasicBlock *, 4> &Visited,
 | 
						|
                             ProvenanceAnalysis &PA) {
 | 
						|
  FindDependencies(CanChangeRetainCount, Arg, Retain->getParent(), Retain,
 | 
						|
                   DepInsts, Visited, PA);
 | 
						|
  if (DepInsts.size() != 1)
 | 
						|
    return false;
 | 
						|
 | 
						|
  CallInst *Call =
 | 
						|
    dyn_cast_or_null<CallInst>(*DepInsts.begin());
 | 
						|
 | 
						|
  // Check that the pointer is the return value of the call.
 | 
						|
  if (!Call || Arg != Call)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Check that the call is a regular call.
 | 
						|
  InstructionClass Class = GetBasicInstructionClass(Call);
 | 
						|
  if (Class != IC_CallOrUser && Class != IC_Call)
 | 
						|
    return false;
 | 
						|
 | 
						|
  return true;
 | 
						|
}
 | 
						|
 | 
						|
/// Find a dependent retain that precedes the given autorelease for which there
 | 
						|
/// is nothing in between the two instructions that can affect the ref count of
 | 
						|
/// Arg.
 | 
						|
static CallInst *
 | 
						|
FindPredecessorRetainWithSafePath(const Value *Arg, BasicBlock *BB,
 | 
						|
                                  Instruction *Autorelease,
 | 
						|
                                  SmallPtrSet<Instruction *, 4> &DepInsts,
 | 
						|
                                  SmallPtrSet<const BasicBlock *, 4> &Visited,
 | 
						|
                                  ProvenanceAnalysis &PA) {
 | 
						|
  FindDependencies(CanChangeRetainCount, Arg,
 | 
						|
                   BB, Autorelease, DepInsts, Visited, PA);
 | 
						|
  if (DepInsts.size() != 1)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  CallInst *Retain =
 | 
						|
    dyn_cast_or_null<CallInst>(*DepInsts.begin());
 | 
						|
 | 
						|
  // Check that we found a retain with the same argument.
 | 
						|
  if (!Retain ||
 | 
						|
      !IsRetain(GetBasicInstructionClass(Retain)) ||
 | 
						|
      GetObjCArg(Retain) != Arg) {
 | 
						|
    return 0;
 | 
						|
  }
 | 
						|
 | 
						|
  return Retain;
 | 
						|
}
 | 
						|
 | 
						|
/// Look for an ``autorelease'' instruction dependent on Arg such that there are
 | 
						|
/// no instructions dependent on Arg that need a positive ref count in between
 | 
						|
/// the autorelease and the ret.
 | 
						|
static CallInst *
 | 
						|
FindPredecessorAutoreleaseWithSafePath(const Value *Arg, BasicBlock *BB,
 | 
						|
                                       ReturnInst *Ret,
 | 
						|
                                       SmallPtrSet<Instruction *, 4> &DepInsts,
 | 
						|
                                       SmallPtrSet<const BasicBlock *, 4> &V,
 | 
						|
                                       ProvenanceAnalysis &PA) {
 | 
						|
  FindDependencies(NeedsPositiveRetainCount, Arg,
 | 
						|
                   BB, Ret, DepInsts, V, PA);
 | 
						|
  if (DepInsts.size() != 1)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  CallInst *Autorelease =
 | 
						|
    dyn_cast_or_null<CallInst>(*DepInsts.begin());
 | 
						|
  if (!Autorelease)
 | 
						|
    return 0;
 | 
						|
  InstructionClass AutoreleaseClass = GetBasicInstructionClass(Autorelease);
 | 
						|
  if (!IsAutorelease(AutoreleaseClass))
 | 
						|
    return 0;
 | 
						|
  if (GetObjCArg(Autorelease) != Arg)
 | 
						|
    return 0;
 | 
						|
 | 
						|
  return Autorelease;
 | 
						|
}
 | 
						|
 | 
						|
/// Look for this pattern:
 | 
						|
/// \code
 | 
						|
///    %call = call i8* @something(...)
 | 
						|
///    %2 = call i8* @objc_retain(i8* %call)
 | 
						|
///    %3 = call i8* @objc_autorelease(i8* %2)
 | 
						|
///    ret i8* %3
 | 
						|
/// \endcode
 | 
						|
/// And delete the retain and autorelease.
 | 
						|
void ObjCARCOpt::OptimizeReturns(Function &F) {
 | 
						|
  if (!F.getReturnType()->isPointerTy())
 | 
						|
    return;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "\n== ObjCARCOpt::OptimizeReturns ==\n");
 | 
						|
 | 
						|
  SmallPtrSet<Instruction *, 4> DependingInstructions;
 | 
						|
  SmallPtrSet<const BasicBlock *, 4> Visited;
 | 
						|
  for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
 | 
						|
    BasicBlock *BB = FI;
 | 
						|
    ReturnInst *Ret = dyn_cast<ReturnInst>(&BB->back());
 | 
						|
 | 
						|
    DEBUG(dbgs() << "Visiting: " << *Ret << "\n");
 | 
						|
 | 
						|
    if (!Ret)
 | 
						|
      continue;
 | 
						|
 | 
						|
    const Value *Arg = StripPointerCastsAndObjCCalls(Ret->getOperand(0));
 | 
						|
 | 
						|
    // Look for an ``autorelease'' instruction that is a predecessor of Ret and
 | 
						|
    // dependent on Arg such that there are no instructions dependent on Arg
 | 
						|
    // that need a positive ref count in between the autorelease and Ret.
 | 
						|
    CallInst *Autorelease =
 | 
						|
      FindPredecessorAutoreleaseWithSafePath(Arg, BB, Ret,
 | 
						|
                                             DependingInstructions, Visited,
 | 
						|
                                             PA);
 | 
						|
    DependingInstructions.clear();
 | 
						|
    Visited.clear();
 | 
						|
 | 
						|
    if (!Autorelease)
 | 
						|
      continue;
 | 
						|
 | 
						|
    CallInst *Retain =
 | 
						|
      FindPredecessorRetainWithSafePath(Arg, BB, Autorelease,
 | 
						|
                                        DependingInstructions, Visited, PA);
 | 
						|
    DependingInstructions.clear();
 | 
						|
    Visited.clear();
 | 
						|
 | 
						|
    if (!Retain)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // Check that there is nothing that can affect the reference count
 | 
						|
    // between the retain and the call.  Note that Retain need not be in BB.
 | 
						|
    bool HasSafePathToCall = HasSafePathToPredecessorCall(Arg, Retain,
 | 
						|
                                                          DependingInstructions,
 | 
						|
                                                          Visited, PA);
 | 
						|
    DependingInstructions.clear();
 | 
						|
    Visited.clear();
 | 
						|
 | 
						|
    if (!HasSafePathToCall)
 | 
						|
      continue;
 | 
						|
 | 
						|
    // If so, we can zap the retain and autorelease.
 | 
						|
    Changed = true;
 | 
						|
    ++NumRets;
 | 
						|
    DEBUG(dbgs() << "Erasing: " << *Retain << "\nErasing: "
 | 
						|
          << *Autorelease << "\n");
 | 
						|
    EraseInstruction(Retain);
 | 
						|
    EraseInstruction(Autorelease);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
void
 | 
						|
ObjCARCOpt::GatherStatistics(Function &F, bool AfterOptimization) {
 | 
						|
  llvm::Statistic &NumRetains =
 | 
						|
    AfterOptimization? NumRetainsAfterOpt : NumRetainsBeforeOpt;
 | 
						|
  llvm::Statistic &NumReleases =
 | 
						|
    AfterOptimization? NumReleasesAfterOpt : NumReleasesBeforeOpt;
 | 
						|
 | 
						|
  for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ) {
 | 
						|
    Instruction *Inst = &*I++;
 | 
						|
    switch (GetBasicInstructionClass(Inst)) {
 | 
						|
    default:
 | 
						|
      break;
 | 
						|
    case IC_Retain:
 | 
						|
      ++NumRetains;
 | 
						|
      break;
 | 
						|
    case IC_Release:
 | 
						|
      ++NumReleases;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
bool ObjCARCOpt::doInitialization(Module &M) {
 | 
						|
  if (!EnableARCOpts)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If nothing in the Module uses ARC, don't do anything.
 | 
						|
  Run = ModuleHasARC(M);
 | 
						|
  if (!Run)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // Identify the imprecise release metadata kind.
 | 
						|
  ImpreciseReleaseMDKind =
 | 
						|
    M.getContext().getMDKindID("clang.imprecise_release");
 | 
						|
  CopyOnEscapeMDKind =
 | 
						|
    M.getContext().getMDKindID("clang.arc.copy_on_escape");
 | 
						|
  NoObjCARCExceptionsMDKind =
 | 
						|
    M.getContext().getMDKindID("clang.arc.no_objc_arc_exceptions");
 | 
						|
#ifdef ARC_ANNOTATIONS
 | 
						|
  ARCAnnotationBottomUpMDKind =
 | 
						|
    M.getContext().getMDKindID("llvm.arc.annotation.bottomup");
 | 
						|
  ARCAnnotationTopDownMDKind =
 | 
						|
    M.getContext().getMDKindID("llvm.arc.annotation.topdown");
 | 
						|
  ARCAnnotationProvenanceSourceMDKind =
 | 
						|
    M.getContext().getMDKindID("llvm.arc.annotation.provenancesource");
 | 
						|
#endif // ARC_ANNOTATIONS
 | 
						|
 | 
						|
  // Intuitively, objc_retain and others are nocapture, however in practice
 | 
						|
  // they are not, because they return their argument value. And objc_release
 | 
						|
  // calls finalizers which can have arbitrary side effects.
 | 
						|
 | 
						|
  // Initialize our runtime entry point cache.
 | 
						|
  EP.Initialize(&M);
 | 
						|
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ObjCARCOpt::runOnFunction(Function &F) {
 | 
						|
  if (!EnableARCOpts)
 | 
						|
    return false;
 | 
						|
 | 
						|
  // If nothing in the Module uses ARC, don't do anything.
 | 
						|
  if (!Run)
 | 
						|
    return false;
 | 
						|
 | 
						|
  Changed = false;
 | 
						|
 | 
						|
  DEBUG(dbgs() << "<<< ObjCARCOpt: Visiting Function: " << F.getName() << " >>>"
 | 
						|
        "\n");
 | 
						|
 | 
						|
  PA.setAA(&getAnalysis<AliasAnalysis>());
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
  if (AreStatisticsEnabled()) {
 | 
						|
    GatherStatistics(F, false);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  // This pass performs several distinct transformations. As a compile-time aid
 | 
						|
  // when compiling code that isn't ObjC, skip these if the relevant ObjC
 | 
						|
  // library functions aren't declared.
 | 
						|
 | 
						|
  // Preliminary optimizations. This also computes UsedInThisFunction.
 | 
						|
  OptimizeIndividualCalls(F);
 | 
						|
 | 
						|
  // Optimizations for weak pointers.
 | 
						|
  if (UsedInThisFunction & ((1 << IC_LoadWeak) |
 | 
						|
                            (1 << IC_LoadWeakRetained) |
 | 
						|
                            (1 << IC_StoreWeak) |
 | 
						|
                            (1 << IC_InitWeak) |
 | 
						|
                            (1 << IC_CopyWeak) |
 | 
						|
                            (1 << IC_MoveWeak) |
 | 
						|
                            (1 << IC_DestroyWeak)))
 | 
						|
    OptimizeWeakCalls(F);
 | 
						|
 | 
						|
  // Optimizations for retain+release pairs.
 | 
						|
  if (UsedInThisFunction & ((1 << IC_Retain) |
 | 
						|
                            (1 << IC_RetainRV) |
 | 
						|
                            (1 << IC_RetainBlock)))
 | 
						|
    if (UsedInThisFunction & (1 << IC_Release))
 | 
						|
      // Run OptimizeSequences until it either stops making changes or
 | 
						|
      // no retain+release pair nesting is detected.
 | 
						|
      while (OptimizeSequences(F)) {}
 | 
						|
 | 
						|
  // Optimizations if objc_autorelease is used.
 | 
						|
  if (UsedInThisFunction & ((1 << IC_Autorelease) |
 | 
						|
                            (1 << IC_AutoreleaseRV)))
 | 
						|
    OptimizeReturns(F);
 | 
						|
 | 
						|
  // Gather statistics after optimization.
 | 
						|
#ifndef NDEBUG
 | 
						|
  if (AreStatisticsEnabled()) {
 | 
						|
    GatherStatistics(F, true);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  DEBUG(dbgs() << "\n");
 | 
						|
 | 
						|
  return Changed;
 | 
						|
}
 | 
						|
 | 
						|
void ObjCARCOpt::releaseMemory() {
 | 
						|
  PA.clear();
 | 
						|
}
 | 
						|
 | 
						|
/// @}
 | 
						|
///
 |