mirror of
https://github.com/jeremysrand/llvm-65816.git
synced 2024-11-18 23:05:00 +00:00
1145 lines
44 KiB
C++
1145 lines
44 KiB
C++
|
//===-- DeadArgumentElimination.cpp - Eliminate dead arguments ------------===//
|
||
|
//
|
||
|
// The LLVM Compiler Infrastructure
|
||
|
//
|
||
|
// This file is distributed under the University of Illinois Open Source
|
||
|
// License. See LICENSE.TXT for details.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// This pass deletes dead arguments from internal functions. Dead argument
|
||
|
// elimination removes arguments which are directly dead, as well as arguments
|
||
|
// only passed into function calls as dead arguments of other functions. This
|
||
|
// pass also deletes dead return values in a similar way.
|
||
|
//
|
||
|
// This pass is often useful as a cleanup pass to run after aggressive
|
||
|
// interprocedural passes, which add possibly-dead arguments or return values.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#define DEBUG_TYPE "deadargelim"
|
||
|
#include "llvm/Transforms/IPO.h"
|
||
|
#include "llvm/ADT/DenseMap.h"
|
||
|
#include "llvm/ADT/SmallVector.h"
|
||
|
#include "llvm/ADT/Statistic.h"
|
||
|
#include "llvm/ADT/StringExtras.h"
|
||
|
#include "llvm/DIBuilder.h"
|
||
|
#include "llvm/DebugInfo.h"
|
||
|
#include "llvm/IR/CallingConv.h"
|
||
|
#include "llvm/IR/Constant.h"
|
||
|
#include "llvm/IR/DerivedTypes.h"
|
||
|
#include "llvm/IR/Instructions.h"
|
||
|
#include "llvm/IR/IntrinsicInst.h"
|
||
|
#include "llvm/IR/LLVMContext.h"
|
||
|
#include "llvm/IR/Module.h"
|
||
|
#include "llvm/Pass.h"
|
||
|
#include "llvm/Support/CallSite.h"
|
||
|
#include "llvm/Support/Debug.h"
|
||
|
#include "llvm/Support/raw_ostream.h"
|
||
|
#include <map>
|
||
|
#include <set>
|
||
|
using namespace llvm;
|
||
|
|
||
|
STATISTIC(NumArgumentsEliminated, "Number of unread args removed");
|
||
|
STATISTIC(NumRetValsEliminated , "Number of unused return values removed");
|
||
|
STATISTIC(NumArgumentsReplacedWithUndef,
|
||
|
"Number of unread args replaced with undef");
|
||
|
namespace {
|
||
|
/// DAE - The dead argument elimination pass.
|
||
|
///
|
||
|
class DAE : public ModulePass {
|
||
|
public:
|
||
|
|
||
|
/// Struct that represents (part of) either a return value or a function
|
||
|
/// argument. Used so that arguments and return values can be used
|
||
|
/// interchangeably.
|
||
|
struct RetOrArg {
|
||
|
RetOrArg(const Function *F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
|
||
|
IsArg(IsArg) {}
|
||
|
const Function *F;
|
||
|
unsigned Idx;
|
||
|
bool IsArg;
|
||
|
|
||
|
/// Make RetOrArg comparable, so we can put it into a map.
|
||
|
bool operator<(const RetOrArg &O) const {
|
||
|
if (F != O.F)
|
||
|
return F < O.F;
|
||
|
else if (Idx != O.Idx)
|
||
|
return Idx < O.Idx;
|
||
|
else
|
||
|
return IsArg < O.IsArg;
|
||
|
}
|
||
|
|
||
|
/// Make RetOrArg comparable, so we can easily iterate the multimap.
|
||
|
bool operator==(const RetOrArg &O) const {
|
||
|
return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
|
||
|
}
|
||
|
|
||
|
std::string getDescription() const {
|
||
|
return std::string((IsArg ? "Argument #" : "Return value #"))
|
||
|
+ utostr(Idx) + " of function " + F->getName().str();
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/// Liveness enum - During our initial pass over the program, we determine
|
||
|
/// that things are either alive or maybe alive. We don't mark anything
|
||
|
/// explicitly dead (even if we know they are), since anything not alive
|
||
|
/// with no registered uses (in Uses) will never be marked alive and will
|
||
|
/// thus become dead in the end.
|
||
|
enum Liveness { Live, MaybeLive };
|
||
|
|
||
|
/// Convenience wrapper
|
||
|
RetOrArg CreateRet(const Function *F, unsigned Idx) {
|
||
|
return RetOrArg(F, Idx, false);
|
||
|
}
|
||
|
/// Convenience wrapper
|
||
|
RetOrArg CreateArg(const Function *F, unsigned Idx) {
|
||
|
return RetOrArg(F, Idx, true);
|
||
|
}
|
||
|
|
||
|
typedef std::multimap<RetOrArg, RetOrArg> UseMap;
|
||
|
/// This maps a return value or argument to any MaybeLive return values or
|
||
|
/// arguments it uses. This allows the MaybeLive values to be marked live
|
||
|
/// when any of its users is marked live.
|
||
|
/// For example (indices are left out for clarity):
|
||
|
/// - Uses[ret F] = ret G
|
||
|
/// This means that F calls G, and F returns the value returned by G.
|
||
|
/// - Uses[arg F] = ret G
|
||
|
/// This means that some function calls G and passes its result as an
|
||
|
/// argument to F.
|
||
|
/// - Uses[ret F] = arg F
|
||
|
/// This means that F returns one of its own arguments.
|
||
|
/// - Uses[arg F] = arg G
|
||
|
/// This means that G calls F and passes one of its own (G's) arguments
|
||
|
/// directly to F.
|
||
|
UseMap Uses;
|
||
|
|
||
|
typedef std::set<RetOrArg> LiveSet;
|
||
|
typedef std::set<const Function*> LiveFuncSet;
|
||
|
|
||
|
/// This set contains all values that have been determined to be live.
|
||
|
LiveSet LiveValues;
|
||
|
/// This set contains all values that are cannot be changed in any way.
|
||
|
LiveFuncSet LiveFunctions;
|
||
|
|
||
|
typedef SmallVector<RetOrArg, 5> UseVector;
|
||
|
|
||
|
// Map each LLVM function to corresponding metadata with debug info. If
|
||
|
// the function is replaced with another one, we should patch the pointer
|
||
|
// to LLVM function in metadata.
|
||
|
// As the code generation for module is finished (and DIBuilder is
|
||
|
// finalized) we assume that subprogram descriptors won't be changed, and
|
||
|
// they are stored in map for short duration anyway.
|
||
|
typedef DenseMap<Function*, DISubprogram> FunctionDIMap;
|
||
|
FunctionDIMap FunctionDIs;
|
||
|
|
||
|
protected:
|
||
|
// DAH uses this to specify a different ID.
|
||
|
explicit DAE(char &ID) : ModulePass(ID) {}
|
||
|
|
||
|
public:
|
||
|
static char ID; // Pass identification, replacement for typeid
|
||
|
DAE() : ModulePass(ID) {
|
||
|
initializeDAEPass(*PassRegistry::getPassRegistry());
|
||
|
}
|
||
|
|
||
|
bool runOnModule(Module &M);
|
||
|
|
||
|
virtual bool ShouldHackArguments() const { return false; }
|
||
|
|
||
|
private:
|
||
|
Liveness MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses);
|
||
|
Liveness SurveyUse(Value::const_use_iterator U, UseVector &MaybeLiveUses,
|
||
|
unsigned RetValNum = 0);
|
||
|
Liveness SurveyUses(const Value *V, UseVector &MaybeLiveUses);
|
||
|
|
||
|
void CollectFunctionDIs(Module &M);
|
||
|
void SurveyFunction(const Function &F);
|
||
|
void MarkValue(const RetOrArg &RA, Liveness L,
|
||
|
const UseVector &MaybeLiveUses);
|
||
|
void MarkLive(const RetOrArg &RA);
|
||
|
void MarkLive(const Function &F);
|
||
|
void PropagateLiveness(const RetOrArg &RA);
|
||
|
bool RemoveDeadStuffFromFunction(Function *F);
|
||
|
bool DeleteDeadVarargs(Function &Fn);
|
||
|
bool RemoveDeadArgumentsFromCallers(Function &Fn);
|
||
|
};
|
||
|
}
|
||
|
|
||
|
|
||
|
char DAE::ID = 0;
|
||
|
INITIALIZE_PASS(DAE, "deadargelim", "Dead Argument Elimination", false, false)
|
||
|
|
||
|
namespace {
|
||
|
/// DAH - DeadArgumentHacking pass - Same as dead argument elimination, but
|
||
|
/// deletes arguments to functions which are external. This is only for use
|
||
|
/// by bugpoint.
|
||
|
struct DAH : public DAE {
|
||
|
static char ID;
|
||
|
DAH() : DAE(ID) {}
|
||
|
|
||
|
virtual bool ShouldHackArguments() const { return true; }
|
||
|
};
|
||
|
}
|
||
|
|
||
|
char DAH::ID = 0;
|
||
|
INITIALIZE_PASS(DAH, "deadarghaX0r",
|
||
|
"Dead Argument Hacking (BUGPOINT USE ONLY; DO NOT USE)",
|
||
|
false, false)
|
||
|
|
||
|
/// createDeadArgEliminationPass - This pass removes arguments from functions
|
||
|
/// which are not used by the body of the function.
|
||
|
///
|
||
|
ModulePass *llvm::createDeadArgEliminationPass() { return new DAE(); }
|
||
|
ModulePass *llvm::createDeadArgHackingPass() { return new DAH(); }
|
||
|
|
||
|
/// CollectFunctionDIs - Map each function in the module to its debug info
|
||
|
/// descriptor.
|
||
|
void DAE::CollectFunctionDIs(Module &M) {
|
||
|
FunctionDIs.clear();
|
||
|
|
||
|
for (Module::named_metadata_iterator I = M.named_metadata_begin(),
|
||
|
E = M.named_metadata_end(); I != E; ++I) {
|
||
|
NamedMDNode &NMD = *I;
|
||
|
for (unsigned MDIndex = 0, MDNum = NMD.getNumOperands();
|
||
|
MDIndex < MDNum; ++MDIndex) {
|
||
|
MDNode *Node = NMD.getOperand(MDIndex);
|
||
|
if (!DIDescriptor(Node).isCompileUnit())
|
||
|
continue;
|
||
|
DICompileUnit CU(Node);
|
||
|
const DIArray &SPs = CU.getSubprograms();
|
||
|
for (unsigned SPIndex = 0, SPNum = SPs.getNumElements();
|
||
|
SPIndex < SPNum; ++SPIndex) {
|
||
|
DISubprogram SP(SPs.getElement(SPIndex));
|
||
|
assert((!SP || SP.isSubprogram()) &&
|
||
|
"A MDNode in subprograms of a CU should be null or a DISubprogram.");
|
||
|
if (!SP)
|
||
|
continue;
|
||
|
if (Function *F = SP.getFunction())
|
||
|
FunctionDIs[F] = SP;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// DeleteDeadVarargs - If this is an function that takes a ... list, and if
|
||
|
/// llvm.vastart is never called, the varargs list is dead for the function.
|
||
|
bool DAE::DeleteDeadVarargs(Function &Fn) {
|
||
|
assert(Fn.getFunctionType()->isVarArg() && "Function isn't varargs!");
|
||
|
if (Fn.isDeclaration() || !Fn.hasLocalLinkage()) return false;
|
||
|
|
||
|
// Ensure that the function is only directly called.
|
||
|
if (Fn.hasAddressTaken())
|
||
|
return false;
|
||
|
|
||
|
// Okay, we know we can transform this function if safe. Scan its body
|
||
|
// looking for calls to llvm.vastart.
|
||
|
for (Function::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
|
||
|
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
|
||
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
|
||
|
if (II->getIntrinsicID() == Intrinsic::vastart)
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// If we get here, there are no calls to llvm.vastart in the function body,
|
||
|
// remove the "..." and adjust all the calls.
|
||
|
|
||
|
// Start by computing a new prototype for the function, which is the same as
|
||
|
// the old function, but doesn't have isVarArg set.
|
||
|
FunctionType *FTy = Fn.getFunctionType();
|
||
|
|
||
|
std::vector<Type*> Params(FTy->param_begin(), FTy->param_end());
|
||
|
FunctionType *NFTy = FunctionType::get(FTy->getReturnType(),
|
||
|
Params, false);
|
||
|
unsigned NumArgs = Params.size();
|
||
|
|
||
|
// Create the new function body and insert it into the module...
|
||
|
Function *NF = Function::Create(NFTy, Fn.getLinkage());
|
||
|
NF->copyAttributesFrom(&Fn);
|
||
|
Fn.getParent()->getFunctionList().insert(&Fn, NF);
|
||
|
NF->takeName(&Fn);
|
||
|
|
||
|
// Loop over all of the callers of the function, transforming the call sites
|
||
|
// to pass in a smaller number of arguments into the new function.
|
||
|
//
|
||
|
std::vector<Value*> Args;
|
||
|
for (Value::use_iterator I = Fn.use_begin(), E = Fn.use_end(); I != E; ) {
|
||
|
CallSite CS(*I++);
|
||
|
if (!CS)
|
||
|
continue;
|
||
|
Instruction *Call = CS.getInstruction();
|
||
|
|
||
|
// Pass all the same arguments.
|
||
|
Args.assign(CS.arg_begin(), CS.arg_begin() + NumArgs);
|
||
|
|
||
|
// Drop any attributes that were on the vararg arguments.
|
||
|
AttributeSet PAL = CS.getAttributes();
|
||
|
if (!PAL.isEmpty() && PAL.getSlotIndex(PAL.getNumSlots() - 1) > NumArgs) {
|
||
|
SmallVector<AttributeSet, 8> AttributesVec;
|
||
|
for (unsigned i = 0; PAL.getSlotIndex(i) <= NumArgs; ++i)
|
||
|
AttributesVec.push_back(PAL.getSlotAttributes(i));
|
||
|
if (PAL.hasAttributes(AttributeSet::FunctionIndex))
|
||
|
AttributesVec.push_back(AttributeSet::get(Fn.getContext(),
|
||
|
PAL.getFnAttributes()));
|
||
|
PAL = AttributeSet::get(Fn.getContext(), AttributesVec);
|
||
|
}
|
||
|
|
||
|
Instruction *New;
|
||
|
if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
|
||
|
New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
|
||
|
Args, "", Call);
|
||
|
cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
|
||
|
cast<InvokeInst>(New)->setAttributes(PAL);
|
||
|
} else {
|
||
|
New = CallInst::Create(NF, Args, "", Call);
|
||
|
cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
|
||
|
cast<CallInst>(New)->setAttributes(PAL);
|
||
|
if (cast<CallInst>(Call)->isTailCall())
|
||
|
cast<CallInst>(New)->setTailCall();
|
||
|
}
|
||
|
New->setDebugLoc(Call->getDebugLoc());
|
||
|
|
||
|
Args.clear();
|
||
|
|
||
|
if (!Call->use_empty())
|
||
|
Call->replaceAllUsesWith(New);
|
||
|
|
||
|
New->takeName(Call);
|
||
|
|
||
|
// Finally, remove the old call from the program, reducing the use-count of
|
||
|
// F.
|
||
|
Call->eraseFromParent();
|
||
|
}
|
||
|
|
||
|
// Since we have now created the new function, splice the body of the old
|
||
|
// function right into the new function, leaving the old rotting hulk of the
|
||
|
// function empty.
|
||
|
NF->getBasicBlockList().splice(NF->begin(), Fn.getBasicBlockList());
|
||
|
|
||
|
// Loop over the argument list, transferring uses of the old arguments over to
|
||
|
// the new arguments, also transferring over the names as well. While we're at
|
||
|
// it, remove the dead arguments from the DeadArguments list.
|
||
|
//
|
||
|
for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(),
|
||
|
I2 = NF->arg_begin(); I != E; ++I, ++I2) {
|
||
|
// Move the name and users over to the new version.
|
||
|
I->replaceAllUsesWith(I2);
|
||
|
I2->takeName(I);
|
||
|
}
|
||
|
|
||
|
// Patch the pointer to LLVM function in debug info descriptor.
|
||
|
FunctionDIMap::iterator DI = FunctionDIs.find(&Fn);
|
||
|
if (DI != FunctionDIs.end())
|
||
|
DI->second.replaceFunction(NF);
|
||
|
|
||
|
// Fix up any BlockAddresses that refer to the function.
|
||
|
Fn.replaceAllUsesWith(ConstantExpr::getBitCast(NF, Fn.getType()));
|
||
|
// Delete the bitcast that we just created, so that NF does not
|
||
|
// appear to be address-taken.
|
||
|
NF->removeDeadConstantUsers();
|
||
|
// Finally, nuke the old function.
|
||
|
Fn.eraseFromParent();
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/// RemoveDeadArgumentsFromCallers - Checks if the given function has any
|
||
|
/// arguments that are unused, and changes the caller parameters to be undefined
|
||
|
/// instead.
|
||
|
bool DAE::RemoveDeadArgumentsFromCallers(Function &Fn)
|
||
|
{
|
||
|
if (Fn.isDeclaration() || Fn.mayBeOverridden())
|
||
|
return false;
|
||
|
|
||
|
// Functions with local linkage should already have been handled, except the
|
||
|
// fragile (variadic) ones which we can improve here.
|
||
|
if (Fn.hasLocalLinkage() && !Fn.getFunctionType()->isVarArg())
|
||
|
return false;
|
||
|
|
||
|
// If a function seen at compile time is not necessarily the one linked to
|
||
|
// the binary being built, it is illegal to change the actual arguments
|
||
|
// passed to it. These functions can be captured by isWeakForLinker().
|
||
|
// *NOTE* that mayBeOverridden() is insufficient for this purpose as it
|
||
|
// doesn't include linkage types like AvailableExternallyLinkage and
|
||
|
// LinkOnceODRLinkage. Take link_odr* as an example, it indicates a set of
|
||
|
// *EQUIVALENT* globals that can be merged at link-time. However, the
|
||
|
// semantic of *EQUIVALENT*-functions includes parameters. Changing
|
||
|
// parameters breaks this assumption.
|
||
|
//
|
||
|
if (Fn.isWeakForLinker())
|
||
|
return false;
|
||
|
|
||
|
if (Fn.use_empty())
|
||
|
return false;
|
||
|
|
||
|
SmallVector<unsigned, 8> UnusedArgs;
|
||
|
for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end();
|
||
|
I != E; ++I) {
|
||
|
Argument *Arg = I;
|
||
|
|
||
|
if (Arg->use_empty() && !Arg->hasByValAttr())
|
||
|
UnusedArgs.push_back(Arg->getArgNo());
|
||
|
}
|
||
|
|
||
|
if (UnusedArgs.empty())
|
||
|
return false;
|
||
|
|
||
|
bool Changed = false;
|
||
|
|
||
|
for (Function::use_iterator I = Fn.use_begin(), E = Fn.use_end();
|
||
|
I != E; ++I) {
|
||
|
CallSite CS(*I);
|
||
|
if (!CS || !CS.isCallee(I))
|
||
|
continue;
|
||
|
|
||
|
// Now go through all unused args and replace them with "undef".
|
||
|
for (unsigned I = 0, E = UnusedArgs.size(); I != E; ++I) {
|
||
|
unsigned ArgNo = UnusedArgs[I];
|
||
|
|
||
|
Value *Arg = CS.getArgument(ArgNo);
|
||
|
CS.setArgument(ArgNo, UndefValue::get(Arg->getType()));
|
||
|
++NumArgumentsReplacedWithUndef;
|
||
|
Changed = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return Changed;
|
||
|
}
|
||
|
|
||
|
/// Convenience function that returns the number of return values. It returns 0
|
||
|
/// for void functions and 1 for functions not returning a struct. It returns
|
||
|
/// the number of struct elements for functions returning a struct.
|
||
|
static unsigned NumRetVals(const Function *F) {
|
||
|
if (F->getReturnType()->isVoidTy())
|
||
|
return 0;
|
||
|
else if (StructType *STy = dyn_cast<StructType>(F->getReturnType()))
|
||
|
return STy->getNumElements();
|
||
|
else
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/// MarkIfNotLive - This checks Use for liveness in LiveValues. If Use is not
|
||
|
/// live, it adds Use to the MaybeLiveUses argument. Returns the determined
|
||
|
/// liveness of Use.
|
||
|
DAE::Liveness DAE::MarkIfNotLive(RetOrArg Use, UseVector &MaybeLiveUses) {
|
||
|
// We're live if our use or its Function is already marked as live.
|
||
|
if (LiveFunctions.count(Use.F) || LiveValues.count(Use))
|
||
|
return Live;
|
||
|
|
||
|
// We're maybe live otherwise, but remember that we must become live if
|
||
|
// Use becomes live.
|
||
|
MaybeLiveUses.push_back(Use);
|
||
|
return MaybeLive;
|
||
|
}
|
||
|
|
||
|
|
||
|
/// SurveyUse - This looks at a single use of an argument or return value
|
||
|
/// and determines if it should be alive or not. Adds this use to MaybeLiveUses
|
||
|
/// if it causes the used value to become MaybeLive.
|
||
|
///
|
||
|
/// RetValNum is the return value number to use when this use is used in a
|
||
|
/// return instruction. This is used in the recursion, you should always leave
|
||
|
/// it at 0.
|
||
|
DAE::Liveness DAE::SurveyUse(Value::const_use_iterator U,
|
||
|
UseVector &MaybeLiveUses, unsigned RetValNum) {
|
||
|
const User *V = *U;
|
||
|
if (const ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
|
||
|
// The value is returned from a function. It's only live when the
|
||
|
// function's return value is live. We use RetValNum here, for the case
|
||
|
// that U is really a use of an insertvalue instruction that uses the
|
||
|
// original Use.
|
||
|
RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum);
|
||
|
// We might be live, depending on the liveness of Use.
|
||
|
return MarkIfNotLive(Use, MaybeLiveUses);
|
||
|
}
|
||
|
if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
|
||
|
if (U.getOperandNo() != InsertValueInst::getAggregateOperandIndex()
|
||
|
&& IV->hasIndices())
|
||
|
// The use we are examining is inserted into an aggregate. Our liveness
|
||
|
// depends on all uses of that aggregate, but if it is used as a return
|
||
|
// value, only index at which we were inserted counts.
|
||
|
RetValNum = *IV->idx_begin();
|
||
|
|
||
|
// Note that if we are used as the aggregate operand to the insertvalue,
|
||
|
// we don't change RetValNum, but do survey all our uses.
|
||
|
|
||
|
Liveness Result = MaybeLive;
|
||
|
for (Value::const_use_iterator I = IV->use_begin(),
|
||
|
E = V->use_end(); I != E; ++I) {
|
||
|
Result = SurveyUse(I, MaybeLiveUses, RetValNum);
|
||
|
if (Result == Live)
|
||
|
break;
|
||
|
}
|
||
|
return Result;
|
||
|
}
|
||
|
|
||
|
if (ImmutableCallSite CS = V) {
|
||
|
const Function *F = CS.getCalledFunction();
|
||
|
if (F) {
|
||
|
// Used in a direct call.
|
||
|
|
||
|
// Find the argument number. We know for sure that this use is an
|
||
|
// argument, since if it was the function argument this would be an
|
||
|
// indirect call and the we know can't be looking at a value of the
|
||
|
// label type (for the invoke instruction).
|
||
|
unsigned ArgNo = CS.getArgumentNo(U);
|
||
|
|
||
|
if (ArgNo >= F->getFunctionType()->getNumParams())
|
||
|
// The value is passed in through a vararg! Must be live.
|
||
|
return Live;
|
||
|
|
||
|
assert(CS.getArgument(ArgNo)
|
||
|
== CS->getOperand(U.getOperandNo())
|
||
|
&& "Argument is not where we expected it");
|
||
|
|
||
|
// Value passed to a normal call. It's only live when the corresponding
|
||
|
// argument to the called function turns out live.
|
||
|
RetOrArg Use = CreateArg(F, ArgNo);
|
||
|
return MarkIfNotLive(Use, MaybeLiveUses);
|
||
|
}
|
||
|
}
|
||
|
// Used in any other way? Value must be live.
|
||
|
return Live;
|
||
|
}
|
||
|
|
||
|
/// SurveyUses - This looks at all the uses of the given value
|
||
|
/// Returns the Liveness deduced from the uses of this value.
|
||
|
///
|
||
|
/// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses. If
|
||
|
/// the result is Live, MaybeLiveUses might be modified but its content should
|
||
|
/// be ignored (since it might not be complete).
|
||
|
DAE::Liveness DAE::SurveyUses(const Value *V, UseVector &MaybeLiveUses) {
|
||
|
// Assume it's dead (which will only hold if there are no uses at all..).
|
||
|
Liveness Result = MaybeLive;
|
||
|
// Check each use.
|
||
|
for (Value::const_use_iterator I = V->use_begin(),
|
||
|
E = V->use_end(); I != E; ++I) {
|
||
|
Result = SurveyUse(I, MaybeLiveUses);
|
||
|
if (Result == Live)
|
||
|
break;
|
||
|
}
|
||
|
return Result;
|
||
|
}
|
||
|
|
||
|
// SurveyFunction - This performs the initial survey of the specified function,
|
||
|
// checking out whether or not it uses any of its incoming arguments or whether
|
||
|
// any callers use the return value. This fills in the LiveValues set and Uses
|
||
|
// map.
|
||
|
//
|
||
|
// We consider arguments of non-internal functions to be intrinsically alive as
|
||
|
// well as arguments to functions which have their "address taken".
|
||
|
//
|
||
|
void DAE::SurveyFunction(const Function &F) {
|
||
|
unsigned RetCount = NumRetVals(&F);
|
||
|
// Assume all return values are dead
|
||
|
typedef SmallVector<Liveness, 5> RetVals;
|
||
|
RetVals RetValLiveness(RetCount, MaybeLive);
|
||
|
|
||
|
typedef SmallVector<UseVector, 5> RetUses;
|
||
|
// These vectors map each return value to the uses that make it MaybeLive, so
|
||
|
// we can add those to the Uses map if the return value really turns out to be
|
||
|
// MaybeLive. Initialized to a list of RetCount empty lists.
|
||
|
RetUses MaybeLiveRetUses(RetCount);
|
||
|
|
||
|
for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
|
||
|
if (const ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
|
||
|
if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
|
||
|
!= F.getFunctionType()->getReturnType()) {
|
||
|
// We don't support old style multiple return values.
|
||
|
MarkLive(F);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (!F.hasLocalLinkage() && (!ShouldHackArguments() || F.isIntrinsic())) {
|
||
|
MarkLive(F);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
DEBUG(dbgs() << "DAE - Inspecting callers for fn: " << F.getName() << "\n");
|
||
|
// Keep track of the number of live retvals, so we can skip checks once all
|
||
|
// of them turn out to be live.
|
||
|
unsigned NumLiveRetVals = 0;
|
||
|
Type *STy = dyn_cast<StructType>(F.getReturnType());
|
||
|
// Loop all uses of the function.
|
||
|
for (Value::const_use_iterator I = F.use_begin(), E = F.use_end();
|
||
|
I != E; ++I) {
|
||
|
// If the function is PASSED IN as an argument, its address has been
|
||
|
// taken.
|
||
|
ImmutableCallSite CS(*I);
|
||
|
if (!CS || !CS.isCallee(I)) {
|
||
|
MarkLive(F);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// If this use is anything other than a call site, the function is alive.
|
||
|
const Instruction *TheCall = CS.getInstruction();
|
||
|
if (!TheCall) { // Not a direct call site?
|
||
|
MarkLive(F);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// If we end up here, we are looking at a direct call to our function.
|
||
|
|
||
|
// Now, check how our return value(s) is/are used in this caller. Don't
|
||
|
// bother checking return values if all of them are live already.
|
||
|
if (NumLiveRetVals != RetCount) {
|
||
|
if (STy) {
|
||
|
// Check all uses of the return value.
|
||
|
for (Value::const_use_iterator I = TheCall->use_begin(),
|
||
|
E = TheCall->use_end(); I != E; ++I) {
|
||
|
const ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(*I);
|
||
|
if (Ext && Ext->hasIndices()) {
|
||
|
// This use uses a part of our return value, survey the uses of
|
||
|
// that part and store the results for this index only.
|
||
|
unsigned Idx = *Ext->idx_begin();
|
||
|
if (RetValLiveness[Idx] != Live) {
|
||
|
RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
|
||
|
if (RetValLiveness[Idx] == Live)
|
||
|
NumLiveRetVals++;
|
||
|
}
|
||
|
} else {
|
||
|
// Used by something else than extractvalue. Mark all return
|
||
|
// values as live.
|
||
|
for (unsigned i = 0; i != RetCount; ++i )
|
||
|
RetValLiveness[i] = Live;
|
||
|
NumLiveRetVals = RetCount;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
// Single return value
|
||
|
RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]);
|
||
|
if (RetValLiveness[0] == Live)
|
||
|
NumLiveRetVals = RetCount;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Now we've inspected all callers, record the liveness of our return values.
|
||
|
for (unsigned i = 0; i != RetCount; ++i)
|
||
|
MarkValue(CreateRet(&F, i), RetValLiveness[i], MaybeLiveRetUses[i]);
|
||
|
|
||
|
DEBUG(dbgs() << "DAE - Inspecting args for fn: " << F.getName() << "\n");
|
||
|
|
||
|
// Now, check all of our arguments.
|
||
|
unsigned i = 0;
|
||
|
UseVector MaybeLiveArgUses;
|
||
|
for (Function::const_arg_iterator AI = F.arg_begin(),
|
||
|
E = F.arg_end(); AI != E; ++AI, ++i) {
|
||
|
Liveness Result;
|
||
|
if (F.getFunctionType()->isVarArg()) {
|
||
|
// Variadic functions will already have a va_arg function expanded inside
|
||
|
// them, making them potentially very sensitive to ABI changes resulting
|
||
|
// from removing arguments entirely, so don't. For example AArch64 handles
|
||
|
// register and stack HFAs very differently, and this is reflected in the
|
||
|
// IR which has already been generated.
|
||
|
Result = Live;
|
||
|
} else {
|
||
|
// See what the effect of this use is (recording any uses that cause
|
||
|
// MaybeLive in MaybeLiveArgUses).
|
||
|
Result = SurveyUses(AI, MaybeLiveArgUses);
|
||
|
}
|
||
|
|
||
|
// Mark the result.
|
||
|
MarkValue(CreateArg(&F, i), Result, MaybeLiveArgUses);
|
||
|
// Clear the vector again for the next iteration.
|
||
|
MaybeLiveArgUses.clear();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// MarkValue - This function marks the liveness of RA depending on L. If L is
|
||
|
/// MaybeLive, it also takes all uses in MaybeLiveUses and records them in Uses,
|
||
|
/// such that RA will be marked live if any use in MaybeLiveUses gets marked
|
||
|
/// live later on.
|
||
|
void DAE::MarkValue(const RetOrArg &RA, Liveness L,
|
||
|
const UseVector &MaybeLiveUses) {
|
||
|
switch (L) {
|
||
|
case Live: MarkLive(RA); break;
|
||
|
case MaybeLive:
|
||
|
{
|
||
|
// Note any uses of this value, so this return value can be
|
||
|
// marked live whenever one of the uses becomes live.
|
||
|
for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
|
||
|
UE = MaybeLiveUses.end(); UI != UE; ++UI)
|
||
|
Uses.insert(std::make_pair(*UI, RA));
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/// MarkLive - Mark the given Function as alive, meaning that it cannot be
|
||
|
/// changed in any way. Additionally,
|
||
|
/// mark any values that are used as this function's parameters or by its return
|
||
|
/// values (according to Uses) live as well.
|
||
|
void DAE::MarkLive(const Function &F) {
|
||
|
DEBUG(dbgs() << "DAE - Intrinsically live fn: " << F.getName() << "\n");
|
||
|
// Mark the function as live.
|
||
|
LiveFunctions.insert(&F);
|
||
|
// Mark all arguments as live.
|
||
|
for (unsigned i = 0, e = F.arg_size(); i != e; ++i)
|
||
|
PropagateLiveness(CreateArg(&F, i));
|
||
|
// Mark all return values as live.
|
||
|
for (unsigned i = 0, e = NumRetVals(&F); i != e; ++i)
|
||
|
PropagateLiveness(CreateRet(&F, i));
|
||
|
}
|
||
|
|
||
|
/// MarkLive - Mark the given return value or argument as live. Additionally,
|
||
|
/// mark any values that are used by this value (according to Uses) live as
|
||
|
/// well.
|
||
|
void DAE::MarkLive(const RetOrArg &RA) {
|
||
|
if (LiveFunctions.count(RA.F))
|
||
|
return; // Function was already marked Live.
|
||
|
|
||
|
if (!LiveValues.insert(RA).second)
|
||
|
return; // We were already marked Live.
|
||
|
|
||
|
DEBUG(dbgs() << "DAE - Marking " << RA.getDescription() << " live\n");
|
||
|
PropagateLiveness(RA);
|
||
|
}
|
||
|
|
||
|
/// PropagateLiveness - Given that RA is a live value, propagate it's liveness
|
||
|
/// to any other values it uses (according to Uses).
|
||
|
void DAE::PropagateLiveness(const RetOrArg &RA) {
|
||
|
// We don't use upper_bound (or equal_range) here, because our recursive call
|
||
|
// to ourselves is likely to cause the upper_bound (which is the first value
|
||
|
// not belonging to RA) to become erased and the iterator invalidated.
|
||
|
UseMap::iterator Begin = Uses.lower_bound(RA);
|
||
|
UseMap::iterator E = Uses.end();
|
||
|
UseMap::iterator I;
|
||
|
for (I = Begin; I != E && I->first == RA; ++I)
|
||
|
MarkLive(I->second);
|
||
|
|
||
|
// Erase RA from the Uses map (from the lower bound to wherever we ended up
|
||
|
// after the loop).
|
||
|
Uses.erase(Begin, I);
|
||
|
}
|
||
|
|
||
|
// RemoveDeadStuffFromFunction - Remove any arguments and return values from F
|
||
|
// that are not in LiveValues. Transform the function and all of the callees of
|
||
|
// the function to not have these arguments and return values.
|
||
|
//
|
||
|
bool DAE::RemoveDeadStuffFromFunction(Function *F) {
|
||
|
// Don't modify fully live functions
|
||
|
if (LiveFunctions.count(F))
|
||
|
return false;
|
||
|
|
||
|
// Start by computing a new prototype for the function, which is the same as
|
||
|
// the old function, but has fewer arguments and a different return type.
|
||
|
FunctionType *FTy = F->getFunctionType();
|
||
|
std::vector<Type*> Params;
|
||
|
|
||
|
// Keep track of if we have a live 'returned' argument
|
||
|
bool HasLiveReturnedArg = false;
|
||
|
|
||
|
// Set up to build a new list of parameter attributes.
|
||
|
SmallVector<AttributeSet, 8> AttributesVec;
|
||
|
const AttributeSet &PAL = F->getAttributes();
|
||
|
|
||
|
// Remember which arguments are still alive.
|
||
|
SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
|
||
|
// Construct the new parameter list from non-dead arguments. Also construct
|
||
|
// a new set of parameter attributes to correspond. Skip the first parameter
|
||
|
// attribute, since that belongs to the return value.
|
||
|
unsigned i = 0;
|
||
|
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
|
||
|
I != E; ++I, ++i) {
|
||
|
RetOrArg Arg = CreateArg(F, i);
|
||
|
if (LiveValues.erase(Arg)) {
|
||
|
Params.push_back(I->getType());
|
||
|
ArgAlive[i] = true;
|
||
|
|
||
|
// Get the original parameter attributes (skipping the first one, that is
|
||
|
// for the return value.
|
||
|
if (PAL.hasAttributes(i + 1)) {
|
||
|
AttrBuilder B(PAL, i + 1);
|
||
|
if (B.contains(Attribute::Returned))
|
||
|
HasLiveReturnedArg = true;
|
||
|
AttributesVec.
|
||
|
push_back(AttributeSet::get(F->getContext(), Params.size(), B));
|
||
|
}
|
||
|
} else {
|
||
|
++NumArgumentsEliminated;
|
||
|
DEBUG(dbgs() << "DAE - Removing argument " << i << " (" << I->getName()
|
||
|
<< ") from " << F->getName() << "\n");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Find out the new return value.
|
||
|
Type *RetTy = FTy->getReturnType();
|
||
|
Type *NRetTy = NULL;
|
||
|
unsigned RetCount = NumRetVals(F);
|
||
|
|
||
|
// -1 means unused, other numbers are the new index
|
||
|
SmallVector<int, 5> NewRetIdxs(RetCount, -1);
|
||
|
std::vector<Type*> RetTypes;
|
||
|
|
||
|
// If there is a function with a live 'returned' argument but a dead return
|
||
|
// value, then there are two possible actions:
|
||
|
// 1) Eliminate the return value and take off the 'returned' attribute on the
|
||
|
// argument.
|
||
|
// 2) Retain the 'returned' attribute and treat the return value (but not the
|
||
|
// entire function) as live so that it is not eliminated.
|
||
|
//
|
||
|
// It's not clear in the general case which option is more profitable because,
|
||
|
// even in the absence of explicit uses of the return value, code generation
|
||
|
// is free to use the 'returned' attribute to do things like eliding
|
||
|
// save/restores of registers across calls. Whether or not this happens is
|
||
|
// target and ABI-specific as well as depending on the amount of register
|
||
|
// pressure, so there's no good way for an IR-level pass to figure this out.
|
||
|
//
|
||
|
// Fortunately, the only places where 'returned' is currently generated by
|
||
|
// the FE are places where 'returned' is basically free and almost always a
|
||
|
// performance win, so the second option can just be used always for now.
|
||
|
//
|
||
|
// This should be revisited if 'returned' is ever applied more liberally.
|
||
|
if (RetTy->isVoidTy() || HasLiveReturnedArg) {
|
||
|
NRetTy = RetTy;
|
||
|
} else {
|
||
|
StructType *STy = dyn_cast<StructType>(RetTy);
|
||
|
if (STy)
|
||
|
// Look at each of the original return values individually.
|
||
|
for (unsigned i = 0; i != RetCount; ++i) {
|
||
|
RetOrArg Ret = CreateRet(F, i);
|
||
|
if (LiveValues.erase(Ret)) {
|
||
|
RetTypes.push_back(STy->getElementType(i));
|
||
|
NewRetIdxs[i] = RetTypes.size() - 1;
|
||
|
} else {
|
||
|
++NumRetValsEliminated;
|
||
|
DEBUG(dbgs() << "DAE - Removing return value " << i << " from "
|
||
|
<< F->getName() << "\n");
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
// We used to return a single value.
|
||
|
if (LiveValues.erase(CreateRet(F, 0))) {
|
||
|
RetTypes.push_back(RetTy);
|
||
|
NewRetIdxs[0] = 0;
|
||
|
} else {
|
||
|
DEBUG(dbgs() << "DAE - Removing return value from " << F->getName()
|
||
|
<< "\n");
|
||
|
++NumRetValsEliminated;
|
||
|
}
|
||
|
if (RetTypes.size() > 1)
|
||
|
// More than one return type? Return a struct with them. Also, if we used
|
||
|
// to return a struct and didn't change the number of return values,
|
||
|
// return a struct again. This prevents changing {something} into
|
||
|
// something and {} into void.
|
||
|
// Make the new struct packed if we used to return a packed struct
|
||
|
// already.
|
||
|
NRetTy = StructType::get(STy->getContext(), RetTypes, STy->isPacked());
|
||
|
else if (RetTypes.size() == 1)
|
||
|
// One return type? Just a simple value then, but only if we didn't use to
|
||
|
// return a struct with that simple value before.
|
||
|
NRetTy = RetTypes.front();
|
||
|
else if (RetTypes.size() == 0)
|
||
|
// No return types? Make it void, but only if we didn't use to return {}.
|
||
|
NRetTy = Type::getVoidTy(F->getContext());
|
||
|
}
|
||
|
|
||
|
assert(NRetTy && "No new return type found?");
|
||
|
|
||
|
// The existing function return attributes.
|
||
|
AttributeSet RAttrs = PAL.getRetAttributes();
|
||
|
|
||
|
// Remove any incompatible attributes, but only if we removed all return
|
||
|
// values. Otherwise, ensure that we don't have any conflicting attributes
|
||
|
// here. Currently, this should not be possible, but special handling might be
|
||
|
// required when new return value attributes are added.
|
||
|
if (NRetTy->isVoidTy())
|
||
|
RAttrs =
|
||
|
AttributeSet::get(NRetTy->getContext(), AttributeSet::ReturnIndex,
|
||
|
AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
|
||
|
removeAttributes(AttributeFuncs::
|
||
|
typeIncompatible(NRetTy, AttributeSet::ReturnIndex),
|
||
|
AttributeSet::ReturnIndex));
|
||
|
else
|
||
|
assert(!AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
|
||
|
hasAttributes(AttributeFuncs::
|
||
|
typeIncompatible(NRetTy, AttributeSet::ReturnIndex),
|
||
|
AttributeSet::ReturnIndex) &&
|
||
|
"Return attributes no longer compatible?");
|
||
|
|
||
|
if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
|
||
|
AttributesVec.push_back(AttributeSet::get(NRetTy->getContext(), RAttrs));
|
||
|
|
||
|
if (PAL.hasAttributes(AttributeSet::FunctionIndex))
|
||
|
AttributesVec.push_back(AttributeSet::get(F->getContext(),
|
||
|
PAL.getFnAttributes()));
|
||
|
|
||
|
// Reconstruct the AttributesList based on the vector we constructed.
|
||
|
AttributeSet NewPAL = AttributeSet::get(F->getContext(), AttributesVec);
|
||
|
|
||
|
// Create the new function type based on the recomputed parameters.
|
||
|
FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
|
||
|
|
||
|
// No change?
|
||
|
if (NFTy == FTy)
|
||
|
return false;
|
||
|
|
||
|
// Create the new function body and insert it into the module...
|
||
|
Function *NF = Function::Create(NFTy, F->getLinkage());
|
||
|
NF->copyAttributesFrom(F);
|
||
|
NF->setAttributes(NewPAL);
|
||
|
// Insert the new function before the old function, so we won't be processing
|
||
|
// it again.
|
||
|
F->getParent()->getFunctionList().insert(F, NF);
|
||
|
NF->takeName(F);
|
||
|
|
||
|
// Loop over all of the callers of the function, transforming the call sites
|
||
|
// to pass in a smaller number of arguments into the new function.
|
||
|
//
|
||
|
std::vector<Value*> Args;
|
||
|
while (!F->use_empty()) {
|
||
|
CallSite CS(F->use_back());
|
||
|
Instruction *Call = CS.getInstruction();
|
||
|
|
||
|
AttributesVec.clear();
|
||
|
const AttributeSet &CallPAL = CS.getAttributes();
|
||
|
|
||
|
// The call return attributes.
|
||
|
AttributeSet RAttrs = CallPAL.getRetAttributes();
|
||
|
|
||
|
// Adjust in case the function was changed to return void.
|
||
|
RAttrs =
|
||
|
AttributeSet::get(NF->getContext(), AttributeSet::ReturnIndex,
|
||
|
AttrBuilder(RAttrs, AttributeSet::ReturnIndex).
|
||
|
removeAttributes(AttributeFuncs::
|
||
|
typeIncompatible(NF->getReturnType(),
|
||
|
AttributeSet::ReturnIndex),
|
||
|
AttributeSet::ReturnIndex));
|
||
|
if (RAttrs.hasAttributes(AttributeSet::ReturnIndex))
|
||
|
AttributesVec.push_back(AttributeSet::get(NF->getContext(), RAttrs));
|
||
|
|
||
|
// Declare these outside of the loops, so we can reuse them for the second
|
||
|
// loop, which loops the varargs.
|
||
|
CallSite::arg_iterator I = CS.arg_begin();
|
||
|
unsigned i = 0;
|
||
|
// Loop over those operands, corresponding to the normal arguments to the
|
||
|
// original function, and add those that are still alive.
|
||
|
for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
|
||
|
if (ArgAlive[i]) {
|
||
|
Args.push_back(*I);
|
||
|
// Get original parameter attributes, but skip return attributes.
|
||
|
if (CallPAL.hasAttributes(i + 1)) {
|
||
|
AttrBuilder B(CallPAL, i + 1);
|
||
|
// If the return type has changed, then get rid of 'returned' on the
|
||
|
// call site. The alternative is to make all 'returned' attributes on
|
||
|
// call sites keep the return value alive just like 'returned'
|
||
|
// attributes on function declaration but it's less clearly a win
|
||
|
// and this is not an expected case anyway
|
||
|
if (NRetTy != RetTy && B.contains(Attribute::Returned))
|
||
|
B.removeAttribute(Attribute::Returned);
|
||
|
AttributesVec.
|
||
|
push_back(AttributeSet::get(F->getContext(), Args.size(), B));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Push any varargs arguments on the list. Don't forget their attributes.
|
||
|
for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
|
||
|
Args.push_back(*I);
|
||
|
if (CallPAL.hasAttributes(i + 1)) {
|
||
|
AttrBuilder B(CallPAL, i + 1);
|
||
|
AttributesVec.
|
||
|
push_back(AttributeSet::get(F->getContext(), Args.size(), B));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (CallPAL.hasAttributes(AttributeSet::FunctionIndex))
|
||
|
AttributesVec.push_back(AttributeSet::get(Call->getContext(),
|
||
|
CallPAL.getFnAttributes()));
|
||
|
|
||
|
// Reconstruct the AttributesList based on the vector we constructed.
|
||
|
AttributeSet NewCallPAL = AttributeSet::get(F->getContext(), AttributesVec);
|
||
|
|
||
|
Instruction *New;
|
||
|
if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
|
||
|
New = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(),
|
||
|
Args, "", Call);
|
||
|
cast<InvokeInst>(New)->setCallingConv(CS.getCallingConv());
|
||
|
cast<InvokeInst>(New)->setAttributes(NewCallPAL);
|
||
|
} else {
|
||
|
New = CallInst::Create(NF, Args, "", Call);
|
||
|
cast<CallInst>(New)->setCallingConv(CS.getCallingConv());
|
||
|
cast<CallInst>(New)->setAttributes(NewCallPAL);
|
||
|
if (cast<CallInst>(Call)->isTailCall())
|
||
|
cast<CallInst>(New)->setTailCall();
|
||
|
}
|
||
|
New->setDebugLoc(Call->getDebugLoc());
|
||
|
|
||
|
Args.clear();
|
||
|
|
||
|
if (!Call->use_empty()) {
|
||
|
if (New->getType() == Call->getType()) {
|
||
|
// Return type not changed? Just replace users then.
|
||
|
Call->replaceAllUsesWith(New);
|
||
|
New->takeName(Call);
|
||
|
} else if (New->getType()->isVoidTy()) {
|
||
|
// Our return value has uses, but they will get removed later on.
|
||
|
// Replace by null for now.
|
||
|
if (!Call->getType()->isX86_MMXTy())
|
||
|
Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
|
||
|
} else {
|
||
|
assert(RetTy->isStructTy() &&
|
||
|
"Return type changed, but not into a void. The old return type"
|
||
|
" must have been a struct!");
|
||
|
Instruction *InsertPt = Call;
|
||
|
if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) {
|
||
|
BasicBlock::iterator IP = II->getNormalDest()->begin();
|
||
|
while (isa<PHINode>(IP)) ++IP;
|
||
|
InsertPt = IP;
|
||
|
}
|
||
|
|
||
|
// We used to return a struct. Instead of doing smart stuff with all the
|
||
|
// uses of this struct, we will just rebuild it using
|
||
|
// extract/insertvalue chaining and let instcombine clean that up.
|
||
|
//
|
||
|
// Start out building up our return value from undef
|
||
|
Value *RetVal = UndefValue::get(RetTy);
|
||
|
for (unsigned i = 0; i != RetCount; ++i)
|
||
|
if (NewRetIdxs[i] != -1) {
|
||
|
Value *V;
|
||
|
if (RetTypes.size() > 1)
|
||
|
// We are still returning a struct, so extract the value from our
|
||
|
// return value
|
||
|
V = ExtractValueInst::Create(New, NewRetIdxs[i], "newret",
|
||
|
InsertPt);
|
||
|
else
|
||
|
// We are now returning a single element, so just insert that
|
||
|
V = New;
|
||
|
// Insert the value at the old position
|
||
|
RetVal = InsertValueInst::Create(RetVal, V, i, "oldret", InsertPt);
|
||
|
}
|
||
|
// Now, replace all uses of the old call instruction with the return
|
||
|
// struct we built
|
||
|
Call->replaceAllUsesWith(RetVal);
|
||
|
New->takeName(Call);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Finally, remove the old call from the program, reducing the use-count of
|
||
|
// F.
|
||
|
Call->eraseFromParent();
|
||
|
}
|
||
|
|
||
|
// Since we have now created the new function, splice the body of the old
|
||
|
// function right into the new function, leaving the old rotting hulk of the
|
||
|
// function empty.
|
||
|
NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
|
||
|
|
||
|
// Loop over the argument list, transferring uses of the old arguments over to
|
||
|
// the new arguments, also transferring over the names as well.
|
||
|
i = 0;
|
||
|
for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
|
||
|
I2 = NF->arg_begin(); I != E; ++I, ++i)
|
||
|
if (ArgAlive[i]) {
|
||
|
// If this is a live argument, move the name and users over to the new
|
||
|
// version.
|
||
|
I->replaceAllUsesWith(I2);
|
||
|
I2->takeName(I);
|
||
|
++I2;
|
||
|
} else {
|
||
|
// If this argument is dead, replace any uses of it with null constants
|
||
|
// (these are guaranteed to become unused later on).
|
||
|
if (!I->getType()->isX86_MMXTy())
|
||
|
I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
|
||
|
}
|
||
|
|
||
|
// If we change the return value of the function we must rewrite any return
|
||
|
// instructions. Check this now.
|
||
|
if (F->getReturnType() != NF->getReturnType())
|
||
|
for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
|
||
|
if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
|
||
|
Value *RetVal;
|
||
|
|
||
|
if (NFTy->getReturnType()->isVoidTy()) {
|
||
|
RetVal = 0;
|
||
|
} else {
|
||
|
assert (RetTy->isStructTy());
|
||
|
// The original return value was a struct, insert
|
||
|
// extractvalue/insertvalue chains to extract only the values we need
|
||
|
// to return and insert them into our new result.
|
||
|
// This does generate messy code, but we'll let it to instcombine to
|
||
|
// clean that up.
|
||
|
Value *OldRet = RI->getOperand(0);
|
||
|
// Start out building up our return value from undef
|
||
|
RetVal = UndefValue::get(NRetTy);
|
||
|
for (unsigned i = 0; i != RetCount; ++i)
|
||
|
if (NewRetIdxs[i] != -1) {
|
||
|
ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
|
||
|
"oldret", RI);
|
||
|
if (RetTypes.size() > 1) {
|
||
|
// We're still returning a struct, so reinsert the value into
|
||
|
// our new return value at the new index
|
||
|
|
||
|
RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
|
||
|
"newret", RI);
|
||
|
} else {
|
||
|
// We are now only returning a simple value, so just return the
|
||
|
// extracted value.
|
||
|
RetVal = EV;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
// Replace the return instruction with one returning the new return
|
||
|
// value (possibly 0 if we became void).
|
||
|
ReturnInst::Create(F->getContext(), RetVal, RI);
|
||
|
BB->getInstList().erase(RI);
|
||
|
}
|
||
|
|
||
|
// Patch the pointer to LLVM function in debug info descriptor.
|
||
|
FunctionDIMap::iterator DI = FunctionDIs.find(F);
|
||
|
if (DI != FunctionDIs.end())
|
||
|
DI->second.replaceFunction(NF);
|
||
|
|
||
|
// Now that the old function is dead, delete it.
|
||
|
F->eraseFromParent();
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool DAE::runOnModule(Module &M) {
|
||
|
bool Changed = false;
|
||
|
|
||
|
// Collect debug info descriptors for functions.
|
||
|
CollectFunctionDIs(M);
|
||
|
|
||
|
// First pass: Do a simple check to see if any functions can have their "..."
|
||
|
// removed. We can do this if they never call va_start. This loop cannot be
|
||
|
// fused with the next loop, because deleting a function invalidates
|
||
|
// information computed while surveying other functions.
|
||
|
DEBUG(dbgs() << "DAE - Deleting dead varargs\n");
|
||
|
for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
|
||
|
Function &F = *I++;
|
||
|
if (F.getFunctionType()->isVarArg())
|
||
|
Changed |= DeleteDeadVarargs(F);
|
||
|
}
|
||
|
|
||
|
// Second phase:loop through the module, determining which arguments are live.
|
||
|
// We assume all arguments are dead unless proven otherwise (allowing us to
|
||
|
// determine that dead arguments passed into recursive functions are dead).
|
||
|
//
|
||
|
DEBUG(dbgs() << "DAE - Determining liveness\n");
|
||
|
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
|
||
|
SurveyFunction(*I);
|
||
|
|
||
|
// Now, remove all dead arguments and return values from each function in
|
||
|
// turn.
|
||
|
for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
|
||
|
// Increment now, because the function will probably get removed (ie.
|
||
|
// replaced by a new one).
|
||
|
Function *F = I++;
|
||
|
Changed |= RemoveDeadStuffFromFunction(F);
|
||
|
}
|
||
|
|
||
|
// Finally, look for any unused parameters in functions with non-local
|
||
|
// linkage and replace the passed in parameters with undef.
|
||
|
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
|
||
|
Function& F = *I;
|
||
|
|
||
|
Changed |= RemoveDeadArgumentsFromCallers(F);
|
||
|
}
|
||
|
|
||
|
return Changed;
|
||
|
}
|