llvm-65816/lib/Target/PowerPC/PPCRegisterInfo.cpp

839 lines
31 KiB
C++

//===-- PPCRegisterInfo.cpp - PowerPC Register Information ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the PowerPC implementation of the TargetRegisterInfo
// class.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "reginfo"
#include "PPCRegisterInfo.h"
#include "PPC.h"
#include "PPCFrameLowering.h"
#include "PPCInstrBuilder.h"
#include "PPCMachineFunctionInfo.h"
#include "PPCSubtarget.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetFrameLowering.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <cstdlib>
#define GET_REGINFO_TARGET_DESC
#include "PPCGenRegisterInfo.inc"
using namespace llvm;
static cl::opt<bool>
EnableBasePointer("ppc-use-base-pointer", cl::Hidden, cl::init(true),
cl::desc("Enable use of a base pointer for complex stack frames"));
static cl::opt<bool>
AlwaysBasePointer("ppc-always-use-base-pointer", cl::Hidden, cl::init(false),
cl::desc("Force the use of a base pointer in every function"));
PPCRegisterInfo::PPCRegisterInfo(const PPCSubtarget &ST)
: PPCGenRegisterInfo(ST.isPPC64() ? PPC::LR8 : PPC::LR,
ST.isPPC64() ? 0 : 1,
ST.isPPC64() ? 0 : 1),
Subtarget(ST) {
ImmToIdxMap[PPC::LD] = PPC::LDX; ImmToIdxMap[PPC::STD] = PPC::STDX;
ImmToIdxMap[PPC::LBZ] = PPC::LBZX; ImmToIdxMap[PPC::STB] = PPC::STBX;
ImmToIdxMap[PPC::LHZ] = PPC::LHZX; ImmToIdxMap[PPC::LHA] = PPC::LHAX;
ImmToIdxMap[PPC::LWZ] = PPC::LWZX; ImmToIdxMap[PPC::LWA] = PPC::LWAX;
ImmToIdxMap[PPC::LFS] = PPC::LFSX; ImmToIdxMap[PPC::LFD] = PPC::LFDX;
ImmToIdxMap[PPC::STH] = PPC::STHX; ImmToIdxMap[PPC::STW] = PPC::STWX;
ImmToIdxMap[PPC::STFS] = PPC::STFSX; ImmToIdxMap[PPC::STFD] = PPC::STFDX;
ImmToIdxMap[PPC::ADDI] = PPC::ADD4;
ImmToIdxMap[PPC::LWA_32] = PPC::LWAX_32;
// 64-bit
ImmToIdxMap[PPC::LHA8] = PPC::LHAX8; ImmToIdxMap[PPC::LBZ8] = PPC::LBZX8;
ImmToIdxMap[PPC::LHZ8] = PPC::LHZX8; ImmToIdxMap[PPC::LWZ8] = PPC::LWZX8;
ImmToIdxMap[PPC::STB8] = PPC::STBX8; ImmToIdxMap[PPC::STH8] = PPC::STHX8;
ImmToIdxMap[PPC::STW8] = PPC::STWX8; ImmToIdxMap[PPC::STDU] = PPC::STDUX;
ImmToIdxMap[PPC::ADDI8] = PPC::ADD8;
}
/// getPointerRegClass - Return the register class to use to hold pointers.
/// This is used for addressing modes.
const TargetRegisterClass *
PPCRegisterInfo::getPointerRegClass(const MachineFunction &MF, unsigned Kind)
const {
// Note that PPCInstrInfo::FoldImmediate also directly uses this Kind value
// when it checks for ZERO folding.
if (Kind == 1) {
if (Subtarget.isPPC64())
return &PPC::G8RC_NOX0RegClass;
return &PPC::GPRC_NOR0RegClass;
}
if (Subtarget.isPPC64())
return &PPC::G8RCRegClass;
return &PPC::GPRCRegClass;
}
const uint16_t*
PPCRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
if (Subtarget.isDarwinABI())
return Subtarget.isPPC64() ? (Subtarget.hasAltivec() ?
CSR_Darwin64_Altivec_SaveList :
CSR_Darwin64_SaveList) :
(Subtarget.hasAltivec() ?
CSR_Darwin32_Altivec_SaveList :
CSR_Darwin32_SaveList);
return Subtarget.isPPC64() ? (Subtarget.hasAltivec() ?
CSR_SVR464_Altivec_SaveList :
CSR_SVR464_SaveList) :
(Subtarget.hasAltivec() ?
CSR_SVR432_Altivec_SaveList :
CSR_SVR432_SaveList);
}
const uint32_t*
PPCRegisterInfo::getCallPreservedMask(CallingConv::ID CC) const {
if (Subtarget.isDarwinABI())
return Subtarget.isPPC64() ? (Subtarget.hasAltivec() ?
CSR_Darwin64_Altivec_RegMask :
CSR_Darwin64_RegMask) :
(Subtarget.hasAltivec() ?
CSR_Darwin32_Altivec_RegMask :
CSR_Darwin32_RegMask);
return Subtarget.isPPC64() ? (Subtarget.hasAltivec() ?
CSR_SVR464_Altivec_RegMask :
CSR_SVR464_RegMask) :
(Subtarget.hasAltivec() ?
CSR_SVR432_Altivec_RegMask :
CSR_SVR432_RegMask);
}
const uint32_t*
PPCRegisterInfo::getNoPreservedMask() const {
return CSR_NoRegs_RegMask;
}
BitVector PPCRegisterInfo::getReservedRegs(const MachineFunction &MF) const {
BitVector Reserved(getNumRegs());
const PPCFrameLowering *PPCFI =
static_cast<const PPCFrameLowering*>(MF.getTarget().getFrameLowering());
// The ZERO register is not really a register, but the representation of r0
// when used in instructions that treat r0 as the constant 0.
Reserved.set(PPC::ZERO);
Reserved.set(PPC::ZERO8);
// The FP register is also not really a register, but is the representation
// of the frame pointer register used by ISD::FRAMEADDR.
Reserved.set(PPC::FP);
Reserved.set(PPC::FP8);
// The BP register is also not really a register, but is the representation
// of the base pointer register used by setjmp.
Reserved.set(PPC::BP);
Reserved.set(PPC::BP8);
// The counter registers must be reserved so that counter-based loops can
// be correctly formed (and the mtctr instructions are not DCE'd).
Reserved.set(PPC::CTR);
Reserved.set(PPC::CTR8);
Reserved.set(PPC::R1);
Reserved.set(PPC::LR);
Reserved.set(PPC::LR8);
Reserved.set(PPC::RM);
if (!Subtarget.isDarwinABI() || !Subtarget.hasAltivec())
Reserved.set(PPC::VRSAVE);
// The SVR4 ABI reserves r2 and r13
if (Subtarget.isSVR4ABI()) {
Reserved.set(PPC::R2); // System-reserved register
Reserved.set(PPC::R13); // Small Data Area pointer register
}
// On PPC64, r13 is the thread pointer. Never allocate this register.
if (Subtarget.isPPC64()) {
Reserved.set(PPC::R13);
Reserved.set(PPC::X1);
Reserved.set(PPC::X13);
if (PPCFI->needsFP(MF))
Reserved.set(PPC::X31);
if (hasBasePointer(MF))
Reserved.set(PPC::X30);
// The 64-bit SVR4 ABI reserves r2 for the TOC pointer.
if (Subtarget.isSVR4ABI()) {
Reserved.set(PPC::X2);
}
}
if (PPCFI->needsFP(MF))
Reserved.set(PPC::R31);
if (hasBasePointer(MF))
Reserved.set(PPC::R30);
// Reserve Altivec registers when Altivec is unavailable.
if (!Subtarget.hasAltivec())
for (TargetRegisterClass::iterator I = PPC::VRRCRegClass.begin(),
IE = PPC::VRRCRegClass.end(); I != IE; ++I)
Reserved.set(*I);
return Reserved;
}
unsigned
PPCRegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
MachineFunction &MF) const {
const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
const unsigned DefaultSafety = 1;
switch (RC->getID()) {
default:
return 0;
case PPC::G8RC_NOX0RegClassID:
case PPC::GPRC_NOR0RegClassID:
case PPC::G8RCRegClassID:
case PPC::GPRCRegClassID: {
unsigned FP = TFI->hasFP(MF) ? 1 : 0;
return 32 - FP - DefaultSafety;
}
case PPC::F8RCRegClassID:
case PPC::F4RCRegClassID:
case PPC::VRRCRegClassID:
return 32 - DefaultSafety;
case PPC::CRRCRegClassID:
return 8 - DefaultSafety;
}
}
//===----------------------------------------------------------------------===//
// Stack Frame Processing methods
//===----------------------------------------------------------------------===//
/// lowerDynamicAlloc - Generate the code for allocating an object in the
/// current frame. The sequence of code with be in the general form
///
/// addi R0, SP, \#frameSize ; get the address of the previous frame
/// stwxu R0, SP, Rnegsize ; add and update the SP with the negated size
/// addi Rnew, SP, \#maxCalFrameSize ; get the top of the allocation
///
void PPCRegisterInfo::lowerDynamicAlloc(MachineBasicBlock::iterator II) const {
// Get the instruction.
MachineInstr &MI = *II;
// Get the instruction's basic block.
MachineBasicBlock &MBB = *MI.getParent();
// Get the basic block's function.
MachineFunction &MF = *MBB.getParent();
// Get the frame info.
MachineFrameInfo *MFI = MF.getFrameInfo();
// Get the instruction info.
const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
// Determine whether 64-bit pointers are used.
bool LP64 = Subtarget.isPPC64();
DebugLoc dl = MI.getDebugLoc();
// Get the maximum call stack size.
unsigned maxCallFrameSize = MFI->getMaxCallFrameSize();
// Get the total frame size.
unsigned FrameSize = MFI->getStackSize();
// Get stack alignments.
unsigned TargetAlign = MF.getTarget().getFrameLowering()->getStackAlignment();
unsigned MaxAlign = MFI->getMaxAlignment();
assert((maxCallFrameSize & (MaxAlign-1)) == 0 &&
"Maximum call-frame size not sufficiently aligned");
// Determine the previous frame's address. If FrameSize can't be
// represented as 16 bits or we need special alignment, then we load the
// previous frame's address from 0(SP). Why not do an addis of the hi?
// Because R0 is our only safe tmp register and addi/addis treat R0 as zero.
// Constructing the constant and adding would take 3 instructions.
// Fortunately, a frame greater than 32K is rare.
const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
unsigned Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
if (MaxAlign < TargetAlign && isInt<16>(FrameSize)) {
BuildMI(MBB, II, dl, TII.get(PPC::ADDI), Reg)
.addReg(PPC::R31)
.addImm(FrameSize);
} else if (LP64) {
BuildMI(MBB, II, dl, TII.get(PPC::LD), Reg)
.addImm(0)
.addReg(PPC::X1);
} else {
BuildMI(MBB, II, dl, TII.get(PPC::LWZ), Reg)
.addImm(0)
.addReg(PPC::R1);
}
bool KillNegSizeReg = MI.getOperand(1).isKill();
unsigned NegSizeReg = MI.getOperand(1).getReg();
// Grow the stack and update the stack pointer link, then determine the
// address of new allocated space.
if (LP64) {
if (MaxAlign > TargetAlign) {
unsigned UnalNegSizeReg = NegSizeReg;
NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC);
// Unfortunately, there is no andi, only andi., and we can't insert that
// here because we might clobber cr0 while it is live.
BuildMI(MBB, II, dl, TII.get(PPC::LI8), NegSizeReg)
.addImm(~(MaxAlign-1));
unsigned NegSizeReg1 = NegSizeReg;
NegSizeReg = MF.getRegInfo().createVirtualRegister(G8RC);
BuildMI(MBB, II, dl, TII.get(PPC::AND8), NegSizeReg)
.addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg))
.addReg(NegSizeReg1, RegState::Kill);
KillNegSizeReg = true;
}
BuildMI(MBB, II, dl, TII.get(PPC::STDUX), PPC::X1)
.addReg(Reg, RegState::Kill)
.addReg(PPC::X1)
.addReg(NegSizeReg, getKillRegState(KillNegSizeReg));
BuildMI(MBB, II, dl, TII.get(PPC::ADDI8), MI.getOperand(0).getReg())
.addReg(PPC::X1)
.addImm(maxCallFrameSize);
} else {
if (MaxAlign > TargetAlign) {
unsigned UnalNegSizeReg = NegSizeReg;
NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC);
// Unfortunately, there is no andi, only andi., and we can't insert that
// here because we might clobber cr0 while it is live.
BuildMI(MBB, II, dl, TII.get(PPC::LI), NegSizeReg)
.addImm(~(MaxAlign-1));
unsigned NegSizeReg1 = NegSizeReg;
NegSizeReg = MF.getRegInfo().createVirtualRegister(GPRC);
BuildMI(MBB, II, dl, TII.get(PPC::AND), NegSizeReg)
.addReg(UnalNegSizeReg, getKillRegState(KillNegSizeReg))
.addReg(NegSizeReg1, RegState::Kill);
KillNegSizeReg = true;
}
BuildMI(MBB, II, dl, TII.get(PPC::STWUX), PPC::R1)
.addReg(Reg, RegState::Kill)
.addReg(PPC::R1)
.addReg(NegSizeReg, getKillRegState(KillNegSizeReg));
BuildMI(MBB, II, dl, TII.get(PPC::ADDI), MI.getOperand(0).getReg())
.addReg(PPC::R1)
.addImm(maxCallFrameSize);
}
// Discard the DYNALLOC instruction.
MBB.erase(II);
}
/// lowerCRSpilling - Generate the code for spilling a CR register. Instead of
/// reserving a whole register (R0), we scrounge for one here. This generates
/// code like this:
///
/// mfcr rA ; Move the conditional register into GPR rA.
/// rlwinm rA, rA, SB, 0, 31 ; Shift the bits left so they are in CR0's slot.
/// stw rA, FI ; Store rA to the frame.
///
void PPCRegisterInfo::lowerCRSpilling(MachineBasicBlock::iterator II,
unsigned FrameIndex) const {
// Get the instruction.
MachineInstr &MI = *II; // ; SPILL_CR <SrcReg>, <offset>
// Get the instruction's basic block.
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
DebugLoc dl = MI.getDebugLoc();
bool LP64 = Subtarget.isPPC64();
const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
unsigned Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
unsigned SrcReg = MI.getOperand(0).getReg();
// We need to store the CR in the low 4-bits of the saved value. First, issue
// an MFOCRF to save all of the CRBits and, if needed, kill the SrcReg.
BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MFOCRF8 : PPC::MFOCRF), Reg)
.addReg(SrcReg, getKillRegState(MI.getOperand(0).isKill()));
// If the saved register wasn't CR0, shift the bits left so that they are in
// CR0's slot.
if (SrcReg != PPC::CR0) {
unsigned Reg1 = Reg;
Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
// rlwinm rA, rA, ShiftBits, 0, 31.
BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
.addReg(Reg1, RegState::Kill)
.addImm(getEncodingValue(SrcReg) * 4)
.addImm(0)
.addImm(31);
}
addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::STW8 : PPC::STW))
.addReg(Reg, RegState::Kill),
FrameIndex);
// Discard the pseudo instruction.
MBB.erase(II);
}
void PPCRegisterInfo::lowerCRRestore(MachineBasicBlock::iterator II,
unsigned FrameIndex) const {
// Get the instruction.
MachineInstr &MI = *II; // ; <DestReg> = RESTORE_CR <offset>
// Get the instruction's basic block.
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
DebugLoc dl = MI.getDebugLoc();
bool LP64 = Subtarget.isPPC64();
const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
unsigned Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
unsigned DestReg = MI.getOperand(0).getReg();
assert(MI.definesRegister(DestReg) &&
"RESTORE_CR does not define its destination");
addFrameReference(BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::LWZ8 : PPC::LWZ),
Reg), FrameIndex);
// If the reloaded register isn't CR0, shift the bits right so that they are
// in the right CR's slot.
if (DestReg != PPC::CR0) {
unsigned Reg1 = Reg;
Reg = MF.getRegInfo().createVirtualRegister(LP64 ? G8RC : GPRC);
unsigned ShiftBits = getEncodingValue(DestReg)*4;
// rlwinm r11, r11, 32-ShiftBits, 0, 31.
BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::RLWINM8 : PPC::RLWINM), Reg)
.addReg(Reg1, RegState::Kill).addImm(32-ShiftBits).addImm(0)
.addImm(31);
}
BuildMI(MBB, II, dl, TII.get(LP64 ? PPC::MTOCRF8 : PPC::MTOCRF), DestReg)
.addReg(Reg, RegState::Kill);
// Discard the pseudo instruction.
MBB.erase(II);
}
void PPCRegisterInfo::lowerVRSAVESpilling(MachineBasicBlock::iterator II,
unsigned FrameIndex) const {
// Get the instruction.
MachineInstr &MI = *II; // ; SPILL_VRSAVE <SrcReg>, <offset>
// Get the instruction's basic block.
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
DebugLoc dl = MI.getDebugLoc();
const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
unsigned Reg = MF.getRegInfo().createVirtualRegister(GPRC);
unsigned SrcReg = MI.getOperand(0).getReg();
BuildMI(MBB, II, dl, TII.get(PPC::MFVRSAVEv), Reg)
.addReg(SrcReg, getKillRegState(MI.getOperand(0).isKill()));
addFrameReference(BuildMI(MBB, II, dl, TII.get(PPC::STW))
.addReg(Reg, RegState::Kill),
FrameIndex);
// Discard the pseudo instruction.
MBB.erase(II);
}
void PPCRegisterInfo::lowerVRSAVERestore(MachineBasicBlock::iterator II,
unsigned FrameIndex) const {
// Get the instruction.
MachineInstr &MI = *II; // ; <DestReg> = RESTORE_VRSAVE <offset>
// Get the instruction's basic block.
MachineBasicBlock &MBB = *MI.getParent();
MachineFunction &MF = *MBB.getParent();
const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
DebugLoc dl = MI.getDebugLoc();
const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
unsigned Reg = MF.getRegInfo().createVirtualRegister(GPRC);
unsigned DestReg = MI.getOperand(0).getReg();
assert(MI.definesRegister(DestReg) &&
"RESTORE_VRSAVE does not define its destination");
addFrameReference(BuildMI(MBB, II, dl, TII.get(PPC::LWZ),
Reg), FrameIndex);
BuildMI(MBB, II, dl, TII.get(PPC::MTVRSAVEv), DestReg)
.addReg(Reg, RegState::Kill);
// Discard the pseudo instruction.
MBB.erase(II);
}
bool
PPCRegisterInfo::hasReservedSpillSlot(const MachineFunction &MF,
unsigned Reg, int &FrameIdx) const {
// For the nonvolatile condition registers (CR2, CR3, CR4) in an SVR4
// ABI, return true to prevent allocating an additional frame slot.
// For 64-bit, the CR save area is at SP+8; the value of FrameIdx = 0
// is arbitrary and will be subsequently ignored. For 32-bit, we have
// previously created the stack slot if needed, so return its FrameIdx.
if (Subtarget.isSVR4ABI() && PPC::CR2 <= Reg && Reg <= PPC::CR4) {
if (Subtarget.isPPC64())
FrameIdx = 0;
else {
const PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
FrameIdx = FI->getCRSpillFrameIndex();
}
return true;
}
return false;
}
// Figure out if the offset in the instruction must be a multiple of 4.
// This is true for instructions like "STD".
static bool usesIXAddr(const MachineInstr &MI) {
unsigned OpC = MI.getOpcode();
switch (OpC) {
default:
return false;
case PPC::LWA:
case PPC::LWA_32:
case PPC::LD:
case PPC::STD:
return true;
}
}
// Return the OffsetOperandNo given the FIOperandNum (and the instruction).
static unsigned getOffsetONFromFION(const MachineInstr &MI,
unsigned FIOperandNum) {
// Take into account whether it's an add or mem instruction
unsigned OffsetOperandNo = (FIOperandNum == 2) ? 1 : 2;
if (MI.isInlineAsm())
OffsetOperandNo = FIOperandNum-1;
return OffsetOperandNo;
}
void
PPCRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
int SPAdj, unsigned FIOperandNum,
RegScavenger *RS) const {
assert(SPAdj == 0 && "Unexpected");
// Get the instruction.
MachineInstr &MI = *II;
// Get the instruction's basic block.
MachineBasicBlock &MBB = *MI.getParent();
// Get the basic block's function.
MachineFunction &MF = *MBB.getParent();
// Get the instruction info.
const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
// Get the frame info.
MachineFrameInfo *MFI = MF.getFrameInfo();
DebugLoc dl = MI.getDebugLoc();
unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum);
// Get the frame index.
int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
// Get the frame pointer save index. Users of this index are primarily
// DYNALLOC instructions.
PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
int FPSI = FI->getFramePointerSaveIndex();
// Get the instruction opcode.
unsigned OpC = MI.getOpcode();
// Special case for dynamic alloca.
if (FPSI && FrameIndex == FPSI &&
(OpC == PPC::DYNALLOC || OpC == PPC::DYNALLOC8)) {
lowerDynamicAlloc(II);
return;
}
// Special case for pseudo-ops SPILL_CR and RESTORE_CR, etc.
if (OpC == PPC::SPILL_CR) {
lowerCRSpilling(II, FrameIndex);
return;
} else if (OpC == PPC::RESTORE_CR) {
lowerCRRestore(II, FrameIndex);
return;
} else if (OpC == PPC::SPILL_VRSAVE) {
lowerVRSAVESpilling(II, FrameIndex);
return;
} else if (OpC == PPC::RESTORE_VRSAVE) {
lowerVRSAVERestore(II, FrameIndex);
return;
}
// Replace the FrameIndex with base register with GPR1 (SP) or GPR31 (FP).
MI.getOperand(FIOperandNum).ChangeToRegister(
FrameIndex < 0 ? getBaseRegister(MF) : getFrameRegister(MF), false);
// Figure out if the offset in the instruction is shifted right two bits.
bool isIXAddr = usesIXAddr(MI);
// If the instruction is not present in ImmToIdxMap, then it has no immediate
// form (and must be r+r).
bool noImmForm = !MI.isInlineAsm() && !ImmToIdxMap.count(OpC);
// Now add the frame object offset to the offset from r1.
int Offset = MFI->getObjectOffset(FrameIndex);
Offset += MI.getOperand(OffsetOperandNo).getImm();
// If we're not using a Frame Pointer that has been set to the value of the
// SP before having the stack size subtracted from it, then add the stack size
// to Offset to get the correct offset.
// Naked functions have stack size 0, although getStackSize may not reflect that
// because we didn't call all the pieces that compute it for naked functions.
if (!MF.getFunction()->getAttributes().
hasAttribute(AttributeSet::FunctionIndex, Attribute::Naked)) {
if (!(hasBasePointer(MF) && FrameIndex < 0))
Offset += MFI->getStackSize();
}
// If we can, encode the offset directly into the instruction. If this is a
// normal PPC "ri" instruction, any 16-bit value can be safely encoded. If
// this is a PPC64 "ix" instruction, only a 16-bit value with the low two bits
// clear can be encoded. This is extremely uncommon, because normally you
// only "std" to a stack slot that is at least 4-byte aligned, but it can
// happen in invalid code.
assert(OpC != PPC::DBG_VALUE &&
"This should be handle in a target independent way");
if (!noImmForm && isInt<16>(Offset) && (!isIXAddr || (Offset & 3) == 0)) {
MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset);
return;
}
// The offset doesn't fit into a single register, scavenge one to build the
// offset in.
bool is64Bit = Subtarget.isPPC64();
const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
const TargetRegisterClass *RC = is64Bit ? G8RC : GPRC;
unsigned SRegHi = MF.getRegInfo().createVirtualRegister(RC),
SReg = MF.getRegInfo().createVirtualRegister(RC);
// Insert a set of rA with the full offset value before the ld, st, or add
BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::LIS8 : PPC::LIS), SRegHi)
.addImm(Offset >> 16);
BuildMI(MBB, II, dl, TII.get(is64Bit ? PPC::ORI8 : PPC::ORI), SReg)
.addReg(SRegHi, RegState::Kill)
.addImm(Offset);
// Convert into indexed form of the instruction:
//
// sth 0:rA, 1:imm 2:(rB) ==> sthx 0:rA, 2:rB, 1:r0
// addi 0:rA 1:rB, 2, imm ==> add 0:rA, 1:rB, 2:r0
unsigned OperandBase;
if (noImmForm)
OperandBase = 1;
else if (OpC != TargetOpcode::INLINEASM) {
assert(ImmToIdxMap.count(OpC) &&
"No indexed form of load or store available!");
unsigned NewOpcode = ImmToIdxMap.find(OpC)->second;
MI.setDesc(TII.get(NewOpcode));
OperandBase = 1;
} else {
OperandBase = OffsetOperandNo;
}
unsigned StackReg = MI.getOperand(FIOperandNum).getReg();
MI.getOperand(OperandBase).ChangeToRegister(StackReg, false);
MI.getOperand(OperandBase + 1).ChangeToRegister(SReg, false, false, true);
}
unsigned PPCRegisterInfo::getFrameRegister(const MachineFunction &MF) const {
const TargetFrameLowering *TFI = MF.getTarget().getFrameLowering();
if (!Subtarget.isPPC64())
return TFI->hasFP(MF) ? PPC::R31 : PPC::R1;
else
return TFI->hasFP(MF) ? PPC::X31 : PPC::X1;
}
unsigned PPCRegisterInfo::getBaseRegister(const MachineFunction &MF) const {
if (!hasBasePointer(MF))
return getFrameRegister(MF);
return Subtarget.isPPC64() ? PPC::X30 : PPC::R30;
}
bool PPCRegisterInfo::hasBasePointer(const MachineFunction &MF) const {
if (!EnableBasePointer)
return false;
if (AlwaysBasePointer)
return true;
// If we need to realign the stack, then the stack pointer can no longer
// serve as an offset into the caller's stack space. As a result, we need a
// base pointer.
return needsStackRealignment(MF);
}
bool PPCRegisterInfo::canRealignStack(const MachineFunction &MF) const {
if (MF.getFunction()->hasFnAttribute("no-realign-stack"))
return false;
return true;
}
bool PPCRegisterInfo::needsStackRealignment(const MachineFunction &MF) const {
const MachineFrameInfo *MFI = MF.getFrameInfo();
const Function *F = MF.getFunction();
unsigned StackAlign = MF.getTarget().getFrameLowering()->getStackAlignment();
bool requiresRealignment =
((MFI->getMaxAlignment() > StackAlign) ||
F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
Attribute::StackAlignment));
return requiresRealignment && canRealignStack(MF);
}
/// Returns true if the instruction's frame index
/// reference would be better served by a base register other than FP
/// or SP. Used by LocalStackFrameAllocation to determine which frame index
/// references it should create new base registers for.
bool PPCRegisterInfo::
needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
assert(Offset < 0 && "Local offset must be negative");
unsigned FIOperandNum = 0;
while (!MI->getOperand(FIOperandNum).isFI()) {
++FIOperandNum;
assert(FIOperandNum < MI->getNumOperands() &&
"Instr doesn't have FrameIndex operand!");
}
unsigned OffsetOperandNo = getOffsetONFromFION(*MI, FIOperandNum);
Offset += MI->getOperand(OffsetOperandNo).getImm();
// It's the load/store FI references that cause issues, as it can be difficult
// to materialize the offset if it won't fit in the literal field. Estimate
// based on the size of the local frame and some conservative assumptions
// about the rest of the stack frame (note, this is pre-regalloc, so
// we don't know everything for certain yet) whether this offset is likely
// to be out of range of the immediate. Return true if so.
// We only generate virtual base registers for loads and stores that have
// an r+i form. Return false for everything else.
unsigned OpC = MI->getOpcode();
if (!ImmToIdxMap.count(OpC))
return false;
// Don't generate a new virtual base register just to add zero to it.
if ((OpC == PPC::ADDI || OpC == PPC::ADDI8) &&
MI->getOperand(2).getImm() == 0)
return false;
MachineBasicBlock &MBB = *MI->getParent();
MachineFunction &MF = *MBB.getParent();
const PPCFrameLowering *PPCFI =
static_cast<const PPCFrameLowering*>(MF.getTarget().getFrameLowering());
unsigned StackEst =
PPCFI->determineFrameLayout(MF, false, true);
// If we likely don't need a stack frame, then we probably don't need a
// virtual base register either.
if (!StackEst)
return false;
// Estimate an offset from the stack pointer.
// The incoming offset is relating to the SP at the start of the function,
// but when we access the local it'll be relative to the SP after local
// allocation, so adjust our SP-relative offset by that allocation size.
Offset += StackEst;
// The frame pointer will point to the end of the stack, so estimate the
// offset as the difference between the object offset and the FP location.
return !isFrameOffsetLegal(MI, Offset);
}
/// Insert defining instruction(s) for BaseReg to
/// be a pointer to FrameIdx at the beginning of the basic block.
void PPCRegisterInfo::
materializeFrameBaseRegister(MachineBasicBlock *MBB,
unsigned BaseReg, int FrameIdx,
int64_t Offset) const {
unsigned ADDriOpc = Subtarget.isPPC64() ? PPC::ADDI8 : PPC::ADDI;
MachineBasicBlock::iterator Ins = MBB->begin();
DebugLoc DL; // Defaults to "unknown"
if (Ins != MBB->end())
DL = Ins->getDebugLoc();
const MachineFunction &MF = *MBB->getParent();
const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
const MCInstrDesc &MCID = TII.get(ADDriOpc);
MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
MRI.constrainRegClass(BaseReg, TII.getRegClass(MCID, 0, this, MF));
BuildMI(*MBB, Ins, DL, MCID, BaseReg)
.addFrameIndex(FrameIdx).addImm(Offset);
}
void
PPCRegisterInfo::resolveFrameIndex(MachineBasicBlock::iterator I,
unsigned BaseReg, int64_t Offset) const {
MachineInstr &MI = *I;
unsigned FIOperandNum = 0;
while (!MI.getOperand(FIOperandNum).isFI()) {
++FIOperandNum;
assert(FIOperandNum < MI.getNumOperands() &&
"Instr doesn't have FrameIndex operand!");
}
MI.getOperand(FIOperandNum).ChangeToRegister(BaseReg, false);
unsigned OffsetOperandNo = getOffsetONFromFION(MI, FIOperandNum);
Offset += MI.getOperand(OffsetOperandNo).getImm();
MI.getOperand(OffsetOperandNo).ChangeToImmediate(Offset);
}
bool PPCRegisterInfo::isFrameOffsetLegal(const MachineInstr *MI,
int64_t Offset) const {
return MI->getOpcode() == PPC::DBG_VALUE || // DBG_VALUE is always Reg+Imm
(isInt<16>(Offset) && (!usesIXAddr(*MI) || (Offset & 3) == 0));
}