lzsa/src/shrink_block_v1.c

636 lines
27 KiB
C

/*
* shrink_block_v1.c - LZSA1 block compressor implementation
*
* Copyright (C) 2019 Emmanuel Marty
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
/*
* Uses the libdivsufsort library Copyright (c) 2003-2008 Yuta Mori
*
* Inspired by LZ4 by Yann Collet. https://github.com/lz4/lz4
* With help, ideas, optimizations and speed measurements by spke <zxintrospec@gmail.com>
* With ideas from Lizard by Przemyslaw Skibinski and Yann Collet. https://github.com/inikep/lizard
* Also with ideas from smallz4 by Stephan Brumme. https://create.stephan-brumme.com/smallz4/
*
*/
#include <stdlib.h>
#include <string.h>
#include "lib.h"
#include "shrink_block_v1.h"
#include "format.h"
/**
* Get the number of extra bits required to represent a literals length
*
* @param nLength literals length
*
* @return number of extra bits required
*/
static inline int lzsa_get_literals_varlen_size_v1(const int nLength) {
if (nLength < LITERALS_RUN_LEN_V1) {
return 0;
}
else {
if (nLength < 256)
return 8;
else {
if (nLength < 512)
return 16;
else
return 24;
}
}
}
/**
* Write extra literals length bytes to output (compressed) buffer. The caller must first check that there is enough
* room to write the bytes.
*
* @param pOutData pointer to output buffer
* @param nOutOffset current write index into output buffer
* @param nLength literals length
*/
static inline int lzsa_write_literals_varlen_v1(unsigned char *pOutData, int nOutOffset, const int nLength) {
if (nLength >= LITERALS_RUN_LEN_V1) {
if (nLength < 256)
pOutData[nOutOffset++] = nLength - LITERALS_RUN_LEN_V1;
else {
if (nLength < 512) {
pOutData[nOutOffset++] = 250;
pOutData[nOutOffset++] = nLength - 256;
}
else {
pOutData[nOutOffset++] = 249;
pOutData[nOutOffset++] = nLength & 0xff;
pOutData[nOutOffset++] = (nLength >> 8) & 0xff;
}
}
}
return nOutOffset;
}
/**
* Get the number of extra bits required to represent an encoded match length
*
* @param nLength encoded match length (actual match length - MIN_MATCH_SIZE_V1)
*
* @return number of extra bits required
*/
static inline int lzsa_get_match_varlen_size_v1(const int nLength) {
if (nLength < MATCH_RUN_LEN_V1) {
return 0;
}
else {
if ((nLength + MIN_MATCH_SIZE_V1) < 256)
return 8;
else {
if ((nLength + MIN_MATCH_SIZE_V1) < 512)
return 16;
else
return 24;
}
}
}
/**
* Write extra encoded match length bytes to output (compressed) buffer. The caller must first check that there is enough
* room to write the bytes.
*
* @param pOutData pointer to output buffer
* @param nOutOffset current write index into output buffer
* @param nLength encoded match length (actual match length - MIN_MATCH_SIZE_V1)
*/
static inline int lzsa_write_match_varlen_v1(unsigned char *pOutData, int nOutOffset, const int nLength) {
if (nLength >= MATCH_RUN_LEN_V1) {
if ((nLength + MIN_MATCH_SIZE_V1) < 256)
pOutData[nOutOffset++] = nLength - MATCH_RUN_LEN_V1;
else {
if ((nLength + MIN_MATCH_SIZE_V1) < 512) {
pOutData[nOutOffset++] = 239;
pOutData[nOutOffset++] = nLength + MIN_MATCH_SIZE_V1 - 256;
}
else {
pOutData[nOutOffset++] = 238;
pOutData[nOutOffset++] = (nLength + MIN_MATCH_SIZE_V1) & 0xff;
pOutData[nOutOffset++] = ((nLength + MIN_MATCH_SIZE_V1) >> 8) & 0xff;
}
}
}
return nOutOffset;
}
/**
* Get offset encoding cost in bits
*
* @param __nMatchOffset offset to get cost of
*
* @return cost in bits
*/
#define lzsa_get_offset_cost_v1(__nMatchOffset) (((__nMatchOffset) <= 256) ? 8 : 16)
/**
* Attempt to pick optimal matches using a forward arrivals parser, so as to produce the smallest possible output that decompresses to the same input
*
* @param pCompressor compression context
* @param nStartOffset current offset in input window (typically the number of previously compressed bytes)
* @param nEndOffset offset to end finding matches at (typically the size of the total input window in bytes
* @param nReduce non-zero to reduce the number of tokens when the path costs are equal, zero not to
*/
static void lzsa_optimize_forward_v1(lzsa_compressor *pCompressor, const int nStartOffset, const int nEndOffset, const int nReduce) {
lzsa_arrival *arrival = pCompressor->arrival - (nStartOffset << ARRIVALS_PER_POSITION_SHIFT_V1);
const int nMinMatchSize = pCompressor->min_match_size;
const int nFavorRatio = (pCompressor->flags & LZSA_FLAG_FAVOR_RATIO) ? 1 : 0;
const int nModeSwitchPenalty = nFavorRatio ? 0 : MODESWITCH_PENALTY;
const int nDisableScore = nReduce ? 0 : (2 * BLOCK_SIZE);
int i;
if ((nEndOffset - nStartOffset) > BLOCK_SIZE) return;
for (i = (nStartOffset << ARRIVALS_PER_POSITION_SHIFT_V1); i != ((nEndOffset + 1) << ARRIVALS_PER_POSITION_SHIFT_V1); i += NARRIVALS_PER_POSITION_V1) {
lzsa_arrival* cur_arrival = &arrival[i];
int j;
memset(cur_arrival, 0, sizeof(lzsa_arrival) * NARRIVALS_PER_POSITION_V1);
for (j = 0; j < NARRIVALS_PER_POSITION_V1; j++)
cur_arrival[j].cost = 0x40000000;
}
arrival[nStartOffset << ARRIVALS_PER_POSITION_SHIFT_V1].cost = 0;
arrival[nStartOffset << ARRIVALS_PER_POSITION_SHIFT_V1].from_slot = -1;
for (i = nStartOffset; i != nEndOffset; i++) {
lzsa_arrival* cur_arrival = &arrival[i << ARRIVALS_PER_POSITION_SHIFT_V1];
lzsa_arrival* pDestLiteralSlots = &cur_arrival[1 << ARRIVALS_PER_POSITION_SHIFT_V1];
int j, m;
for (j = 0; j < NARRIVALS_PER_POSITION_V1 && cur_arrival[j].from_slot; j++) {
const int nPrevCost = cur_arrival[j].cost;
int nCodingChoiceCost = nPrevCost + 8 /* literal */;
const int nScore = cur_arrival[j].score + 1;
const int nNumLiterals = cur_arrival[j].num_literals + 1;
int n;
if (nNumLiterals == 1)
nCodingChoiceCost += nModeSwitchPenalty;
else if (nNumLiterals == LITERALS_RUN_LEN_V1 || nNumLiterals == 256 || nNumLiterals == 512) {
nCodingChoiceCost += 8;
}
for (n = 0; n < NARRIVALS_PER_POSITION_V1 /* we only need the literals + short match cost + long match cost cases */; n++) {
if (nCodingChoiceCost < pDestLiteralSlots[n].cost ||
(nCodingChoiceCost == pDestLiteralSlots[n].cost && nScore < (pDestLiteralSlots[n].score + nDisableScore))) {
memmove(&pDestLiteralSlots[n + 1],
&pDestLiteralSlots[n],
sizeof(lzsa_arrival) * (NARRIVALS_PER_POSITION_V1 - n - 1));
lzsa_arrival* pDestArrival = &pDestLiteralSlots[n];
pDestArrival->cost = nCodingChoiceCost;
pDestArrival->rep_offset = cur_arrival[j].rep_offset;
pDestArrival->from_slot = j + 1;
pDestArrival->from_pos = i - nStartOffset;
pDestArrival->match_len = 0;
pDestArrival->num_literals = nNumLiterals;
pDestArrival->score = nScore;
break;
}
}
}
const lzsa_match *match = pCompressor->match + ((i - nStartOffset) << MATCHES_PER_INDEX_SHIFT_V1);
const int nNumArrivalsForThisPos = j;
if (nNumArrivalsForThisPos != 0) {
for (m = 0; m < NMATCHES_PER_INDEX_V1 && match[m].length; m++) {
int nMatchLen = match[m].length;
const int nMatchOffsetCost = lzsa_get_offset_cost_v1(match[m].offset);
int nStartingMatchLen, k;
if ((i + nMatchLen) > nEndOffset)
nMatchLen = nEndOffset - i;
if (nMatchLen >= LEAVE_ALONE_MATCH_SIZE)
nStartingMatchLen = nMatchLen;
else
nStartingMatchLen = nMinMatchSize;
for (k = nStartingMatchLen; k <= nMatchLen; k++) {
const int nMatchLenCost = lzsa_get_match_varlen_size_v1(k - MIN_MATCH_SIZE_V1);
lzsa_arrival* pDestSlots = &cur_arrival[k << ARRIVALS_PER_POSITION_SHIFT_V1];
int nCodingChoiceCost = cur_arrival[0].cost + 8 /* token */ /* the actual cost of the literals themselves accumulates up the chain */ + nMatchOffsetCost + nMatchLenCost;
int exists = 0, n;
if (!cur_arrival[0].num_literals)
nCodingChoiceCost += nModeSwitchPenalty;
for (n = 0;
n < NARRIVALS_PER_POSITION_V1 && pDestSlots[n].from_slot && pDestSlots[n].cost <= nCodingChoiceCost;
n++) {
if (lzsa_get_offset_cost_v1(pDestSlots[n].rep_offset) == nMatchOffsetCost) {
exists = 1;
break;
}
}
if (!exists) {
const int nScore = cur_arrival[0].score + 5;
if (nCodingChoiceCost < pDestSlots[0].cost ||
(nCodingChoiceCost == pDestSlots[0].cost && nScore < (pDestSlots[0].score + nDisableScore))) {
memmove(&pDestSlots[1],
&pDestSlots[0],
sizeof(lzsa_arrival) * (NARRIVALS_PER_POSITION_V1 - 1));
pDestSlots->cost = nCodingChoiceCost;
pDestSlots->rep_offset = match[m].offset;
pDestSlots->from_slot = 1;
pDestSlots->from_pos = i - nStartOffset;
pDestSlots->match_len = k;
pDestSlots->num_literals = 0;
pDestSlots->score = nScore;
}
}
}
}
}
}
const lzsa_arrival *end_arrival = &arrival[i << ARRIVALS_PER_POSITION_SHIFT_V1];
lzsa_match *pBestMatch = pCompressor->best_match - nStartOffset;
while (end_arrival->from_slot > 0 && (end_arrival->from_pos + nStartOffset) < nEndOffset) {
pBestMatch[end_arrival->from_pos + nStartOffset].length = end_arrival->match_len;
pBestMatch[end_arrival->from_pos + nStartOffset].offset = (end_arrival->match_len) ? end_arrival->rep_offset: 0;
end_arrival = &arrival[((end_arrival->from_pos + nStartOffset) << ARRIVALS_PER_POSITION_SHIFT_V1) + (end_arrival->from_slot - 1)];
}
}
/**
* Attempt to minimize the number of commands issued in the compressed data block, in order to speed up decompression without
* impacting the compression ratio
*
* @param pCompressor compression context
* @param pInWindow pointer to input data window (previously compressed bytes + bytes to compress)
* @param nStartOffset current offset in input window (typically the number of previously compressed bytes)
* @param nEndOffset offset to end finding matches at (typically the size of the total input window in bytes
*
* @return non-zero if the number of tokens was reduced, 0 if it wasn't
*/
static int lzsa_optimize_command_count_v1(lzsa_compressor *pCompressor, const unsigned char *pInWindow, const int nStartOffset, const int nEndOffset) {
lzsa_match *pBestMatch = pCompressor->best_match - nStartOffset;
int i;
int nNumLiterals = 0;
int nDidReduce = 0;
for (i = nStartOffset; i < nEndOffset; ) {
lzsa_match *pMatch = pBestMatch + i;
if (pMatch->length == 0 &&
(i + 1) < nEndOffset &&
pBestMatch[i + 1].length >= MIN_MATCH_SIZE_V1 &&
pBestMatch[i + 1].length < MAX_VARLEN &&
pBestMatch[i + 1].offset &&
i >= pBestMatch[i + 1].offset &&
(i + pBestMatch[i + 1].length + 1) <= nEndOffset &&
!memcmp(pInWindow + i - (pBestMatch[i + 1].offset), pInWindow + i, pBestMatch[i + 1].length + 1)) {
const int nCurLenSize = lzsa_get_match_varlen_size_v1(pBestMatch[i + 1].length - MIN_MATCH_SIZE_V1);
const int nReducedLenSize = lzsa_get_match_varlen_size_v1(pBestMatch[i + 1].length + 1 - MIN_MATCH_SIZE_V1);
if ((nReducedLenSize - nCurLenSize) <= 8) {
/* Merge */
pBestMatch[i].length = pBestMatch[i + 1].length + 1;
pBestMatch[i].offset = pBestMatch[i + 1].offset;
pBestMatch[i + 1].length = 0;
pBestMatch[i + 1].offset = 0;
nDidReduce = 1;
continue;
}
}
if (pMatch->length >= MIN_MATCH_SIZE_V1) {
if (pMatch->length <= 9 /* Don't waste time considering large matches, they will always win over literals */ &&
(i + pMatch->length) < nEndOffset /* Don't consider the last token in the block, we can only reduce a match inbetween other tokens */) {
int nNextIndex = i + pMatch->length;
int nNextLiterals = 0;
while (nNextIndex < nEndOffset && pBestMatch[nNextIndex].length < MIN_MATCH_SIZE_V1) {
nNextLiterals++;
nNextIndex++;
}
/* This command is a match, is followed by 'nNextLiterals' literals and then by another match, or the end of the input. Calculate this command's current cost (excluding 'nNumLiterals' bytes) */
if ((8 /* token */ + lzsa_get_literals_varlen_size_v1(nNumLiterals) + ((pMatch->offset <= 256) ? 8 : 16) /* match offset */ + lzsa_get_match_varlen_size_v1(pMatch->length - MIN_MATCH_SIZE_V1) +
8 /* token */ + lzsa_get_literals_varlen_size_v1(nNextLiterals)) >=
(8 /* token */ + (pMatch->length << 3) + lzsa_get_literals_varlen_size_v1(nNumLiterals + pMatch->length + nNextLiterals))) {
/* Reduce */
const int nMatchLen = pMatch->length;
int j;
for (j = 0; j < nMatchLen; j++) {
pBestMatch[i + j].length = 0;
}
nDidReduce = 1;
continue;
}
}
if ((i + pMatch->length) < nEndOffset && pMatch->offset && pMatch->length >= MIN_MATCH_SIZE_V1 &&
pBestMatch[i + pMatch->length].offset &&
pBestMatch[i + pMatch->length].length >= MIN_MATCH_SIZE_V1 &&
(pMatch->length + pBestMatch[i + pMatch->length].length) <= MAX_VARLEN &&
(i + pMatch->length) >= pMatch->offset &&
(i + pMatch->length) >= pBestMatch[i + pMatch->length].offset &&
(i + pMatch->length + pBestMatch[i + pMatch->length].length) <= nEndOffset &&
!memcmp(pInWindow + i - pMatch->offset + pMatch->length,
pInWindow + i + pMatch->length - pBestMatch[i + pMatch->length].offset,
pBestMatch[i + pMatch->length].length)) {
int nCurPartialSize = lzsa_get_match_varlen_size_v1(pMatch->length - MIN_MATCH_SIZE_V1);
nCurPartialSize += 8 /* token */ + /* lzsa_get_literals_varlen_size_v1(0) + */ ((pBestMatch[i + pMatch->length].offset <= 256) ? 8 : 16) /* match offset */ + lzsa_get_match_varlen_size_v1(pBestMatch[i + pMatch->length].length - MIN_MATCH_SIZE_V1);
const int nReducedPartialSize = lzsa_get_match_varlen_size_v1(pMatch->length + pBestMatch[i + pMatch->length].length - MIN_MATCH_SIZE_V1);
if (nCurPartialSize >= nReducedPartialSize) {
const int nMatchLen = pMatch->length;
/* Join */
pMatch->length += pBestMatch[i + nMatchLen].length;
pBestMatch[i + nMatchLen].length = 0;
pBestMatch[i + nMatchLen].offset = 0;
nDidReduce = 1;
continue;
}
}
i += pMatch->length;
nNumLiterals = 0;
}
else {
nNumLiterals++;
i++;
}
}
return nDidReduce;
}
/**
* Emit block of compressed data
*
* @param pCompressor compression context
* @param pInWindow pointer to input data window (previously compressed bytes + bytes to compress)
* @param nStartOffset current offset in input window (typically the number of previously compressed bytes)
* @param nEndOffset offset to end finding matches at (typically the size of the total input window in bytes
* @param pOutData pointer to output buffer
* @param nMaxOutDataSize maximum size of output buffer, in bytes
*
* @return size of compressed data in output buffer, or -1 if the data is uncompressible
*/
static int lzsa_write_block_v1(lzsa_compressor *pCompressor, const unsigned char *pInWindow, const int nStartOffset, const int nEndOffset, unsigned char *pOutData, const int nMaxOutDataSize) {
const lzsa_match *pBestMatch = pCompressor->best_match - nStartOffset;
int i;
int nNumLiterals = 0;
int nInFirstLiteralOffset = 0;
int nOutOffset = 0;
for (i = nStartOffset; i < nEndOffset; ) {
const lzsa_match *pMatch = pBestMatch + i;
if (pMatch->length >= MIN_MATCH_SIZE_V1) {
const int nMatchOffset = pMatch->offset;
const int nMatchLen = pMatch->length;
const int nEncodedMatchLen = nMatchLen - MIN_MATCH_SIZE_V1;
const int nTokenLiteralsLen = (nNumLiterals >= LITERALS_RUN_LEN_V1) ? LITERALS_RUN_LEN_V1 : nNumLiterals;
const int nTokenMatchLen = (nEncodedMatchLen >= MATCH_RUN_LEN_V1) ? MATCH_RUN_LEN_V1 : nEncodedMatchLen;
const int nTokenLongOffset = (nMatchOffset <= 256) ? 0x00 : 0x80;
const int nCommandSize = 8 /* token */ + lzsa_get_literals_varlen_size_v1(nNumLiterals) + (nNumLiterals << 3) + (nTokenLongOffset ? 16 : 8) /* match offset */ + lzsa_get_match_varlen_size_v1(nEncodedMatchLen);
if ((nOutOffset + (nCommandSize >> 3)) > nMaxOutDataSize)
return -1;
if (nMatchOffset < MIN_OFFSET || nMatchOffset > MAX_OFFSET)
return -1;
pOutData[nOutOffset++] = nTokenLongOffset | (nTokenLiteralsLen << 4) | nTokenMatchLen;
nOutOffset = lzsa_write_literals_varlen_v1(pOutData, nOutOffset, nNumLiterals);
if (nNumLiterals < pCompressor->stats.min_literals || pCompressor->stats.min_literals == -1)
pCompressor->stats.min_literals = nNumLiterals;
if (nNumLiterals > pCompressor->stats.max_literals)
pCompressor->stats.max_literals = nNumLiterals;
pCompressor->stats.total_literals += nNumLiterals;
pCompressor->stats.literals_divisor++;
if (nNumLiterals != 0) {
memcpy(pOutData + nOutOffset, pInWindow + nInFirstLiteralOffset, nNumLiterals);
nOutOffset += nNumLiterals;
nNumLiterals = 0;
}
pOutData[nOutOffset++] = (-nMatchOffset) & 0xff;
if (nTokenLongOffset) {
pOutData[nOutOffset++] = (-nMatchOffset) >> 8;
}
nOutOffset = lzsa_write_match_varlen_v1(pOutData, nOutOffset, nEncodedMatchLen);
if (nMatchOffset < pCompressor->stats.min_offset || pCompressor->stats.min_offset == -1)
pCompressor->stats.min_offset = nMatchOffset;
if (nMatchOffset > pCompressor->stats.max_offset)
pCompressor->stats.max_offset = nMatchOffset;
pCompressor->stats.total_offsets += nMatchOffset;
if (nMatchLen < pCompressor->stats.min_match_len || pCompressor->stats.min_match_len == -1)
pCompressor->stats.min_match_len = nMatchLen;
if (nMatchLen > pCompressor->stats.max_match_len)
pCompressor->stats.max_match_len = nMatchLen;
pCompressor->stats.total_match_lens += nMatchLen;
pCompressor->stats.match_divisor++;
if (nMatchOffset == 1) {
if (nMatchLen < pCompressor->stats.min_rle1_len || pCompressor->stats.min_rle1_len == -1)
pCompressor->stats.min_rle1_len = nMatchLen;
if (nMatchLen > pCompressor->stats.max_rle1_len)
pCompressor->stats.max_rle1_len = nMatchLen;
pCompressor->stats.total_rle1_lens += nMatchLen;
pCompressor->stats.rle1_divisor++;
}
else if (nMatchOffset == 2) {
if (nMatchLen < pCompressor->stats.min_rle2_len || pCompressor->stats.min_rle2_len == -1)
pCompressor->stats.min_rle2_len = nMatchLen;
if (nMatchLen > pCompressor->stats.max_rle2_len)
pCompressor->stats.max_rle2_len = nMatchLen;
pCompressor->stats.total_rle2_lens += nMatchLen;
pCompressor->stats.rle2_divisor++;
}
i += nMatchLen;
if (pCompressor->flags & LZSA_FLAG_RAW_BLOCK) {
const int nCurSafeDist = (i - nStartOffset) - nOutOffset;
if (nCurSafeDist >= 0 && pCompressor->safe_dist < nCurSafeDist)
pCompressor->safe_dist = nCurSafeDist;
}
pCompressor->num_commands++;
}
else {
if (nNumLiterals == 0)
nInFirstLiteralOffset = i;
nNumLiterals++;
i++;
}
}
{
const int nTokenLiteralsLen = (nNumLiterals >= LITERALS_RUN_LEN_V1) ? LITERALS_RUN_LEN_V1 : nNumLiterals;
const int nCommandSize = 8 /* token */ + lzsa_get_literals_varlen_size_v1(nNumLiterals) + (nNumLiterals << 3);
if ((nOutOffset + (nCommandSize >> 3)) > nMaxOutDataSize)
return -1;
if (pCompressor->flags & LZSA_FLAG_RAW_BLOCK)
pOutData[nOutOffset++] = (nTokenLiteralsLen << 4) | 0x0f;
else
pOutData[nOutOffset++] = (nTokenLiteralsLen << 4) /* | 0x00 */;
nOutOffset = lzsa_write_literals_varlen_v1(pOutData, nOutOffset, nNumLiterals);
if (nNumLiterals < pCompressor->stats.min_literals || pCompressor->stats.min_literals == -1)
pCompressor->stats.min_literals = nNumLiterals;
if (nNumLiterals > pCompressor->stats.max_literals)
pCompressor->stats.max_literals = nNumLiterals;
pCompressor->stats.total_literals += nNumLiterals;
pCompressor->stats.literals_divisor++;
if (nNumLiterals != 0) {
memcpy(pOutData + nOutOffset, pInWindow + nInFirstLiteralOffset, nNumLiterals);
nOutOffset += nNumLiterals;
}
if (pCompressor->flags & LZSA_FLAG_RAW_BLOCK) {
const int nCurSafeDist = (i - nStartOffset) - nOutOffset;
if (nCurSafeDist >= 0 && pCompressor->safe_dist < nCurSafeDist)
pCompressor->safe_dist = nCurSafeDist;
}
pCompressor->num_commands++;
}
if (pCompressor->flags & LZSA_FLAG_RAW_BLOCK) {
/* Emit EOD marker for raw block */
if ((nOutOffset + 4) > nMaxOutDataSize)
return -1;
pOutData[nOutOffset++] = 0;
pOutData[nOutOffset++] = 238;
pOutData[nOutOffset++] = 0;
pOutData[nOutOffset++] = 0;
}
return nOutOffset;
}
/**
* Emit raw block of uncompressible data
*
* @param pCompressor compression context
* @param pInWindow pointer to input data window (previously compressed bytes + bytes to compress)
* @param nStartOffset current offset in input window (typically the number of previously compressed bytes)
* @param nEndOffset offset to end finding matches at (typically the size of the total input window in bytes
* @param pOutData pointer to output buffer
* @param nMaxOutDataSize maximum size of output buffer, in bytes
*
* @return size of compressed data in output buffer, or -1 if the data is uncompressible
*/
static int lzsa_write_raw_uncompressed_block_v1(lzsa_compressor *pCompressor, const unsigned char *pInWindow, const int nStartOffset, const int nEndOffset, unsigned char *pOutData, const int nMaxOutDataSize) {
const int nNumLiterals = nEndOffset - nStartOffset;
const int nTokenLiteralsLen = (nNumLiterals >= LITERALS_RUN_LEN_V1) ? LITERALS_RUN_LEN_V1 : nNumLiterals;
int nOutOffset = 0;
const int nCommandSize = 8 /* token */ + lzsa_get_literals_varlen_size_v1(nNumLiterals) + (nNumLiterals << 3) + 4;
if ((nOutOffset + (nCommandSize >> 3)) > nMaxOutDataSize)
return -1;
pCompressor->num_commands = 0;
pOutData[nOutOffset++] = (nTokenLiteralsLen << 4) | 0x0f;
nOutOffset = lzsa_write_literals_varlen_v1(pOutData, nOutOffset, nNumLiterals);
if (nNumLiterals != 0) {
memcpy(pOutData + nOutOffset, pInWindow + nStartOffset, nNumLiterals);
nOutOffset += nNumLiterals;
}
pCompressor->num_commands++;
/* Emit EOD marker for raw block */
pOutData[nOutOffset++] = 0;
pOutData[nOutOffset++] = 238;
pOutData[nOutOffset++] = 0;
pOutData[nOutOffset++] = 0;
return nOutOffset;
}
/**
* Select the most optimal matches, reduce the token count if possible, and then emit a block of compressed LZSA1 data
*
* @param pCompressor compression context
* @param pInWindow pointer to input data window (previously compressed bytes + bytes to compress)
* @param nPreviousBlockSize number of previously compressed bytes (or 0 for none)
* @param nInDataSize number of input bytes to compress
* @param pOutData pointer to output buffer
* @param nMaxOutDataSize maximum size of output buffer, in bytes
*
* @return size of compressed data in output buffer, or -1 if the data is uncompressible
*/
int lzsa_optimize_and_write_block_v1(lzsa_compressor *pCompressor, const unsigned char *pInWindow, const int nPreviousBlockSize, const int nInDataSize, unsigned char *pOutData, const int nMaxOutDataSize) {
int nResult;
/* Compress optimally without breaking ties in favor of less tokens */
memset(pCompressor->best_match, 0, BLOCK_SIZE * sizeof(lzsa_match));
if (nInDataSize < 65536) {
lzsa_optimize_forward_v1(pCompressor, nPreviousBlockSize, nPreviousBlockSize + nInDataSize, 1 /* reduce */);
}
else {
lzsa_optimize_forward_v1(pCompressor, nPreviousBlockSize, nPreviousBlockSize + nInDataSize, 0 /* reduce */);
}
int nDidReduce;
int nPasses = 0;
do {
nDidReduce = lzsa_optimize_command_count_v1(pCompressor, pInWindow, nPreviousBlockSize, nPreviousBlockSize + nInDataSize);
nPasses++;
} while (nDidReduce && nPasses < 20);
nResult = lzsa_write_block_v1(pCompressor, pInWindow, nPreviousBlockSize, nPreviousBlockSize + nInDataSize, pOutData, nMaxOutDataSize);
if (nResult < 0 && (pCompressor->flags & LZSA_FLAG_RAW_BLOCK)) {
nResult = lzsa_write_raw_uncompressed_block_v1(pCompressor, pInWindow, nPreviousBlockSize, nPreviousBlockSize + nInDataSize, pOutData, nMaxOutDataSize);
}
return nResult;
}