1
0
mirror of https://github.com/KarolS/millfork.git synced 2025-01-12 19:29:51 +00:00
millfork/docs/api/custom-platform.md
2019-01-11 15:17:48 +01:00

167 lines
7.6 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

[< back to index](../index.md)
## Adding a custom platform
Every platform is defined in an `.ini` file with an appropriate name.
As an extension, multiline entries are supported:
if a line ends with a backslash character, the value continues to the next line.
#### `[compilation]` section
* `arch` CPU architecture. It defines which instructions are available. Available values:
* `nmos` (original 6502)
* `strict` (NMOS without illegal instructions)
* `ricoh` (Ricoh 2A03/2A07, NMOS without decimal mode)
* `strictricoh` (Ricoh 2A03/2A07 without illegal instructions)
* `cmos` (WDC 65C02 or 65SC02)
* `65ce02` (CSG 65CE02; experimental)
* `huc6280` (Hudson HuC6280; experimental)
* `65816` (WDC 65816/65802; experimental; currently only programs that use only 16-bit addressing are supported)
* `z80` (Zilog Z80; experimental and slightly incomplete)
* `i8080` (Intel 8080; experimental, buggy and very incomplete)
* `gameboy` (Sharp LR35902; experimental, buggy and very incomplete)
* `encoding` default encoding for console I/O, one of
`ascii`, `pet`/`petscii`, `petscr`/`cbmscr`, `atascii`, `bbc`, `jis`/`jisx`, `apple2`,
`iso_de`, `iso_no`/`iso_dk`, `iso_se`/`iso_fi`, `iso_yu`. Default: `ascii`
* `screen_encoding` default encoding for screencodes (literals with encoding specified as `scr`).
Default: the same as `encoding`.
* `modules` comma-separated list of modules that will be automatically imported
* other compilation options (they can be overridden using commandline options):
* `emit_illegals` whether the compiler should emit illegal instructions, default `false`
* `emit_cmos` whether the compiler should emit CMOS instructions, default is `true` on compatible processors and `false` elsewhere
* `emit_65816` which 65816 instructions should the compiler emit, either `no`, `emulation` or `native`
* `decimal_mode` whether the compiler should emit decimal instructions, default is `false` on `ricoh` and `strictricoh` and `true` elsewhere;
if disabled, a software decimal mode will be used
* `ro_arrays` whether the compiler should warn upon array writes, default is `false`
* `prevent_jmp_indirect_bug` whether the compiler should try to avoid the indirect JMP bug,
default is `false` on 65C02-compatible or non-6502 processors and `true` elsewhere
* `compact_dispatch_params` whether parameter values in return dispatch statements may overlap other objects, default is `true`.
This may cause problems if the parameter table is stored next to a hardware register that has side effects when reading.
* `lunix` generate relocatable code for LUnix/LNG, default is `false`
* `zeropage_register` reserve a certain amount of bytes of zero page as a pseudoregister to increase language features.
Default: `4` if targeting a 6502-based architecture, `0` otherwise.
`true` is a synonym of the current compiler default (currently: 4) and `false` is a synonym for 0.
* `inline` - inline functions automatically by default, default is `false`.
* `ipo` - enable interprocedural optimization, default is `false`.
* `function_fallthrough` whether should replace a tail call by simply putting one function after another, default is `true`.
* `function_deduplication` whether identical functions should be merged into one function, default is `true`.
* `subroutine_extraction` whether identical fragments of functions should be extracted into subroutines, default is `false`.
* `lenient_encoding` - allow for automatic substitution of invalid characters in string literals using the default encodings, default is `false`.
* `use_shadow_registers_for_irq` use Z80 shadow registers in interrupt routines, default is `true` for Z80 and `false` otherwise
* `ix_stack` use the IX register to access stack variables, default is `true` for Z80 and `false` otherwise
* `iy_stack` use the IY register to access stack variables, default is `false`
* `ix_scratch` allow using the IY register for other purposes, default is `false`
* `iy_scratch` allow using the IY register for other purposes, default is `false`
* `software_stach` use software stack for stack variables, default is `false`
* `output_intel_syntax` use Intel syntax instead of Zilog syntax, default is `true` for Intel 8080 and `false` otherwise
#### `[define]` section
This section defines values of features of the target.
See the [preprocessor documentation](../lang/preprocessor.md) for more info.
#### `[allocation]` section
* `zp_pointers`
either a list of comma separated zeropage addresses that can be used by the program as zeropage pointers, or `all` for all.
Each value should be the address of the first of two free bytes in the zeropage.
Only used for 6502-based targets.
* `segments` a comma-separated list of segment names.
A segment named `default` is always required.
Default: `default`. In all options below, `NAME` refers to a segment name.
* `default_code_segment` the default segment for code and initialized arrays.
Note that the default segment for uninitialized arrays and variables is always `default`.
Default: `default`
* `segment_NAME_start` the first address used for automatic allocation in the segment.
Note that the `default` segment shouldn't start before $200, as the $0-$1FF range is reserved for the zeropage and the stack.
The `main` function will be placed as close to the beginning of its segment as possible, but not necessarily at `segment_NAME_start`
* `segment_NAME_end` the last address in the segment
* `segment_NAME_codeend` the last address in the segment for code and initialized arrays.
Only uninitialized variables are allowed between `segment_NAME_codeend` and `segment_NAME_end`.
Default: the same as `segment_NAME_end`.
* `segment_NAME_datastart` the first address used for non-zeropage variables, or `after_code` if the variables should be allocated after the code.
Default: `after_code`.
#### `[output]` section
* `style` how multi-segment programs should be output:
* `single` output a single file, based mostly, but not necessarily only on data in the `default` segment (the default)
* `lunix` like `single`, but add data necessary for relocation between code and data (requires `lunix` option in the `compilation` section)
* `per_segment` generate a separate file with each segment
* `format` output file format; a comma-separated list of tokens:
* literal byte values
* `startaddr` little-endian 16-bit address of the first used byte of the compiled output (not necessarily the segment start)
* `startpage` the high byte of `startaddr`
* `endaddr` little-endian 16-bit address of the last used byte of the compiled output (usually not the segment end)
* `allocated` all used bytes
* `pagecount` the number of pages used by all used bytes (including partially filled pages)
* `<addr>:<addr>` - inclusive range of bytes
* `<segment>:<addr>:<addr>` - inclusive range of bytes in a given segment
* `d88` - a D88 floppy disk image for PC-88
* `tap` - a tape disk image for ZX Spectrum
* `extension` target file extension, with or without the dot
* `bbc_inf` should the `.inf` file with file metadata for BBC Micro be created
* `gb_checksum` should the main output file be patched with Game Boy-compatible checksums