1
0
mirror of https://github.com/marqs85/ossc.git synced 2024-06-15 02:29:27 +00:00
ossc/software/sys_controller/ossc/fat16_export.c
Ari Sundholm 760be1738e Userdata export (FAT16): Optimize code size.
Reorganize the and optimize the code to avoid redundant code and thus
reduce code size, while making sure to zero-initialize the used areas
on the SD card. These are the "clean" part of this change.

The "dirty" part:
Optimize the FAT16 export code further by introducing small deviations
from the FAT16 specification. These deviations should not be harmful
at all, unless the SD card is used for something requiring the jump
instruction and/or boot code in the boot sector to be valid. This is
typically only required when booting off the filesystem.

After these changes, a considerable reduction in code size can be
observed for sys_controller.elf and sys_onchip_memory2_0.bin:

sys_controller.elf:
   text	   data	    bss	    dec	    hex	filename
  32392	   2936	   2652	  37980	   945c	sys_controller.elf

sys_onchip_memory2_0.bin:
size: 35328 bytes

This reduces the cost of the FAT16 export feature to 446 bytes.
2020-11-24 23:50:05 +02:00

139 lines
5.0 KiB
C

//
// Copyright (C) 2020 Ari Sundholm <megari@iki.fi>
//
// This file has been contributed to the Open Source Scan Converter project
// developed by Markus Hiienkari Markus Hiienkari <mhiienka@niksula.hut.fi>
// and other members of the retro gaming community.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
#include <string.h>
#include "fat16_export.h"
/*
* The beginning of the boot sector, along with the BPB.
* Volume offsets 0x003 to 0x01a, inclusive.
* The BPB spans volume offsets 0x00b to 0x01c, inclusive.
*
* The jump instruction at volume offsets 0x000 to 0x002, inclusive,
* is left zeroed out to save a tiny bit of space.
*/
static const alt_u8 bootsec_beg_bpb_16[24] = {
/* Three zeros */ 0x4d, 0x53, 0x57, 0x49, 0x4e, /* 0x003...0x007 */
0x34, 0x2e, 0x31, 0x00, 0x02, 0x04, 0x80, 0x00, /* 0x008...0x00f */
0x02, 0x00, 0x08, 0x00, 0x80, 0xf8, 0x20, 0x00, /* 0x010...0x017 */
0x3f, 0x00, 0xff, /* Zeros until 0x024 */ /* 0x018...0x01a */
};
/*
* The rest of the boot sector before the boot code and terminator.
* Offsets 0x024 to 0x03d, inclusive.
*/
static const alt_u8 bootsec_after_bpb_16[26] = {
/* Zeros */ 0x80, 0x00, 0x29, 0xf4, /* 0x024...0x027 */
0xcf, 0xc6, 0x04, 0x4f, 0x53, 0x53, 0x43, 0x50, /* 0x028...0x02f */
0x52, 0x4f, 0x46, 0x49, 0x4c, 0x53, 0x46, 0x41, /* 0x030...0x037 */
0x54, 0x31, 0x36, 0x20, 0x20, 0x20, /* Zeros */ /* 0x038...0x03d */
};
/*
* After this, we have the boot code (448 bytes) and sector terminator
* (2 bytes). The former will be left zeroed-out and the latter will
* be generated.
*/
/* Generates a FAT16 boot sector.
* buf must be at least FAT16_SECTOR_SIZE bytes long,
* and is assumed to be pre-zeroed.
*/
void generate_boot_sector_16(alt_u8 *const buf) {
/* Initial FAT16 boot sector contents + the BPB. */
memcpy(buf + 3, bootsec_beg_bpb_16, 24);
/*
* Then the rest of the boot sector.
*
* The boot code is supposed to be 448 bytes filled with 0xf4,
* but leave it zeroed out to keep the code smaller. This may
* be a deviation from the FAT16 spec, but should be harmless
* for our purposes.
*/
memcpy(buf + 36, bootsec_after_bpb_16, 26);
/* RISC-V is little-endian, so do a 16-bit write instead. */
*((alt_u16*)(buf + 510)) = 0xaa55U;
}
/* The fixed 'preamble' of a FAT on a FAT16 volume. */
static const alt_u32 fat16_preamble = 0xfffffff8U;
/*
* Generate a FAT.
* The buffer is assumed to be zeroed out and have a size of at least
* FAT16_SECTOR_SIZE bytes.
* The number of clusters already written is given as an argument.
* The function returns the total number of clusters written so far.
*
* The intention is to be able to generate and write the FAT in chunks
* that do not exhaust all the remaining RAM.
*/
alt_u16 generate_fat16(void *const buf, const alt_u16 written) {
alt_u16 cur_ofs = 0;
const alt_u16 start_cluster = 3U + written;
alt_u16 *const fat = buf;
/*
* The total number of FAT entries to write consists of:
* 1. The FAT "preamble" (2 entries),
* 2. The cluster chain of the file (512 entries).
*
* The latter needs to contain the chain terminator.
*/
const alt_u16 clusters_remaining = PROF_16_CLUSTER_COUNT - written;
const alt_u16 preamble_compensation = written ? 0 : 2U;
const alt_u16 clusters_to_write =
((clusters_remaining > FAT16_ENTRIES_PER_SECTOR)
? FAT16_ENTRIES_PER_SECTOR
: clusters_remaining) - preamble_compensation;
const alt_u16 end_cluster = start_cluster + clusters_to_write;
const alt_u16 last_fat_cluster = PROF_16_CLUSTER_COUNT + 2U;
if (!written) {
*((alt_u32*)fat) = fat16_preamble;
cur_ofs += sizeof(fat16_preamble)/sizeof(alt_u16);
}
for (alt_u16 cluster = start_cluster; cluster < end_cluster; ++cluster) {
alt_u16 *const cur_entry = fat + cur_ofs;
/* FAT16 entries are 16-bit little-endian. */
if (cluster == last_fat_cluster) {
/* At the last cluster, write the chain terminator. */
*cur_entry = 0xffffU;
}
else {
*cur_entry = cluster;
}
++cur_ofs;
}
return end_cluster - 3U;
}
const alt_u8 prof_dirent_16[PROF_DIRENT_16_SIZE] = {
0x4f, 0x53, 0x53, 0x43, 0x50, 0x52, 0x4f, 0x46, 0x42, 0x49, 0x4e, 0x20,
0x00, 0x8e, 0x04, 0xb5, 0x6f, 0x51, 0x6f, 0x51, 0x00, 0x00, 0x17, 0x89,
0x6f, 0x51, 0x02, 0x00, 0x00, 0x00, 0x10, 0x00,
};