1
0
mirror of https://github.com/mist64/perfect6502.git synced 2025-01-19 13:30:32 +00:00
perfect6502/perfect6502.c
2010-09-24 00:28:59 +00:00

804 lines
17 KiB
C

int verbose = 0;
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
typedef unsigned char uint8_t;
typedef unsigned short uint16_t;
typedef int BOOL;
#define NO 0
#define YES 1
/* nodes */
#include "segdefs.h"
/* transistors */
#include "transdefs.h"
/* node numbers of probes */
#include "nodenames.h"
enum {
STATE_VCC,
STATE_PU,
STATE_FH,
#define isNodeHigh(nn) (nodes_state[nn] <= STATE_FH) /* everything above is high */
STATE_GND,
STATE_FL,
STATE_PD,
};
/* the 6502 consists of this many nodes and transistors */
#define NODES 1725
#define TRANSISTORS 3510
/* the smallest types to fit the numbers */
typedef uint16_t nodenum_t;
typedef uint16_t transnum_t;
typedef uint16_t count_t;
typedef uint8_t state_t;
/* everything that describes a node */
BOOL nodes_pullup[NODES];
BOOL nodes_pulldown[NODES];
state_t nodes_state[NODES];
nodenum_t nodes_gates[NODES][NODES];
nodenum_t nodes_c1c2s[NODES][2*NODES];
count_t nodes_gatecount[NODES];
count_t nodes_c1c2count[NODES];
/* everything that describes a transistor */
nodenum_t transistors_gate[TRANSISTORS];
nodenum_t transistors_c1[TRANSISTORS];
nodenum_t transistors_c2[TRANSISTORS];
int transistors_on[TRANSISTORS/sizeof(int)+1]; /* bitfield */
int cycle;
uint8_t memory[65536]; /* XXX must be hooked up with RAM[] in runtime.c */
/* list of nodes that need to be recalculated */
typedef struct {
nodenum_t *list;
count_t count;
int *bitmap;
} list_t;
list_t recalc;
/************************************************************
*
* Helpers for Data Structures
*
************************************************************/
void
set_transistors_on(transnum_t t, BOOL state)
{
if (state)
transistors_on[t>>5] |= 1 << (t & 31);
else
transistors_on[t>>5] &= ~(1 << (t & 31));
}
BOOL
get_transistors_on(transnum_t t)
{
return (transistors_on[t>>5] >> (t & 31)) & 1;
}
BOOL
recalcListContains(nodenum_t el)
{
return (recalc.bitmap[el>>5] >> (el & 31)) & 1;
}
/************************************************************
*
* Data Structures and Algorithms for Groups of Nodes
*
************************************************************/
/*
* a group is a set of connected nodes
* that consequently share the same potential
*
* we use an array and a count for O(1) insert and
* iteration, and a redundant bitmap for O(1) lookup
*/
static nodenum_t group[NODES];
static count_t groupcount;
static int groupbitmap[NODES/sizeof(int)+1];
static inline void
group_init()
{
groupcount = 0;
bzero(groupbitmap, sizeof(groupbitmap));
}
static inline void
group_add(nodenum_t i)
{
group[groupcount++] = i;
groupbitmap[i>>5] |= 1 << (i & 31);
}
static inline nodenum_t
group_get(count_t n)
{
return group[n];
}
static inline BOOL
group_contains(nodenum_t el)
{
return (groupbitmap[el>>5] >> (el & 31)) & 1;
}
static inline count_t
group_count()
{
return groupcount;
}
/************************************************************
*
* Node and Transistor Emulation
*
************************************************************/
void addNodeToGroup(nodenum_t i); /* recursion! */
void
addNodeTransistor(nodenum_t node, transnum_t t)
{
/* if the transistor does not connect c1 and c2, we stop here */
if (!get_transistors_on(t))
return;
/* if original node was connected to c1, put c2 into list and vice versa */
if (transistors_c1[t] == node)
addNodeToGroup(transistors_c2[t]);
else
addNodeToGroup(transistors_c1[t]);
}
void
addNodeToGroup(nodenum_t i)
{
if (group_contains(i))
return;
group_add(i);
if (i == vss || i == vcc)
return;
for (count_t t = 0; t < nodes_c1c2count[i]; t++)
addNodeTransistor(i, nodes_c1c2s[i][t]);
}
// 1. if there is a pullup node, it's STATE_PU
// 2. if there is a pulldown node, it's STATE_PD
// (if both 1 and 2 are true, the first pullup or pulldown wins, with
// a statistical advantage towards STATE_PU)
// 3. otherwise, if there is an FH node, it's STATE_FH
// 4. otherwise, it's STATE_FL (if there is an FL node, which is always the case)
state_t
getNodeValue()
{
if (group_contains(vss))
return STATE_GND;
if (group_contains(vcc))
return STATE_VCC;
state_t flstate = STATE_FL;
for (count_t i = 0; i < group_count(); i++) {
nodenum_t nn = group_get(i);
if (nodes_pullup[nn])
return STATE_PU;
if (nodes_pulldown[nn])
return STATE_PD;
if (nodes_state[nn] == STATE_FH)
flstate = STATE_FH;
}
return flstate;
}
void
addRecalcNode(nodenum_t nn)
{
/* no need to analyze VCC or GND */
if (nn == vss || nn == vcc)
return;
/* we already know about this node */
if (recalcListContains(nn))
return;
/* add node to list */
recalc.list[recalc.count++] = nn;
recalc.bitmap[nn>>5] |= 1 << (nn & 31);
}
void
floatnode(nodenum_t nn)
{
/* VCC and GND are constant */
if (nn == vss || nn == vcc)
return;
state_t state = nodes_state[nn];
if (state == STATE_GND || state == STATE_PD)
nodes_state[nn] = STATE_FL;
if (state == STATE_VCC || state == STATE_PU)
nodes_state[nn] = STATE_FH;
}
void
recalcTransistor(transnum_t tn)
{
/* if the gate is high, the transistor should be on */
BOOL on = isNodeHigh(transistors_gate[tn]);
/* no change? nothing to do! */
if (on == get_transistors_on(tn))
return;
set_transistors_on(tn, on);
/* if the transistor is off, both nodes are floating */
if (!on) {
floatnode(transistors_c1[tn]);
floatnode(transistors_c2[tn]);
}
/* next time, we'll have to look at both nodes behind the transistor */
addRecalcNode(transistors_c1[tn]);
addRecalcNode(transistors_c2[tn]);
}
void
recalcNode(nodenum_t node)
{
if (node == vss || node == vcc)
return;
group_init();
/*
* get all nodes that are connected through
* transistors, starting with this one
*/
addNodeToGroup(node);
/* get the state of the group */
state_t newv = getNodeValue();
/*
* now all nodes in this group are in this state,
* - all transistors switched by nodes the group
* need to be recalculated
* - all nodes behind the transistor are collected
* and must be looked at in the next run
*/
for (count_t i = 0; i < group_count(); i++) {
nodenum_t nn = group_get(i);
nodes_state[nn] = newv;
for (count_t t = 0; t < nodes_gatecount[nn]; t++)
recalcTransistor(nodes_gates[nn][t]);
}
}
/*
* NOTE: "list" as provided by the caller must
* at least be able to hold NODES elements!
*/
void
recalcNodeList(nodenum_t *list, count_t count)
{
/* storage for secondary list and two sets of bitmaps */
nodenum_t list1[NODES];
int bitmap1[NODES/sizeof(int)+1];
int bitmap2[NODES/sizeof(int)+1];
/* the nodes we are working with */
list_t current;
current.list = list;
current.count = count;
current.bitmap = bitmap2;
/* the nodes we are collecting for the next run */
recalc.list = list1;
recalc.bitmap = bitmap1;
for (int j = 0; j < 100; j++) { // loop limiter
if (!current.count)
return;
/* clear secondary list */
bzero(recalc.bitmap, sizeof(*recalc.bitmap)*NODES/sizeof(int));
recalc.count = 0;
/*
* for all nodes, follow their paths through
* turned-on transistors, find the state of the
* path and assign it to all nodes, and re-evaluate
* all transistors controlled by this path, collecting
* all nodes that changed because of it for the next run
*/
for (count_t i = 0; i < current.count; i++)
recalcNode(current.list[i]);
/*
* make the secondary list our primary list, use
* the data storage of the primary list as the
* secondary list
*/
list_t tmp = current;
current = recalc;
recalc = tmp;
}
}
void
recalcAllNodes()
{
nodenum_t list[NODES];
for (count_t i = 0; i < NODES; i++)
list[i] = i;
recalcNodeList(list, NODES);
}
static inline void
setNode(nodenum_t nn, BOOL state)
{
nodes_pullup[nn] = state;
nodes_pulldown[nn] = !state;
nodenum_t list[NODES];
list[0] = nn;
recalcNodeList(list, 1);
}
void
setLow(nodenum_t nn)
{
setNode(nn, 0);
}
void
setHigh(nodenum_t nn)
{
setNode(nn, 1);
}
/************************************************************
*
* Address Bus and Data Bus Interface
*
************************************************************/
/* the nodes that make the data bus */
const nodenum_t dbnodes[8] = { db0, db1, db2, db3, db4, db5, db6, db7 };
void
writeDataBus(uint8_t x)
{
for (int i = 0; i < 8; i++) {
nodenum_t nn = dbnodes[i];
nodes_pulldown[nn] = !(x & 1);
nodes_pullup[nn] = x & 1;
x >>= 1;
}
/* recalc all nodes connected starting from the data bus */
nodenum_t list[NODES];
bcopy(dbnodes, list, sizeof(dbnodes));
recalcNodeList(list, 8);
}
uint8_t mRead(uint16_t a)
{
if (verbose)
printf("PEEK($%04X) = $%02X\n", a, memory[a]);
return memory[a];
}
uint16_t
readAddressBus()
{
return (isNodeHigh(ab0) << 0) |
(isNodeHigh(ab1) << 1) |
(isNodeHigh(ab2) << 2) |
(isNodeHigh(ab3) << 3) |
(isNodeHigh(ab4) << 4) |
(isNodeHigh(ab5) << 5) |
(isNodeHigh(ab6) << 6) |
(isNodeHigh(ab7) << 7) |
(isNodeHigh(ab8) << 8) |
(isNodeHigh(ab9) << 9) |
(isNodeHigh(ab10) << 10) |
(isNodeHigh(ab11) << 11) |
(isNodeHigh(ab12) << 12) |
(isNodeHigh(ab13) << 13) |
(isNodeHigh(ab14) << 14) |
(isNodeHigh(ab15) << 15);
}
uint8_t
readDataBus()
{
return (isNodeHigh(db0) << 0) |
(isNodeHigh(db1) << 1) |
(isNodeHigh(db2) << 2) |
(isNodeHigh(db3) << 3) |
(isNodeHigh(db4) << 4) |
(isNodeHigh(db5) << 5) |
(isNodeHigh(db6) << 6) |
(isNodeHigh(db7) << 7);
}
void
mWrite(uint16_t a, uint8_t d)
{
if (verbose)
printf("POKE $%04X, $%02X\n", a, d);
memory[a] = d;
}
/************************************************************
*
* Tracing/Debugging
*
************************************************************/
uint8_t
readA()
{
return (isNodeHigh(a0) << 0) |
(isNodeHigh(a1) << 1) |
(isNodeHigh(a2) << 2) |
(isNodeHigh(a3) << 3) |
(isNodeHigh(a4) << 4) |
(isNodeHigh(a5) << 5) |
(isNodeHigh(a6) << 6) |
(isNodeHigh(a7) << 7);
}
uint8_t
readX()
{
return (isNodeHigh(x0) << 0) |
(isNodeHigh(x1) << 1) |
(isNodeHigh(x2) << 2) |
(isNodeHigh(x3) << 3) |
(isNodeHigh(x4) << 4) |
(isNodeHigh(x5) << 5) |
(isNodeHigh(x6) << 6) |
(isNodeHigh(x7) << 7);
}
uint8_t
readY()
{
return (isNodeHigh(y0) << 0) |
(isNodeHigh(y1) << 1) |
(isNodeHigh(y2) << 2) |
(isNodeHigh(y3) << 3) |
(isNodeHigh(y4) << 4) |
(isNodeHigh(y5) << 5) |
(isNodeHigh(y6) << 6) |
(isNodeHigh(y7) << 7);
}
uint8_t
readP()
{
return (isNodeHigh(p0) << 0) |
(isNodeHigh(p1) << 1) |
(isNodeHigh(p2) << 2) |
(isNodeHigh(p3) << 3) |
(isNodeHigh(p4) << 4) |
(isNodeHigh(p5) << 5) |
(isNodeHigh(p6) << 6) |
(isNodeHigh(p7) << 7);
}
uint8_t
readNOTIR()
{
return (isNodeHigh(notir0) << 0) |
(isNodeHigh(notir1) << 1) |
(isNodeHigh(notir2) << 2) |
(isNodeHigh(notir3) << 3) |
(isNodeHigh(notir4) << 4) |
(isNodeHigh(notir5) << 5) |
(isNodeHigh(notir6) << 6) |
(isNodeHigh(notir7) << 7);
}
uint8_t
readSP()
{
return (isNodeHigh(s0) << 0) |
(isNodeHigh(s1) << 1) |
(isNodeHigh(s2) << 2) |
(isNodeHigh(s3) << 3) |
(isNodeHigh(s4) << 4) |
(isNodeHigh(s5) << 5) |
(isNodeHigh(s6) << 6) |
(isNodeHigh(s7) << 7);
}
uint8_t
readPCL()
{
return (isNodeHigh(pcl0) << 0) |
(isNodeHigh(pcl1) << 1) |
(isNodeHigh(pcl2) << 2) |
(isNodeHigh(pcl3) << 3) |
(isNodeHigh(pcl4) << 4) |
(isNodeHigh(pcl5) << 5) |
(isNodeHigh(pcl6) << 6) |
(isNodeHigh(pcl7) << 7);
}
uint8_t
readPCH()
{
return (isNodeHigh(pch0) << 0) |
(isNodeHigh(pch1) << 1) |
(isNodeHigh(pch2) << 2) |
(isNodeHigh(pch3) << 3) |
(isNodeHigh(pch4) << 4) |
(isNodeHigh(pch5) << 5) |
(isNodeHigh(pch6) << 6) |
(isNodeHigh(pch7) << 7);
}
uint16_t
readPC()
{
return (readPCH() << 8) | readPCL();
}
void
chipStatus()
{
printf("halfcyc:%d phi0:%d AB:%04X D:%02X RnW:%d PC:%04X A:%02X X:%02X Y:%02X SP:%02X P:%02X IR:%02X\n",
cycle,
isNodeHigh(clk0),
readAddressBus(),
readDataBus(),
isNodeHigh(rw),
readPC(),
readA(),
readX(),
readY(),
readSP(),
readP(),
readNOTIR() ^ 0xFF);
}
/************************************************************
*
* Interface to OS Library Code / Monitor
*
************************************************************/
extern int kernal_dispatch();
/* imported by runtime.c */
uint8_t A, X, Y, S, P;
uint16_t PC;
BOOL N, Z, C;
void
init_monitor()
{
FILE *f;
f = fopen("cbmbasic.bin", "r");
fread(memory + 0xA000, 1, 17591, f);
fclose(f);
/*
* fill the KERNAL jumptable with JMP $F800;
* we will put code there later that loads
* the CPU state and returns
*/
for (uint16_t addr = 0xFF90; addr < 0xFFF3; addr += 3) {
memory[addr+0] = 0x4C;
memory[addr+1] = 0x00;
memory[addr+2] = 0xF8;
}
/*
* cbmbasic scribbles over 0x01FE/0x1FF, so we can't start
* with a stackpointer of 0 (which seems to be the state
* after a RESET), so RESET jumps to 0xF000, which contains
* a JSR to the actual start of cbmbasic
*/
memory[0xf000] = 0x20;
memory[0xf001] = 0x94;
memory[0xf002] = 0xE3;
memory[0xfffc] = 0x00;
memory[0xfffd] = 0xF0;
}
void
handle_monitor()
{
PC = readPC();
if (PC >= 0xFF90 && ((PC - 0xFF90) % 3 == 0) && isNodeHigh(clk0)) {
/* get register status out of 6502 */
A = readA();
X = readX();
Y = readY();
S = readSP();
P = readP();
N = P >> 7;
Z = (P >> 1) & 1;
C = P & 1;
kernal_dispatch();
/* encode processor status */
P &= 0x7C; // clear N, Z, C
P |= (N << 7) | (Z << 1) | C;
/*
* all KERNAL calls make the 6502 jump to $F800, so we
* put code there that loads the return state of the
* KERNAL function and returns to the caller
*/
memory[0xf800] = 0xA9; /* LDA #P */
memory[0xf801] = P;
memory[0xf802] = 0x48; /* PHA */
memory[0xf803] = 0xA9; /* LHA #A */
memory[0xf804] = A;
memory[0xf805] = 0xA2; /* LDX #X */
memory[0xf806] = X;
memory[0xf807] = 0xA0; /* LDY #Y */
memory[0xf808] = Y;
memory[0xf809] = 0x28; /* PLP */
memory[0xf80a] = 0x60; /* RTS */
/*
* XXX we could do RTI instead of PLP/RTS, but RTI seems to be
* XXX broken in the chip dump - after the KERNAL call at 0xFF90,
* XXX the 6502 gets heavily confused about its program counter
* XXX and executes garbage instructions
*/
}
}
/************************************************************
*
* Main Clock Loop
*
************************************************************/
void
halfStep()
{
BOOL clk = isNodeHigh(clk0);
/* invert clock */
setNode(clk0, !clk);
/* handle memory reads and writes */
if (clk && isNodeHigh(rw))
writeDataBus(mRead(readAddressBus()));
if (!clk && !isNodeHigh(rw))
mWrite(readAddressBus(), readDataBus());
}
void
step()
{
halfStep();
cycle++;
if (verbose)
chipStatus();
#if 0
for (int i = 0; i < NODES; i++) {
// if (nodes_pullup[i] && nodes_pulldown[i])
// printf("BOTH %d\n", i);
if (!nodes_pullup[i] && !nodes_pulldown[i])
printf("%d ", i);
}
printf("\n");
#endif
handle_monitor();
}
/************************************************************
*
* Initialization
*
************************************************************/
void
setupNodesAndTransistors()
{
count_t i;
for (i = 0; i < sizeof(segdefs)/sizeof(*segdefs); i++) {
nodes_pullup[i] = segdefs[i] == 1;
// nodes_pulldown[i] = !segdefs[i];
nodes_gatecount[i] = 0;
nodes_c1c2count[i] = 0;
}
for (i = 0; i < sizeof(transdefs)/sizeof(*transdefs); i++) {
nodenum_t gate = transdefs[i].gate;
nodenum_t c1 = transdefs[i].c1;
nodenum_t c2 = transdefs[i].c2;
transistors_gate[i] = gate;
transistors_c1[i] = c1;
transistors_c2[i] = c2;
nodes_gates[gate][nodes_gatecount[gate]++] = i;
nodes_c1c2s[c1][nodes_c1c2count[c1]++] = i;
nodes_c1c2s[c2][nodes_c1c2count[c2]++] = i;
}
nodes_state[vss] = STATE_GND;
nodes_state[vcc] = STATE_VCC;
}
void
initChip()
{
/* all nodes are floating */
for (nodenum_t nn = 0; nn < NODES; nn++)
nodes_state[nn] = STATE_FL;
/* all transistors are off */
for (transnum_t tn = 0; tn < TRANSISTORS; tn++)
set_transistors_on(tn, NO);
cycle = 0;
setLow(res);
setLow(clk0);
setHigh(rdy);
setLow(so);
setHigh(irq);
setHigh(nmi);
recalcAllNodes();
/* hold RESET for 8 cycles */
for (int i = 0; i < 16; i++)
step();
/* release RESET */
setHigh(res);
}
/************************************************************
*
* Main
*
************************************************************/
int
main()
{
/* set up data structures for efficient emulation */
setupNodesAndTransistors();
/* set initial state of nodes, transistors, inputs; RESET chip */
initChip();
/* set up memory for user program */
init_monitor();
/* emulate the 6502! */
for (;;)
step();
}