v6502cpp/Cpu6502.cpp

203 lines
4.0 KiB
C++

/*
* File: Cpu6502.cpp
* Author: Christopher
*
* Created on December 12, 2013, 10:14 PM
*/
#include "Cpu6502.h"
#include "TransNetwork.h"
#include "trans.h"
#include "addressbus.h"
#include "Trace.h"
#include <iostream>
#include "StateCalculator.h"
#define TRACEREG 1
//#define TRACESEG 1
//#define TRACEMEM 1
#ifdef TRACEREG
#define dumpRegs() this->trace.dumpRegisters()
#else
#define dumpRegs()
#endif
#ifdef TRACESEG
#define dumpSegs() dumpSegments()
#else
#define dumpSegs()
#endif
void Cpu6502::powerOn() {
std::cout << "initial state" << std::endl;
dumpRegs();
dumpSegs();
/*
* Since we use segs[CLK0].on as our own
* temporary variable (see "step" method), we
* need to initialize it here, to "phase one".
*/
n->CLK0->on = true;
std::cout << "setting input pins..." << std::endl;
initPins();
std::cout << "initial full calculation..." << std::endl;
recalc(segs.all());
dumpRegs();
dumpSegs();
}
void Cpu6502::setSeg(Segment* s, bool on) {
s->set(on);
}
void Cpu6502::recalc(Segment* s) {
StateCalculator::recalc(s);
}
void Cpu6502::recalc(std::set<Segment*> s) {
StateCalculator::recalc(s);
}
void Cpu6502::initPins() {
// set voltage supply and ground.
setSeg(n->VCC, true);
setSeg(n->VSS, false);
// don't do the set-overflow overriding functionality
setSeg(n->SO, false);
// ready to run (i.e., do not do single-stepping of instructions)
setSeg(n->RDY, true);
// pull up to indicate that we are not interrupting now
setSeg(n->IRQ, true);
setSeg(n->NMI, true);
/*
* RES_BAR pin means "not resetting". Since it is a negated pin, pulling it low means "resetting"
* and pulling it high means "not resetting" or equivalently "running".
*/
/*
* RES_BAR false: resetting now (i.e., in power-up now; pull high to begin normal operation)
* We want to hold RES_BAR low for a while, indicating power-up phase during which the
* CPU does not start up normal operations yet. The caller can set RES_BAR high (by calling
* reset) whenever he is ready to start the CPU running.
*/
setSeg(n->RES, false);
}
void Cpu6502::reset() {
setSeg(n->RES, true);
recalc(n->RES);
}
void Cpu6502::tick() {
step();
step();
}
void Cpu6502::step() {
/*
* We cheat a little bit here: instead of requiring the
* caller to toggle clock-zero pin, we let him just call
* "step" and *we* keep track of which phase we are in.
* To do this, we just use the CLK0 segment value (as
* a kind of temporary variable), and just toggle it in
* order to know which phase we are going into.
*
* The real 6502, of course, does not do this.
*/
const bool nextPhase = !n->CLK0->on;
clock(nextPhase);
rw();
dumpRegs();
dumpSegs();
}
void Cpu6502::clock(bool phase) {
setSeg(n->CLK0, phase);
recalc(n->CLK0);
}
void Cpu6502::rw() {
// database read/write happens during Clock Phase 2 (only)
if (n->CLK2OUT->on) {
readBus();
std::set<Segment*> s;
segs.addDataToRecalc(s);
recalc(s);
writeBus();
}
}
void Cpu6502::readBus() {
if (this->transNetwork.segs.c->RW->on) {
this->transNetwork.segs.setDataSegs(read(this->transNetwork.segs.rAddr()));
}
}
void Cpu6502::writeBus() {
if (!this->transNetwork.segs.c->RW->on) {
write(this->transNetwork.segs.rAddr(), this->transNetwork.segs.rData());
}
}
unsigned char Cpu6502::read(unsigned short addr) {
const unsigned char x = this->addressBus.read(addr);
#ifdef TRACEMEM
std::cout << "-------------------------------------------------- ";
pHex(x);
std::cout << "<";
pHexw(addr);
std::cout << std::endl;
#endif
return x;
}
void Cpu6502::write(unsigned short addr, unsigned char data) {
this->addressBus.write(addr, data);
#ifdef TRACEMEM
std::cout << "-------------------------------------------------- ";
pHex(data);
std::cout << ">";
pHexw(addr);
std::cout << std::endl;
#endif
}