1
0
mirror of https://github.com/ksherlock/x65.git synced 2025-01-16 23:30:02 +00:00
x65/asm6502.cpp
2015-09-29 22:07:04 -07:00

1766 lines
51 KiB
C++

//
// asm6502.cpp
//
//
// Created by Carl-Henrik Skårstedt on 9/23/15.
//
//
// A simple 6502 assembler
//
//
// The MIT License (MIT)
//
// Copyright (c) 2015 Carl-Henrik Skårstedt
//
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software
// and associated documentation files (the "Software"), to deal in the Software without restriction,
// including without limitation the rights to use, copy, modify, merge, publish, distribute,
// sublicense, and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all copies or
// substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
// PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
// FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
// https://github.com/Sakrac/struse/wiki/Asm6502-Syntax
//
#define _CRT_SECURE_NO_WARNINGS // Windows shenanigans
#define STRUSE_IMPLEMENTATION // include implementation of struse in this file
#include "struse.h"
#include <vector>
#include <stdio.h>
#include <stdlib.h>
// if the number of resolved labels exceed this in one late eval then skip
// checking for relevance and just eval all unresolved expressions.
#define MAX_LABELS_EVAL_ALL 16
// Max number of nested scopes (within { and })
#define MAX_SCOPE_DEPTH 32
// The maximum complexity of expressions to be evaluated
#define MAX_EVAL_VALUES 32
#define MAX_EVAL_OPER 64
// Internal status and error type
enum StatusCode {
STATUS_OK, // everything is fine
STATUS_NOT_READY, // label could not be evaluated at this time
ERROR_UNEXPECTED_CHARACTER_IN_EXPRESSION,
ERROR_TOO_MANY_VALUES_IN_EXPRESSION,
ERROR_TOO_MANY_OPERATORS_IN_EXPRESSION,
ERROR_UNBALANCED_RIGHT_PARENTHESIS,
ERROR_EXPRESSION_OPERATION,
ERROR_EXPRESSION_MISSING_VALUES,
ERROR_INSTRUCTION_NOT_ZP,
ERROR_INVALID_ADDRESSING_MODE_FOR_BRANCH,
ERROR_BRANCH_OUT_OF_RANGE,
ERROR_LABEL_MISPLACED_INTERNAL,
ERROR_BAD_ADDRESSING_MODE,
ERROR_UNEXPECTED_CHARACTER_IN_ADDRESSING_MODE,
ERROR_UNEXPECTED_LABEL_ASSIGMENT_FORMAT,
ERROR_MODIFYING_CONST_LABEL,
ERROR_STOP_PROCESSING_ON_HIGHER, // errors greater than this will stop execution
ERROR_TARGET_ADDRESS_MUST_EVALUATE_IMMEDIATELY,
ERROR_TOO_DEEP_SCOPE,
ERROR_UNBALANCED_SCOPE_CLOSURE,
ERROR_BAD_MACRO_FORMAT,
ERROR_ALIGN_MUST_EVALUATE_IMMEDIATELY,
ERROR_OUT_OF_MEMORY_FOR_MACRO_EXPANSION,
};
// The following strings are in the same order as StatusCode
const char *aStatusStrings[] = {
"ok",
"not ready",
"Unexpected character in expression",
"Too many values in expression",
"Too many operators in expression",
"Unbalanced right parenthesis in expression",
"Expression operation",
"Expression missing values",
"Instruction can not be zero page",
"Invalid addressing mode for branch instruction",
"Branch out of range",
"Internal label organization mishap",
"Bad addressing mode",
"Unexpected character in addressing mode",
"Unexpected label assignment format",
"Changing value of label that is constant",
"Errors after this point will stop execution",
"Target address must evaluate immediately for this operation",
"Scoping is too deep",
"Unbalanced scope closure",
"Unexpected macro formatting",
"Align must evaluate immediately",
"Out of memory for macro expansion",
};
// Operators are either instructions or directives
enum OperationType {
OT_NONE,
OT_MNEMONIC,
OT_DIRECTIVE
};
// Opcode encoding
typedef struct {
unsigned int op_hash;
unsigned char group; // group #
unsigned char index; // ground index
unsigned char type; // mnemonic or
} OP_ID;
//
// 6502 instruction encoding according to this page
// http://www.llx.com/~nparker/a2/opcodes.html
// decoded instruction:
// XXY10000 for branches
// AAABBBCC for CC=00, 01, 10
// and some custom ops
//
enum AddressingMode {
AM_REL_ZP_X, // 0 (zp,x)
AM_ZP, // 1 zp
AM_IMMEDIATE, // 2 #$hh
AM_ABSOLUTE, // 3 $hhhh
AM_REL_ZP_Y, // 4 (zp),y
AM_ZP_X, // 5 zp,x
AM_ABSOLUTE_Y, // 6 $hhhh,y
AM_ABSOLUTE_X, // 7 $hhhh,x
AM_RELATIVE, // 8 ($xxxx)
AM_ACCUMULATOR, // 9 A
AM_NONE, // 10 <empty>
AM_INVALID, // 11
};
// How instruction argument is encoded
enum CODE_ARG {
CA_NONE, // single byte instruction
CA_ONE_BYTE, // instruction carries one byte
CA_TWO_BYTES, // instruction carries two bytes
CA_BRANCH // instruction carries a relative address
};
// opcode groups
enum OP_GROUP {
OPG_SUBROUT,
OPG_CC01,
OPG_CC10,
OPG_STACK,
OPG_BRANCH,
OPG_FLAG,
OPG_CC00,
OPG_TRANS
};
// opcode exception indices
enum OP_INDICES {
OPI_JSR = 1,
OPI_LDX = 5,
OPI_STX = 4,
OPI_STA = 4,
OPI_JMP = 1,
};
// opcode names in groups (prefix by group size)
const char aInstr[] = {
"BRK,JSR,RTI,RTS\n"
"ORA,AND,EOR,ADC,STA,LDA,CMP,SBC\n"
"ASL,ROL,LSR,ROR,STX,LDX,DEC,INC\n"
"PHP,PLP,PHA,PLA,DEY,TAY,INY,INX\n"
"BPL,BMI,BVC,BVS,BCC,BCS,BNE,BEQ\n"
"CLC,SEC,CLI,SEI,TYA,CLV,CLD,SED\n"
"BIT,JMP,,STY,LDY,CPY,CPX\n"
"TXA,TXS,TAX,TSX,DEX,,NOP"
};
// group # + index => base opcode
const unsigned char aMulAddGroup[][2] = {
{ 0x20,0x00 },
{ 0x20,0x01 },
{ 0x20,0x02 },
{ 0x20,0x08 },
{ 0x20,0x10 },
{ 0x20,0x18 },
{ 0x20,0x20 },
{ 0x10,0x8a }
};
char aCC00Modes[] = { AM_IMMEDIATE, AM_ZP, AM_INVALID, AM_ABSOLUTE, AM_INVALID, AM_ZP_X, AM_INVALID, AM_ABSOLUTE_X };
char aCC01Modes[] = { AM_REL_ZP_X, AM_ZP, AM_IMMEDIATE, AM_ABSOLUTE, AM_REL_ZP_Y, AM_ZP_X, AM_ABSOLUTE_X, AM_ABSOLUTE_Y };
char aCC10Modes[] = { AM_IMMEDIATE, AM_ZP, AM_NONE, AM_ABSOLUTE, AM_INVALID, AM_ZP_X, AM_INVALID, AM_ABSOLUTE_X };
unsigned char CC00ModeAdd[] = { 0xff, 4, 0, 12, 0xff, 20, 0xff, 28 };
unsigned char CC00Mask[] = { 0x0a, 0x08, 0x08, 0x2a, 0xae, 0x0e, 0x0e };
unsigned char CC10ModeAdd[] = { 0xff, 4, 0, 12, 0xff, 20, 0xff, 28 };
unsigned char CC10Mask[] = { 0xaa, 0xaa, 0xaa, 0xaa, 0x2a, 0xae, 0xaa, 0xaa };
static const strref c_comment("//");
static const strref word_char_range("!0-9a-zA-Z_@$!");
static const strref label_char_range("!0-9a-zA-Z_@$!.");
static const strref keyword_equ("equ");
// pairArray is basically two vectors sharing a size without using constructors
template <class H, class V> class pairArray {
protected:
H *keys;
V *values;
unsigned int _count;
unsigned int _capacity;
public:
pairArray() : keys(nullptr), values(nullptr), _count(0), _capacity(0) {}
void reserve(unsigned int size) {
if (size>_capacity) {
H *new_keys = (H*)malloc(sizeof(H) * size); if (!new_keys) { return; }
V *new_values = (V*)malloc(sizeof(V) * size); if (!new_values) { free(new_keys); return; }
if (keys && values) {
memcpy(new_keys, keys, sizeof(H) * _count);
memcpy(new_values, values, sizeof(V) * _count);
free(keys); free(values);
}
keys = new_keys;
values = new_values;
_capacity = size;
}
}
bool insert(unsigned int pos) {
if (pos>_count)
return false;
if (_count==_capacity)
reserve(_capacity+64);
if (pos<_count) {
memmove(keys+pos+1, keys+pos, sizeof(H) * (_count-pos));
memmove(values+pos+1, values+pos, sizeof(V) * (_count-pos));
}
memset(keys+pos, 0, sizeof(H));
memset(values+pos, 0, sizeof(V));
_count++;
return true;
}
bool insert(unsigned int pos, H key) {
if (insert(pos)) {
keys[pos] = key;
return true;
}
return false;
}
void remove(unsigned int pos) {
if (pos<_count) {
_count--;
if (pos<_count) {
memmove(keys+pos, keys+pos+1, sizeof(H) * (_count-pos));
memmove(values+pos, values+pos+1, sizeof(V) * (_count-pos));
}
}
}
H* getKeys() { return keys; }
H& getKey(unsigned int pos) { return keys[pos]; }
V* getValues() { return values; }
V& getValue(unsigned int pos) { return values[pos]; }
unsigned int count() const { return _count; }
unsigned int capacity() const { return _capacity; }
void clear() {
if (keys!=nullptr)
free(keys);
keys = nullptr;
if (values!=nullptr)
free(values);
values = nullptr;
_capacity = 0;
_count = 0;
}
~pairArray() { clear(); }
};
// Data related to a label
typedef struct {
public:
strref label_name; // the name of this label
strref expression; // the expression of this label (optional, if not possible to evaluate yet)
int value;
bool evaluated; // a value may not yet be evaluated
bool zero_page; // addresses known to be zero page
bool pc_relative; // this is an inline label describing a point in the code
bool constant; // the value of this label can not change
} Label;
// When an expression is evaluated late, determine how to encode the result
enum LateEvalType {
LET_LABEL, // this evaluation applies to a label and not memory
LET_ABS_REF, // calculate an absolute address and store at 0, +1
LET_BRANCH, // calculate a branch offset and store at this address
LET_BYTE, // calculate a byte and store at this address
};
// If an expression can't be evaluated immediately, this is required
// to reconstruct the result when it can be.
typedef struct {
unsigned char* target; // offset into output buffer
int address; // current pc
int scope; // scope pc
strref label; // valid if this is not a target but another label
strref expression;
strref source_file;
LateEvalType type;
} LateEval;
// A macro is a text reference to where it was defined
typedef struct {
strref name;
strref macro;
strref source_name; // source file name (error output)
strref source_file; // entire source file (req. for line #)
} Macro;
// Source context is current file (include file, etc.) or current macro.
typedef struct {
strref source_name; // source file name (error output)
strref source_file; // entire source file (req. for line #)
strref code_segment; // the segment of the file for this context
strref read_source; // current position/length in source file
} SourceContext;
class ContextStack {
private:
std::vector<SourceContext> stack;
SourceContext *currContext;
public:
ContextStack() : currContext(nullptr) { stack.reserve(32); }
SourceContext& curr() { return *currContext; }
void push(strref src_name, strref src_file, strref code_seg) {
SourceContext context;
context.source_name = src_name;
context.source_file = src_file;
context.code_segment = code_seg;
context.read_source = code_seg;
stack.push_back(context);
currContext = &stack[stack.size()-1];
}
void pop() { stack.pop_back(); currContext = stack.size() ? &stack[stack.size()-1] : nullptr; }
bool has_work() { return currContext!=nullptr; }
};
// Assembler directives such as org / pc / load / etc.
enum AssemblerDirective {
AD_ORG,
AD_LOAD,
AD_ALIGN,
AD_MACRO,
AD_EVAL,
AD_BYTES,
AD_WORDS,
AD_TEXT,
AD_INCLUDE,
AD_INCBIN,
AD_CONST,
AD_LABEL,
AD_INCSYM,
};
// The state of the assembly
class Asm {
public:
pairArray<unsigned int, Label> labels;
pairArray<unsigned int, Macro> macros;
std::vector<LateEval> lateEval;
std::vector<strref> localLabels; // remove these labels when a global pc label is added
std::vector<char*> loadedData; // free when
strovl symbols;
// context for macros / include files
ContextStack contextStack;
// target output memory
unsigned char *output, *curr;
size_t output_capacity;
unsigned int address;
unsigned int load_address;
int scope_address[MAX_SCOPE_DEPTH];
int scope_depth;
bool set_load_address;
bool symbol_export;
// Convert source to binary
void Assemble(strref source, strref filename);
// Clean up memory allocations
void Cleanup();
// Make sure there is room to write more code
void CheckOutputCapacity(unsigned int addSize);
// Add and build a macro
StatusCode AddMacro(strref macro, strref source_name, strref source_file);
StatusCode BuildMacro(Macro &m, strref arg_list);
// Calculate a value based on an expression.
StatusCode EvalExpression(strref expression, int pc, int scope_pc,
int scope_end_pc, int &result);
// Access labels
Label* GetLabel(strref label);
Label* AddLabel(unsigned int hash);
StatusCode AssignLabel(strref label, strref line, bool make_constant = false);
StatusCode AddressLabel(strref label);
void LabelAdded(Label *pLabel);
void IncSym(strref line);
// Late expression evaluation
void AddLateEval(int pc, int scope_pc, unsigned char *target,
strref expression, strref source_file, LateEvalType type);
void AddLateEval(strref label, int pc, int scope_pc,
strref expression, LateEvalType type);
StatusCode CheckLateEval(strref added_label=strref(), int scope_end = -1);
// Manage locals
void MarkLabelLocal(strref label);
void FlushLocalLabels();
// Assembler steps
StatusCode ApplyDirective(AssemblerDirective dir, strref line, strref source_file);
AddressingMode GetAddressMode(strref line, bool flipXY,
StatusCode &error, strref &expression);
StatusCode AddOpcode(strref line, int group, int index, strref source_file);
StatusCode BuildSegment(OP_ID *pInstr, int numInstructions);
// constructor
Asm() : address(0x1000), load_address(0x1000), scope_depth(0), set_load_address(false),
output(nullptr), curr(nullptr), output_capacity(0), symbol_export(false)
{ localLabels.reserve(256); }
};
// Binary search over an array of unsigned integers, may contain multiple instances of same key
unsigned int FindLabelIndex(unsigned int hash, unsigned int *table, unsigned int count)
{
unsigned int max = count;
unsigned int first = 0;
while (count!=first) {
int index = (first+count)/2;
unsigned int read = table[index];
if (hash==read) {
while (index && table[index-1]==hash)
index--; // guarantee first identical index returned on match
return index;
} else if (hash>read)
first = index+1;
else
count = index;
}
if (count<max && table[count]<hash)
count++;
else if (count && table[count-1]>hash)
count--;
return count;
}
// Read in text data (main source, include, etc.)
char* LoadText(strref filename, size_t &size) {
strown<512> file(filename);
if (FILE *f = fopen(file.c_str(), "r")) {
fseek(f, 0, SEEK_END);
size_t _size = ftell(f);
fseek(f, 0, SEEK_SET);
if (char *buf = (char*)calloc(_size, 1)) {
fread(buf, 1, _size, f);
fclose(f);
size = _size;
return buf;
}
fclose(f);
}
size = 0;
return nullptr;
}
// Read in binary data (incbin)
char* LoadBinary(strref filename, size_t &size) {
strown<512> file(filename);
if (FILE *f = fopen(file.c_str(), "rb")) {
fseek(f, 0, SEEK_END);
size_t _size = ftell(f);
fseek(f, 0, SEEK_SET);
if (char *buf = (char*)malloc(_size)) {
fread(buf, _size, 1, f);
fclose(f);
size = _size;
return buf;
}
fclose(f);
}
size = 0;
return nullptr;
}
// Clean up work allocations
void Asm::Cleanup() {
for (std::vector<char*>::iterator i = loadedData.begin(); i!=loadedData.end(); ++i) {
char *data = *i;
free(data);
}
if (symbols.get()) {
free(symbols.charstr());
symbols.set_overlay(nullptr,0);
}
loadedData.clear();
labels.clear();
macros.clear();
if (output)
free(output);
output = nullptr;
curr = nullptr;
output_capacity = 0;
}
// Make sure there is room to assemble in
void Asm::CheckOutputCapacity(unsigned int addSize) {
size_t currSize = curr - output;
if ((addSize + currSize) >= output_capacity) {
size_t newSize = currSize * 2;
if (newSize < 64*1024)
newSize = 64*1024;
if ((addSize+currSize) > newSize)
newSize += newSize;
unsigned char *new_output = (unsigned char*)malloc(newSize);
curr = new_output + (curr-output);
free(output);
output = new_output;
output_capacity = newSize;
}
}
// add a custom macro
StatusCode Asm::AddMacro(strref macro, strref source_name, strref source_file)
{
// name(optional params) { actual macro }
strref name = macro.split_label();
macro.skip_whitespace();
if (macro[0]!='(' && macro[0]!='{')
return ERROR_BAD_MACRO_FORMAT;
unsigned int hash = name.fnv1a();
unsigned int ins = FindLabelIndex(hash, macros.getKeys(), macros.count());
Macro *pMacro = nullptr;
while (ins < macros.count() && macros.getKey(ins)==hash) {
if (name.same_str_case(macros.getValue(ins).name)) {
pMacro = macros.getValues() + ins;
break;
}
++ins;
}
if (!pMacro) {
macros.insert(ins, hash);
pMacro = macros.getValues() + ins;
}
pMacro->name = name;
int pos_bracket = macro.find('{');
if (pos_bracket < 0) {
pMacro->macro = strref();
return ERROR_BAD_MACRO_FORMAT;
}
strref macro_body = (macro + pos_bracket).scoped_block_skip();
pMacro->macro = strref(macro.get(), pos_bracket + macro_body.get_len() + 2);
pMacro->source_name = source_name;
pMacro->source_file = source_file;
return STATUS_OK;
}
// mark a label as a local label
void Asm::MarkLabelLocal(strref label)
{
localLabels.push_back(label);
}
// find all local labels and remove them
void Asm::FlushLocalLabels()
{
std::vector<strref>::iterator i = localLabels.begin();
while (i!=localLabels.end()) {
unsigned int index = FindLabelIndex(i->fnv1a(), labels.getKeys(), labels.count());
while (index<labels.count()) {
if (i->same_str_case(labels.getValue(index).label_name)) {
labels.remove(index);
break;
}
}
i = localLabels.erase(i);
}
}
// if an expression could not be evaluated, add it along with
// the action to perform if it can be evaluated later.
void Asm::AddLateEval(int pc, int scope_pc, unsigned char *target, strref expression, strref source_file, LateEvalType type)
{
LateEval le;
le.address = pc;
le.scope = scope_pc;
le.target = target;
le.label.clear();
le.expression = expression;
le.source_file = source_file;
le.type = type;
lateEval.push_back(le);
}
void Asm::AddLateEval(strref label, int pc, int scope_pc, strref expression, LateEvalType type)
{
LateEval le;
le.address = pc;
le.scope = scope_pc;
le.target = 0;
le.label = label;
le.expression = expression;
le.source_file.clear();
le.type = type;
lateEval.push_back(le);
}
// When a label is defined or a scope ends check if there are
// any related late label evaluators that can now be evaluated.
StatusCode Asm::CheckLateEval(strref added_label, int scope_end)
{
std::vector<LateEval>::iterator i = lateEval.begin();
bool evaluated_label = true;
strref new_labels[MAX_LABELS_EVAL_ALL];
int num_new_labels = 0;
if (added_label)
new_labels[num_new_labels++] = added_label;
while (evaluated_label) {
evaluated_label = false;
while (i != lateEval.end()) {
int value = 0;
// check if this expression is related to the late change (new label or end of scope)
bool check = num_new_labels==MAX_LABELS_EVAL_ALL;
for (int l=0; l<num_new_labels && !check; l++)
check = i->expression.find(new_labels[l]) >= 0;
if (!check && scope_end>0) {
int gt_pos = 0;
while (gt_pos>=0 && !check) {
gt_pos = i->expression.find_at('%', gt_pos);
if (gt_pos>=0) {
if (i->expression[gt_pos+1]=='%')
gt_pos++;
else
check = true;
gt_pos++;
}
}
}
if (check) {
int ret = EvalExpression(i->expression, i->address, i->scope, scope_end, value);
if (ret == STATUS_OK) {
switch (i->type) {
case LET_BRANCH:
value -= i->address;
if (value<-128 || value>127)
return ERROR_BRANCH_OUT_OF_RANGE;
*i->target = (unsigned char)value;
break;
case LET_BYTE:
i->target[0] = value&0xff;
break;
case LET_ABS_REF:
i->target[0] = value&0xff;
i->target[1] = (value>>8)&0xff;
break;
case LET_LABEL: {
Label *label = GetLabel(i->label);
if (!label)
return ERROR_LABEL_MISPLACED_INTERNAL;
label->value = value;
label->evaluated = true;
if (num_new_labels<MAX_LABELS_EVAL_ALL)
new_labels[num_new_labels++] = label->label_name;
evaluated_label = true;
LabelAdded(label);
break;
}
default:
break;
}
i = lateEval.erase(i);
} else
++i;
} else
++i;
}
added_label.clear();
}
return STATUS_OK;
}
// Get a labelc record if it exists
Label *Asm::GetLabel(strref label)
{
unsigned int label_hash = label.fnv1a();
unsigned int index = FindLabelIndex(label_hash, labels.getKeys(), labels.count());
while (index < labels.count() && label_hash == labels.getKey(index)) {
if (label.same_str(labels.getValue(index).label_name))
return labels.getValues() + index;
index++;
}
return nullptr;
}
static const strref str_label("label");
static const strref str_const("const");
// If exporting labels, append this label to the list
void Asm::LabelAdded(Label *pLabel)
{
if (pLabel && pLabel->evaluated && symbol_export) {
int space = 1 + str_label.get_len() + 1 + pLabel->label_name.get_len() + 1 + 9 + 2;
if ((symbols.get_len()+space) > symbols.cap()) {
strl_t new_size = ((symbols.get_len()+space)+8*1024);
char *new_charstr = (char*)malloc(new_size);
if (symbols.charstr()) {
memcpy(new_charstr, symbols.charstr(), symbols.get_len());
free(symbols.charstr());
}
symbols.set_overlay(new_charstr, new_size, symbols.get_len());
}
symbols.append('.');
symbols.append(pLabel->constant ? str_const : str_label);
symbols.append(' ');
symbols.append(pLabel->label_name);
symbols.sprintf_append("=$%04x\n", pLabel->value);
}
}
// These are expression tokens in order of precedence (last is highest precedence)
enum EvalOperator {
EVOP_NONE,
EVOP_VAL, // value => read from value queue
EVOP_LPR, // left parenthesis
EVOP_RPR, // right parenthesis
EVOP_ADD, // +
EVOP_SUB, // -
EVOP_MUL, // * (note: if not preceded by value or right paren this is current PC)
EVOP_DIV, // /
EVOP_AND, // &
EVOP_OR, // |
EVOP_EOR, // ^
EVOP_SHL, // <<
EVOP_SHR // >>
};
//
// EvalExpression
// Uses the Shunting Yard algorithm to convert to RPN first
// which makes the actual calculation trivial and avoids recursion.
// https://en.wikipedia.org/wiki/Shunting-yard_algorithm
//
// Return:
// STATUS_OK means value is completely evaluated
// STATUS_NOT_READY means value could not be evaluated right now
// ERROR_* means there is an error in the expression
//
StatusCode Asm::EvalExpression(strref expression, int pc, int scope_pc, int scope_end_pc, int &result)
{
int sp = 0;
int numValues = 0;
int numOps = 0;
char op_stack[MAX_EVAL_OPER];
char ops[MAX_EVAL_OPER]; // RPN expression
int values[MAX_EVAL_VALUES]; // RPN values (in order of RPN EVOP_VAL operations)
bool hiByte = false;
bool loByte = false;
values[0] = 0;
if (expression[0]=='>') { hiByte = true; ++expression; }
else if (expression[0]=='<') { loByte = true; ++expression; }
EvalOperator prev_op = EVOP_NONE;
while (expression) {
int value = 0;
expression.skip_whitespace();
// Read a token from the expression (op)
EvalOperator op = EVOP_NONE;
char c = expression.get_first();
switch (c) {
case '$': ++expression; value = expression.ahextoui_skip(); op = EVOP_VAL; break;
case '-': ++expression; op = EVOP_SUB; break;
case '+': ++expression; op = EVOP_ADD; break;
case '*': // asterisk means both multiply and current PC, disambiguate!
if (prev_op==EVOP_VAL || prev_op==EVOP_RPR) op = EVOP_MUL;
else { op = EVOP_VAL; value = pc; }
++expression;
break;
case '/': ++expression; op = EVOP_DIV; break;
case '>': if (expression.get_len()>=2 && expression[1]=='>') {
expression += 2; op = EVOP_SHR; } break;
case '<': if (expression.get_len()>=2 && expression[1]=='<') {
expression += 2; op = EVOP_SHL; } break;
case '%': // % means both binary and scope closure, disambiguate!
if (expression[1]=='0' || expression[1]=='1') {
++expression; value = expression.abinarytoui_skip(); op = EVOP_VAL; break; }
if (scope_end_pc<0) return STATUS_NOT_READY;
++expression; op = EVOP_VAL; value = scope_end_pc; break;
case '|': ++expression; op = EVOP_OR; break;
case '&': ++expression; op = EVOP_AND; break;
case '(': ++expression; op = EVOP_LPR; break;
case ')': ++expression; op = EVOP_RPR; break;
default: {
if (c=='!' && !(expression+1).len_label()) {
if (scope_pc<0) // ! by itself is current scope, !+label char is a local label
return STATUS_NOT_READY;
++expression;
op = EVOP_VAL; value = scope_pc;
break;
} else if (strref::is_number(c)) {
value = expression.atoi_skip(); op = EVOP_VAL;
} else if (c=='!' || strref::is_valid_label(c)) {
strref label = expression.split_range_trim(label_char_range);//.split_label();
Label *pValue = GetLabel(label);
if (!pValue || !pValue->evaluated) // this label could not be found (yet)
return STATUS_NOT_READY;
value = pValue->value; op = EVOP_VAL;
} else
return ERROR_UNEXPECTED_CHARACTER_IN_EXPRESSION;
break;
}
}
// this is the body of the shunting yard algorithm
if (op == EVOP_VAL) {
values[numValues++] = value;
ops[numOps++] = op;
} else if (op == EVOP_LPR) {
op_stack[sp++] = op;
} else if (op == EVOP_RPR) {
while (sp && op_stack[sp-1]!=EVOP_LPR) {
sp--;
ops[numOps++] = op_stack[sp];
}
// check that there actually was a left parenthesis
if (!sp || op_stack[sp-1]!=EVOP_LPR)
return ERROR_UNBALANCED_RIGHT_PARENTHESIS;
sp--; // skip open paren
} else {
while (sp) {
EvalOperator p = (EvalOperator)op_stack[sp-1];
if (p==EVOP_LPR || op>p)
break;
ops[numOps++] = p;
sp--;
}
op_stack[sp++] = op;
}
// check for out of bounds or unexpected input
if (numValues==MAX_EVAL_VALUES)
return ERROR_TOO_MANY_VALUES_IN_EXPRESSION;
else if (numOps==MAX_EVAL_OPER || sp==MAX_EVAL_OPER)
return ERROR_TOO_MANY_OPERATORS_IN_EXPRESSION;
prev_op = op;
}
while (sp) {
sp--;
ops[numOps++] = op_stack[sp];
}
// processing the result RPN will put the completed expression into values[0].
// values is used as both the queue and the stack of values since reads/writes won't
// exceed itself.
int valIdx = 0;
for (int o = 0; o<numOps; o++) {
EvalOperator op = (EvalOperator)ops[o];
if (op!=EVOP_VAL && sp<2)
break; // ignore suffix operations that are lacking values
switch (op) {
case EVOP_VAL: // value
values[sp++] = values[valIdx++]; break;
case EVOP_ADD: // +
sp--; values[sp-1] += values[sp]; break;
case EVOP_SUB: // -
sp--; values[sp-1] -= values[sp]; break;
case EVOP_MUL: // *
sp--; values[sp-1] *= values[sp];; break;
case EVOP_DIV: // /
sp--; values[sp-1] /= values[sp]; break;
case EVOP_AND: // &
sp--; values[sp-1] &= values[sp]; break;
case EVOP_OR: // |
sp--; values[sp-1] |= values[sp]; break;
case EVOP_EOR: // ^
sp--; values[sp-1] ^= values[sp]; break;
case EVOP_SHL: // <<
sp--; values[sp-1] <<= values[sp]; break;
case EVOP_SHR: // >>
sp--; values[sp-1] >>= values[sp]; break;
default:
return ERROR_EXPRESSION_OPERATION;
break;
}
}
// check hi/lo byte filter
int val = values[0];
if (hiByte)
val = (val>>8)&0xff;
else if (loByte)
val &= 0xff;
result = val;
return STATUS_OK;
}
// Add a label entry
Label* Asm::AddLabel(unsigned int hash) {
unsigned int index = FindLabelIndex(hash, labels.getKeys(), labels.count());
labels.insert(index, hash);
return labels.getValues() + index;
}
// unique key binary search
int LookupOpCodeIndex(unsigned int hash, OP_ID *lookup, int count)
{
int first = 0;
while (count!=first) {
int index = (first+count)/2;
unsigned int read = lookup[index].op_hash;
if (hash==read) {
return index;
} else if (hash>read)
first = index+1;
else
count = index;
}
return -1; // index not found
}
typedef struct {
const char *name;
AssemblerDirective directive;
} DirectiveName;
DirectiveName aDirectiveNames[] {
{ "PC", AD_ORG },
{ "ORG", AD_ORG },
{ "LOAD", AD_LOAD },
{ "ALIGN", AD_ALIGN },
{ "MACRO", AD_MACRO },
{ "EVAL", AD_EVAL },
{ "BYTE", AD_BYTES },
{ "BYTES", AD_BYTES },
{ "WORD", AD_WORDS },
{ "WORDS", AD_WORDS },
{ "TEXT", AD_TEXT },
{ "INCLUDE", AD_INCLUDE },
{ "INCBIN", AD_INCBIN },
{ "CONST", AD_CONST },
{ "LABEL", AD_LABEL },
{ "INCSYM", AD_INCSYM },
};
static const int nDirectiveNames = sizeof(aDirectiveNames) / sizeof(aDirectiveNames[0]);
int sortHashLookup(const void *A, const void *B) {
const OP_ID *_A = (const OP_ID*)A;
const OP_ID *_B = (const OP_ID*)B;
return _A->op_hash > _B->op_hash ? 1 : -1;
}
int BuildInstructionTable(OP_ID *pInstr, strref instr_text, int maxInstructions)
{
// create an instruction table (mnemonic hash lookup)
int numInstructions = 0;
char group_num = 0;
while (strref line = instr_text.next_line()) {
int index_num = 0;
while (line) {
strref mnemonic = line.split_token_trim(',');
if (mnemonic) {
OP_ID &op_hash = pInstr[numInstructions++];
op_hash.op_hash = mnemonic.fnv1a_lower();
op_hash.group = group_num;
op_hash.index = index_num;
op_hash.type = OT_MNEMONIC;
}
index_num++;
}
group_num++;
}
// add assembler directives
for (int d=0; d<nDirectiveNames; d++) {
OP_ID &op_hash = pInstr[numInstructions++];
op_hash.op_hash = strref(aDirectiveNames[d].name).fnv1a_lower();
op_hash.group = 0xff;
op_hash.index = (unsigned char)aDirectiveNames[d].directive;
op_hash.type = OT_DIRECTIVE;
}
// sort table by hash for binary search lookup
qsort(pInstr, numInstructions, sizeof(OP_ID), sortHashLookup);
return numInstructions;
}
AddressingMode Asm::GetAddressMode(strref line, bool flipXY, StatusCode &error, strref &expression)
{
bool force_zp = false;
bool need_more = true;
strref arg, deco;
AddressingMode addrMode = AM_INVALID;
while (need_more) {
need_more = false;
switch (line.get_first()) {
case 0: // empty line, empty addressing mode
addrMode = AM_NONE;
break;
case '(': // relative (jmp (addr), (zp,x), (zp),y)
deco = line.scoped_block_skip();
line.skip_whitespace();
expression = deco.split_token_trim(',');
addrMode = AM_RELATIVE;
if (deco[0]=='x' || deco[0]=='X')
addrMode = AM_REL_ZP_X;
else if (line[0]==',') {
++line;
line.skip_whitespace();
if (line[0]=='y' || line[0]=='Y') {
addrMode = AM_REL_ZP_Y;
++line;
}
}
break;
case '#': // immediate, determine if value is ok
++line;
addrMode = AM_IMMEDIATE;
expression = line;
break;
case '.': { // .z => force zp (needs more info)
++line;
char c = line.get_first();
if (c=='z' || c=='Z') {
force_zp = true;
++line;
need_more = true;
} else
error = ERROR_UNEXPECTED_CHARACTER_IN_ADDRESSING_MODE;
break;
}
default: { // accumulator or absolute
if (line) {
if (line.get_label().same_str("A")) {
addrMode = AM_ACCUMULATOR;
} else { // absolute (zp, offs x, offs y)
addrMode = force_zp ? AM_ZP : AM_ABSOLUTE;
expression = line.split_token_trim(',');
bool relX = line && (line[0]=='x' || line[0]=='X');
bool relY = line && (line[0]=='y' || line[0]=='Y');
if ((flipXY && relY) || (!flipXY && relX))
addrMode = addrMode==AM_ZP ? AM_ZP_X : AM_ABSOLUTE_X;
else if ((flipXY && relX) || (!flipXY && relY)) {
if (force_zp) {
error = ERROR_INSTRUCTION_NOT_ZP;
break;
}
addrMode = AM_ABSOLUTE_Y;
}
}
}
break;
}
}
}
return addrMode;
}
// Action based on assembler directive
StatusCode Asm::ApplyDirective(AssemblerDirective dir, strref line, strref source_file)
{
StatusCode error = STATUS_OK;
switch (dir) {
case AD_ORG: { // org / pc: current address of code
int addr;
if (line[0]=='=' || keyword_equ.is_prefix_word(line)) // optional '=' or equ
line.next_word_ws();
if ((error = EvalExpression(line, address, scope_address[scope_depth], -1, addr))) {
error = error == STATUS_NOT_READY ? ERROR_TARGET_ADDRESS_MUST_EVALUATE_IMMEDIATELY : error;
break;
}
address = addr;
scope_address[scope_depth] = address;
if (!set_load_address) {
load_address = address;
set_load_address = true;
}
break;
}
case AD_LOAD: { // load: address for target to load code at
int addr;
if (line[0]=='=' || keyword_equ.is_prefix_word(line))
line.next_word_ws();
if ((error = EvalExpression(line, address, scope_address[scope_depth], -1, addr))) {
error = error == STATUS_NOT_READY ? ERROR_TARGET_ADDRESS_MUST_EVALUATE_IMMEDIATELY : error;
break;
}
address = addr;
scope_address[scope_depth] = address;
if (!set_load_address) {
load_address = address;
set_load_address = true;
}
break;
}
case AD_ALIGN: // align: align address to multiple of value, fill space with 0
if (line) {
int value;
int status = EvalExpression(line, address, scope_address[scope_depth], -1, value);
if (status == STATUS_NOT_READY)
error = ERROR_ALIGN_MUST_EVALUATE_IMMEDIATELY;
else if (status == STATUS_OK && value>0) {
int add = (address + value-1) % value;
address += add;
CheckOutputCapacity(add);
for (int a = 0; a<add; a++)
*curr++ = 0;
}
}
break;
case AD_EVAL: { // eval: display the result of an expression in stdout
int value = 0;
strref description = line.split_token_trim(':');
line.trim_whitespace();
if (line && EvalExpression(line, address, scope_address[scope_depth], -1, value) == STATUS_OK)
printf("EVAL(%d): " STRREF_FMT ": \"" STRREF_FMT "\" = $%x\n",
contextStack.curr().source_file.count_lines(description)+1, STRREF_ARG(description), STRREF_ARG(line), value);
else
printf("EVAL(%d): \"" STRREF_FMT ": " STRREF_FMT"\"\n",
contextStack.curr().source_file.count_lines(description)+1, STRREF_ARG(description), STRREF_ARG(line));
break;
}
case AD_BYTES: // bytes: add bytes by comma separated values/expressions
while (strref exp = line.split_token_trim(',')) {
int value;
error = EvalExpression(exp, address, scope_address[scope_depth], -1, value);
if (error>STATUS_NOT_READY)
break;
else if (error==STATUS_NOT_READY)
AddLateEval(address, scope_address[scope_depth], curr, exp, source_file, LET_BYTE);
CheckOutputCapacity(1);
*curr++ = value;
address++;
}
break;
case AD_WORDS: // words: add words (16 bit values) by comma separated values
while (strref exp = line.split_token_trim(',')) {
int value;
error = EvalExpression(exp, address, scope_address[scope_depth], -1, value);
if (error>STATUS_NOT_READY)
break;
else if (error==STATUS_NOT_READY)
AddLateEval(address, scope_address[scope_depth], curr, exp, source_file, LET_ABS_REF);
CheckOutputCapacity(2);
*curr++ = (char)value;
*curr++ = (char)(value>>8);
address+=2;
}
break;
case AD_TEXT: { // text: add text within quotes
// for now just copy the windows ascii. TODO: Convert to petscii.
// https://en.wikipedia.org/wiki/PETSCII
// ascii: no change
// shifted: a-z => $41.. A-Z => $61..
// unshifted: a-z, A-Z => $41
strref text_prefix = line.before('"').get_trimmed_ws();
line = line.between('"', '"');
CheckOutputCapacity(line.get_len());
{
if (!text_prefix || text_prefix.same_str("ascii")) {
memcpy(curr, line.get(), line.get_len());
curr += line.get_len();
address += line.get_len();
} else if (text_prefix.same_str("petscii")) {
while (line) {
char c = line[0];
*curr++ = (c>='a' && c<='z') ? (c-'a'+'A') : (c>0x60 ? ' ' : line[0]);
address++;
++line;
}
} else if (text_prefix.same_str("petscii_shifted")) {
while (line) {
char c = line[0];
*curr++ = (c>='a' && c<='z') ? (c-'a'+0x61) :
((c>='A' && c<='Z') ? (c-'A'+0x61) : (c>0x60 ? ' ' : line[0]));
address++;
++line;
}
}
}
break;
}
case AD_MACRO: { // macro: create an assembler macro
strref from_here = contextStack.curr().code_segment +
strl_t(line.get()-contextStack.curr().code_segment.get());
int block_start = from_here.find('{');
if (block_start > 0) {
strref block = (from_here + block_start).scoped_block_skip();
error = AddMacro(strref(line.get(), strl_t(block.get()+block.get_len()+1-line.get())),
contextStack.curr().source_name, contextStack.curr().source_file);
contextStack.curr().read_source +=
strl_t(block.get()+block.get_len()+1-contextStack.curr().read_source.get());
}
break;
}
case AD_INCLUDE: { // include: assemble another file in place
line = line.between('"', '"');
size_t size = 0;
if (char *buffer = LoadText(line, size)) {
loadedData.push_back(buffer);
strref src(buffer, strl_t(size));
contextStack.push(line, src, src);
}
break;
}
case AD_INCBIN: { // incbin: import binary data in place
line = line.between('"', '"');
strown<512> filename(line);
size_t size = 0;
if (char *buffer = LoadBinary(line, size)) {
CheckOutputCapacity((unsigned int)size);
memcpy(curr, buffer, size);
free(buffer);
curr += size;
address += (unsigned int)size;
}
break;
}
case AD_LABEL:
case AD_CONST: {
line.trim_whitespace();
strref label = line.split_range_trim(word_char_range, line[0]=='.' ? 1 : 0);
if (line[0]=='=' || keyword_equ.is_prefix_word(line)) {
line.next_word_ws();
AssignLabel(label, line, dir==AD_CONST);
} else
error = ERROR_UNEXPECTED_LABEL_ASSIGMENT_FORMAT;
break;
}
case AD_INCSYM: {
IncSym(line);
break;
}
}
return error;
}
// Push an opcode to the output buffer
StatusCode Asm::AddOpcode(strref line, int group, int index, strref source_file)
{
StatusCode error = STATUS_OK;
int base_opcode = aMulAddGroup[group][1] + index * aMulAddGroup[group][0];
strref expression;
// Get the addressing mode and the expression it refers to
AddressingMode addrMode = GetAddressMode(line,
group==OPG_CC10&&index>=OPI_STX&&index<=OPI_LDX, error, expression);
int value = 0;
bool evalLater = false;
if (expression) {
error = EvalExpression(expression, address, scope_address[scope_depth], -1, value);
if (error == STATUS_NOT_READY) {
evalLater = true;
error = STATUS_OK;
}
if (error != STATUS_OK)
return error;
}
// check if address is in zero page range and should use a ZP mode instead of absolute
if (!evalLater && value>=0 && value<0x100) {
switch (addrMode) {
case AM_ABSOLUTE:
addrMode = AM_ZP;
break;
case AM_ABSOLUTE_X:
addrMode = AM_ZP_X;
break;
default:
break;
}
}
CODE_ARG codeArg = CA_NONE;
unsigned char opcode = base_opcode;
// analyze addressing mode per mnemonic group
switch (group) {
case OPG_BRANCH:
if (addrMode != AM_ABSOLUTE) {
error = ERROR_INVALID_ADDRESSING_MODE_FOR_BRANCH;
break;
}
codeArg = CA_BRANCH;
break;
case OPG_SUBROUT:
if (index==1) { // jsr
if (addrMode != AM_ABSOLUTE)
error = ERROR_INVALID_ADDRESSING_MODE_FOR_BRANCH;
else
codeArg = CA_TWO_BYTES;
}
break;
case OPG_STACK:
case OPG_FLAG:
case OPG_TRANS:
codeArg = CA_NONE;
break;
case OPG_CC00:
// jump relative exception
if (addrMode==AM_RELATIVE && index==OPI_JMP) {
base_opcode += 0x20;
addrMode = AM_ABSOLUTE;
}
if (addrMode>7 || (CC00Mask[index]&(1<<addrMode))==0)
error = ERROR_BAD_ADDRESSING_MODE;
else {
opcode = base_opcode + CC00ModeAdd[addrMode];
switch (addrMode) {
case AM_ABSOLUTE:
case AM_ABSOLUTE_Y:
case AM_ABSOLUTE_X:
codeArg = CA_TWO_BYTES;
break;
default:
codeArg = CA_ONE_BYTE;
break;
}
}
break;
case OPG_CC01:
if (addrMode>7 || (addrMode==AM_IMMEDIATE && index==OPI_STA))
error = ERROR_BAD_ADDRESSING_MODE;
else {
opcode = base_opcode + addrMode*4;
switch (addrMode) {
case AM_ABSOLUTE:
case AM_ABSOLUTE_Y:
case AM_ABSOLUTE_X:
codeArg = CA_TWO_BYTES;
break;
default:
codeArg = CA_ONE_BYTE;
break;
}
}
break;
case OPG_CC10: {
if (addrMode == AM_NONE || addrMode == AM_ACCUMULATOR) {
if (index>=4)
error = ERROR_BAD_ADDRESSING_MODE;
else {
opcode = base_opcode + 8;
codeArg = CA_NONE;
}
} else {
if (addrMode>7 || (CC10Mask[index]&(1<<addrMode))==0)
error = ERROR_BAD_ADDRESSING_MODE;
else {
opcode = base_opcode + CC10ModeAdd[addrMode];
switch (addrMode) {
case AM_IMMEDIATE:
case AM_ZP:
case AM_ZP_X:
codeArg = CA_ONE_BYTE;
break;
default:
codeArg = CA_TWO_BYTES;
break;
}
}
}
break;
}
}
// Add the instruction and argument to the code
if (error == STATUS_OK) {
CheckOutputCapacity(4);
switch (codeArg) {
case CA_BRANCH:
address += 2;
if (evalLater)
AddLateEval(address, scope_address[scope_depth], curr+1, expression, source_file, LET_BRANCH);
else if (((int)value-(int)address)<-128 || ((int)value-(int)address)>127) {
error = ERROR_BRANCH_OUT_OF_RANGE;
break;
}
*curr++ = opcode;
*curr++ = evalLater ? 0 : (unsigned char)((int)value-(int)address);
break;
case CA_ONE_BYTE:
*curr++ = opcode;
if (evalLater)
AddLateEval(address, scope_address[scope_depth], curr, expression, source_file, LET_BYTE);
*curr++ = (char)value;
address += 2;
break;
case CA_TWO_BYTES:
*curr++ = opcode;
if (evalLater)
AddLateEval(address, scope_address[scope_depth], curr, expression, source_file, LET_ABS_REF);
*curr++ = (char)value;
*curr++ = (char)(value>>8);
address += 3;
break;
case CA_NONE:
*curr++ = opcode;
address++;
break;
}
}
return error;
}
// Compile in a macro
StatusCode Asm::BuildMacro(Macro &m, strref arg_list)
{
strref macro_src = m.macro;
strref params = macro_src[0]=='(' ? macro_src.scoped_block_skip() : strref();
params.trim_whitespace();
arg_list.trim_whitespace();
macro_src.skip_whitespace();
if (params) {
arg_list = arg_list.scoped_block_skip();
strref pchk = params;
strref arg = arg_list;
int dSize = 0;
while (strref param = pchk.split_token_trim(',')) {
strref a = arg.split_token_trim(',');
if (param.get_len() < a.get_len()) {
int count = macro_src.substr_case_count(param);
dSize += count * ((int)a.get_len() - (int)param.get_len());
}
}
int mac_size = macro_src.get_len() + dSize + 32;
if (char *buffer = (char*)malloc(mac_size)) {
loadedData.push_back(buffer);
strovl macexp(buffer, mac_size);
macexp.copy(macro_src);
while (strref param = params.split_token_trim(',')) {
strref a = arg_list.split_token_trim(',');
macexp.replace(param, a);
}
contextStack.push(m.source_name, macexp.get_strref(), macexp.get_strref());
FlushLocalLabels();
return STATUS_OK;
} else
return ERROR_OUT_OF_MEMORY_FOR_MACRO_EXPANSION;
}
contextStack.push(m.source_name, m.source_file, macro_src);
FlushLocalLabels();
return STATUS_OK;
}
void Asm::IncSym(strref line)
{
// include symbols listed or all if no listing
strref symlist = line.before('"').get_trimmed_ws();
line = line.between('"', '"');
size_t size;
if (char *buffer = LoadText(line, size)) {
strref symfile(buffer, strl_t(size));
while (strref symdef = symfile.line()) {
strref symtype = symdef.split_token(' ');
strref label = symdef.split_token_trim('=');
// first word is either .label or .const
bool constant = symtype.same_str(".const");
if (symlist) {
strref symchk = symlist;
while (strref symwant = symchk.split_token_trim(',')) {
if (symwant.same_str_case(label)) {
AssignLabel(label, symdef, constant);
break;
}
}
} else
AssignLabel(label, symdef, constant);
}
loadedData.push_back(buffer);
}
}
// assignment of label (<label> = <expression>)
StatusCode Asm::AssignLabel(strref label, strref line, bool make_constant)
{
line.trim_whitespace();
int val = 0;
StatusCode status = EvalExpression(line, address, scope_address[scope_depth], -1, val);
if (status != STATUS_NOT_READY && status != STATUS_OK)
return status;
Label *pLabel = GetLabel(label);
if (pLabel) {
if (pLabel->constant && pLabel->evaluated && val != pLabel->value)
return (status == STATUS_NOT_READY) ? STATUS_OK : ERROR_MODIFYING_CONST_LABEL;
} else
pLabel = AddLabel(label.fnv1a());
pLabel->label_name = label;
pLabel->expression = line;
pLabel->evaluated = status==STATUS_OK;
pLabel->value = val;
pLabel->zero_page = pLabel->evaluated && val<0x100;
pLabel->pc_relative = false;
pLabel->constant = make_constant;
if (!pLabel->evaluated)
AddLateEval(label, address, scope_address[scope_depth], line, LET_LABEL);
else {
LabelAdded(pLabel);
return CheckLateEval(label);
}
return STATUS_OK;
}
StatusCode Asm::AddressLabel(strref label)
{
Label *pLabel = GetLabel(label);
bool constLabel = false;
if (!pLabel)
pLabel = AddLabel(label.fnv1a());
else if (pLabel->constant && pLabel->value != address)
return ERROR_MODIFYING_CONST_LABEL;
else
constLabel = pLabel->constant;
pLabel->label_name = label;
pLabel->expression.clear();
pLabel->value = address;
pLabel->evaluated = true;
pLabel->pc_relative = true;
pLabel->constant = constLabel;
pLabel->zero_page = false;
LabelAdded(pLabel);
if (label[0]=='.' || label[0]=='@' || label[0]=='!' || label.get_last()=='$')
MarkLabelLocal(label);
else
FlushLocalLabels();
return CheckLateEval(label);
}
// Build a segment of code (file or macro)
StatusCode Asm::BuildSegment(OP_ID *pInstr, int numInstructions)
{
StatusCode error = STATUS_OK;
while (strref line = contextStack.curr().read_source.line()) {
while (line) {
strref line_start = line;
line.skip_whitespace();
line = line.before_or_full(';');
line = line.before_or_full(c_comment);
line.clip_trailing_whitespace();
if (line[0]==':') // some assemblers use a colon prefix to indicate macro usage
++line;
strref operation = line.split_range_trim(word_char_range, line[0]=='.' ? 1 : 0);
// instructions and directives ignores leading periods, labels include them.
strref label = operation;
if (operation[0]=='.') {
++operation;
}
if (!operation) {
// scope open / close
switch (line[0]) {
case '{':
if (scope_depth>=(MAX_SCOPE_DEPTH-1))
error = ERROR_TOO_DEEP_SCOPE;
else {
scope_address[++scope_depth] = address;
++line;
line.skip_whitespace();
}
break;
case '}':
// check for late eval of anything with an end scope
CheckLateEval(strref(), address);
--scope_depth;
if (scope_depth<0)
error = ERROR_UNBALANCED_SCOPE_CLOSURE;
++line;
line.skip_whitespace();
break;
}
} else {
// ignore leading period for instructions and directives - not for labels
unsigned int op_hash = operation.fnv1a_lower();
int op_idx = LookupOpCodeIndex(op_hash, pInstr, numInstructions);
if (op_idx >= 0 && line[0]!=':') {
if (pInstr[op_idx].type==OT_DIRECTIVE) {
error = ApplyDirective((AssemblerDirective)pInstr[op_idx].index, line, contextStack.curr().source_file);
line.clear();
} else if (pInstr[op_idx].type==OT_MNEMONIC) {
OP_ID &id = pInstr[op_idx];
int group = id.group;
int index = id.index;
error = AddOpcode(line, group, index, contextStack.curr().source_file);
line.clear();
}
} else if (line.get_first()=='=') {
++line;
error = AssignLabel(label, line);
line.clear();
} else {
unsigned int nameHash = label.fnv1a();
unsigned int macro = FindLabelIndex(nameHash, macros.getKeys(), macros.count());
bool gotMacro = false;
while (macro < macros.count() && nameHash==macros.getKey(macro)) {
if (macros.getValue(macro).name.same_str_case(label)) {
error = BuildMacro(macros.getValue(macro), line);
gotMacro = true;
line.clear(); // don't process codes from here
break;
}
macro++;
}
if (!gotMacro) {
error = AddressLabel(label);
if (line[0]==':')
++line;
// there may be codes after the label
}
}
}
if (error > STATUS_NOT_READY) {
strown<512> errorText;
errorText.sprintf("Error (%d): ", contextStack.curr().source_file.count_lines(line_start)+1);
errorText.append(aStatusStrings[error]);
errorText.append(" \"");
errorText.append(line_start.get_trimmed_ws());
errorText.append("\"\n");
errorText.c_str();
fwrite(errorText.get(), errorText.get_len(), 1, stderr);
}
if (error > ERROR_STOP_PROCESSING_ON_HIGHER)
break;
// dealt with error, continue with next instruction
error = STATUS_OK;
}
}
if (error == STATUS_OK)
error = CheckLateEval(strref(), address);
return error;
}
// create an instruction table (mnemonic hash lookup + directives)
void Asm::Assemble(strref source, strref filename)
{
OP_ID *pInstr = new OP_ID[100];
int numInstructions = BuildInstructionTable(pInstr, strref(aInstr, strl_t(sizeof(aInstr)-1)), 100);
StatusCode error = STATUS_OK;
contextStack.push(filename, source, source);
scope_address[scope_depth] = address;
while (contextStack.has_work()) {
BuildSegment(pInstr, numInstructions);
contextStack.pop();
}
if (error == STATUS_OK) {
error = CheckLateEval();
if (error > STATUS_NOT_READY) {
strown<512> errorText;
errorText.copy("Error: ");
errorText.append(aStatusStrings[error]);
fwrite(errorText.get(), errorText.get_len(), 1, stderr);
}
for (std::vector<LateEval>::iterator i = lateEval.begin(); i!=lateEval.end(); ++i) {
strown<512> errorText;
int line = i->source_file.count_lines(i->expression);
errorText.sprintf("Error (%d): ", line+1);
errorText.append("Failed to evaluate label \"");
errorText.append(i->expression);
if (line>=0) {
errorText.append("\" : \"");
errorText.append(i->source_file.get_line(line).get_trimmed_ws());
}
errorText.append("\"\n");
fwrite(errorText.get(), errorText.get_len(), 1, stderr);
}
}
// for (unsigned int i = 0; i<labels.count(); i++) {
// printf("Label 0x%08x: " STRREF_FMT " = " STRREF_FMT " = 0x%04x\n", labels.getKey(i),
// STRREF_ARG(labels.getValue(i).label_name), STRREF_ARG(labels.getValue(i).expression), labels.getValue(i).value);
// }
}
int main(int argc, char **argv)
{
bool c64 = true;
const char* source_filename=nullptr, *binary_out_name=nullptr;
const char* sym_file=nullptr;
for (int a=1; a<argc; a++) {
strref arg(argv[a]);
if (arg.same_str("-c64"))
c64 = true;
else if (arg.same_str("-bin"))
c64 = false;
else if (arg.same_str("-sym") && (a+1)<argc)
sym_file = argv[++a];
else if (!source_filename)
source_filename = arg.get();
else if (!binary_out_name)
binary_out_name = arg.get();
}
if (!source_filename) {
puts("Usage:\nAsm6502 <-c64 / -bin> filename.s code.prg <-sym code.sym> \n"
"* -c64: Include load address\n * -bin: Raw binary\n * -sym: vice/kick asm symbol file\n");
return 0;
}
// Load source
if (source_filename) {
size_t size = 0;
if (char *buffer = LoadText(source_filename, size)) {
Asm assembler;
assembler.symbol_export = sym_file!=nullptr;
assembler.Assemble(strref(buffer, strl_t(size)), strref(argv[1]));
if (binary_out_name && assembler.curr > assembler.output) {
if (FILE *f = fopen(binary_out_name, "wb")) {
if (c64) {
char addr[2] = { (char)assembler.load_address, (char)(assembler.load_address>>8) };
fwrite(addr, 2, 1, f);
}
fwrite(assembler.output, assembler.curr-assembler.output, 1, f);
fclose(f);
}
}
if (sym_file && assembler.symbols.get_len()) {
if (FILE *f = fopen(sym_file, "w")) {
fwrite(assembler.symbols.get(), assembler.symbols.get_len(), 1, f);
fclose(f);
}
}
// free some memory
assembler.Cleanup();
}
}
return 0;
}