mirror of
https://github.com/alangarf/apple-one.git
synced 2025-02-03 17:33:51 +00:00
228 lines
7.9 KiB
Verilog
228 lines
7.9 KiB
Verilog
////////////////////////////////////////////////////////
|
|
// RS-232 RX and TX module
|
|
// (c) fpga4fun.com & KNJN LLC - 2003 to 2016
|
|
|
|
// The RS-232 settings are fixed
|
|
// TX: 8-bit data, 2 stop, no-parity
|
|
// RX: 8-bit data, 1 stop, no-parity (the receiver can accept more stop bits of course)
|
|
|
|
////////////////////////////////////////////////////////
|
|
module async_transmitter(
|
|
input clk,
|
|
input reset,
|
|
input TxD_start,
|
|
input [7:0] TxD_data,
|
|
output TxD,
|
|
output TxD_busy
|
|
);
|
|
|
|
// Assert TxD_start for (at least) one clock cycle to start transmission of TxD_data
|
|
// TxD_data is latched so that it doesn't have to stay valid while it is being sent
|
|
|
|
parameter ClkFrequency = 25000000; // 25MHz
|
|
parameter Baud = 115200;
|
|
|
|
////////////////////////////////
|
|
wire BitTick;
|
|
BaudTickGen #(ClkFrequency, Baud) tickgen(.clk(clk), .reset(reset), .enable(TxD_busy), .tick(BitTick));
|
|
|
|
reg [3:0] TxD_state;
|
|
reg [7:0] TxD_shift;
|
|
|
|
wire TxD_ready = (TxD_state==0);
|
|
assign TxD_busy = ~TxD_ready;
|
|
|
|
always @(posedge clk or posedge reset)
|
|
begin
|
|
if (reset)
|
|
begin
|
|
TxD_state <= 0;
|
|
TxD_shift <= 0;
|
|
end
|
|
else
|
|
begin
|
|
if(TxD_ready & TxD_start)
|
|
TxD_shift <= TxD_data;
|
|
else
|
|
if(TxD_state[3] & BitTick)
|
|
TxD_shift <= (TxD_shift >> 1);
|
|
|
|
case(TxD_state)
|
|
4'b0000: if(TxD_start) TxD_state <= 4'b0100;
|
|
4'b0100: if(BitTick) TxD_state <= 4'b1000; // start bit
|
|
4'b1000: if(BitTick) TxD_state <= 4'b1001; // bit 0
|
|
4'b1001: if(BitTick) TxD_state <= 4'b1010; // bit 1
|
|
4'b1010: if(BitTick) TxD_state <= 4'b1011; // bit 2
|
|
4'b1011: if(BitTick) TxD_state <= 4'b1100; // bit 3
|
|
4'b1100: if(BitTick) TxD_state <= 4'b1101; // bit 4
|
|
4'b1101: if(BitTick) TxD_state <= 4'b1110; // bit 5
|
|
4'b1110: if(BitTick) TxD_state <= 4'b1111; // bit 6
|
|
4'b1111: if(BitTick) TxD_state <= 4'b0010; // bit 7
|
|
4'b0010: if(BitTick) TxD_state <= 4'b0011; // stop1
|
|
4'b0011: if(BitTick) TxD_state <= 4'b0000; // stop2
|
|
default: if(BitTick) TxD_state <= 4'b0000;
|
|
endcase
|
|
end
|
|
end
|
|
|
|
assign TxD = (TxD_state<4) | (TxD_state[3] & TxD_shift[0]);
|
|
endmodule
|
|
|
|
|
|
////////////////////////////////////////////////////////
|
|
module async_receiver(
|
|
input clk,
|
|
input reset,
|
|
input RxD,
|
|
output reg RxD_data_ready,
|
|
output reg [7:0] RxD_data, // data received, valid only (for one clock cycle) when RxD_data_ready is asserted
|
|
|
|
// We also detect if a gap occurs in the received stream of characters
|
|
// That can be useful if multiple characters are sent in burst
|
|
// so that multiple characters can be treated as a "packet"
|
|
output RxD_idle, // asserted when no data has been received for a while
|
|
output reg RxD_endofpacket = 0 // asserted for one clock cycle when a packet has been detected (i.e. RxD_idle is going high)
|
|
);
|
|
|
|
parameter ClkFrequency = 25000000; // 12MHz
|
|
parameter Baud = 115200;
|
|
|
|
parameter Oversampling = 8; // needs to be a power of 2
|
|
// we oversample the RxD line at a fixed rate to capture each RxD data bit at the "right" time
|
|
// 8 times oversampling by default, use 16 for higher quality reception
|
|
|
|
////////////////////////////////
|
|
reg [3:0] RxD_state;
|
|
|
|
wire OversamplingTick;
|
|
BaudTickGen #(ClkFrequency, Baud, Oversampling) tickgen(.clk(clk), .reset(reset), .enable(1'b1), .tick(OversamplingTick));
|
|
|
|
// synchronize RxD to our clk domain
|
|
reg [1:0] RxD_sync; // 2'b11
|
|
always @(posedge clk or posedge reset)
|
|
begin
|
|
if (reset)
|
|
RxD_sync <= 2'b11;
|
|
else
|
|
if(OversamplingTick) RxD_sync <= {RxD_sync[0], RxD};
|
|
end
|
|
|
|
// and filter it
|
|
reg [1:0] Filter_cnt; // 2'b11
|
|
reg RxD_bit; // 1'b1
|
|
always @(posedge clk or posedge reset)
|
|
begin
|
|
if (reset)
|
|
begin
|
|
Filter_cnt <= 2'b11;
|
|
RxD_bit <= 1'b1;
|
|
end
|
|
else
|
|
if(OversamplingTick)
|
|
begin
|
|
if(RxD_sync[1]==1'b1 && Filter_cnt!=2'b11) Filter_cnt <= Filter_cnt + 1'd1;
|
|
else if(RxD_sync[1]==1'b0 && Filter_cnt!=2'b00) Filter_cnt <= Filter_cnt - 1'd1;
|
|
|
|
if(Filter_cnt==2'b11) RxD_bit <= 1'b1;
|
|
else if(Filter_cnt==2'b00) RxD_bit <= 1'b0;
|
|
end
|
|
end
|
|
|
|
// and decide when is the good time to sample the RxD line
|
|
function integer log2(input integer v);
|
|
begin
|
|
log2=0;
|
|
while(v>>log2)
|
|
log2 = log2 + 1;
|
|
end
|
|
endfunction
|
|
|
|
localparam l2o = log2(Oversampling);
|
|
reg [l2o-2:0] OversamplingCnt;
|
|
|
|
always @(posedge clk)
|
|
if(OversamplingTick) OversamplingCnt <= (RxD_state==0) ? 1'd0 : OversamplingCnt + 1'd1;
|
|
|
|
wire sampleNow = OversamplingTick && (OversamplingCnt==Oversampling/2-1);
|
|
|
|
// now we can accumulate the RxD bits in a shift-register
|
|
always @(posedge clk or posedge reset)
|
|
begin
|
|
if (reset)
|
|
RxD_state <= 0;
|
|
else
|
|
case(RxD_state)
|
|
4'b0000: if(~RxD_bit) RxD_state <= 4'b0001; // start bit found?
|
|
4'b0001: if(sampleNow) RxD_state <= 4'b1000; // sync start bit to sampleNow
|
|
4'b1000: if(sampleNow) RxD_state <= 4'b1001; // bit 0
|
|
4'b1001: if(sampleNow) RxD_state <= 4'b1010; // bit 1
|
|
4'b1010: if(sampleNow) RxD_state <= 4'b1011; // bit 2
|
|
4'b1011: if(sampleNow) RxD_state <= 4'b1100; // bit 3
|
|
4'b1100: if(sampleNow) RxD_state <= 4'b1101; // bit 4
|
|
4'b1101: if(sampleNow) RxD_state <= 4'b1110; // bit 5
|
|
4'b1110: if(sampleNow) RxD_state <= 4'b1111; // bit 6
|
|
4'b1111: if(sampleNow) RxD_state <= 4'b0010; // bit 7
|
|
4'b0010: if(sampleNow) RxD_state <= 4'b0000; // stop bit
|
|
default: RxD_state <= 4'b0000;
|
|
endcase
|
|
end
|
|
|
|
always @(posedge clk or posedge reset)
|
|
begin
|
|
if (reset)
|
|
RxD_data <= 0;
|
|
else
|
|
if (sampleNow && RxD_state[3]) RxD_data <= {RxD_bit, RxD_data[7:1]};
|
|
end
|
|
|
|
always @(posedge clk or posedge reset)
|
|
begin
|
|
if (reset)
|
|
RxD_data_ready <= 0;
|
|
else
|
|
RxD_data_ready <= (sampleNow && RxD_state==4'b0010 && RxD_bit); // make sure a stop bit is received
|
|
end
|
|
|
|
reg [l2o+1:0] GapCnt;
|
|
always @(posedge clk or posedge reset)
|
|
begin
|
|
if (reset)
|
|
GapCnt <= 0;
|
|
else
|
|
if (RxD_state!=0) GapCnt<=0; else if(OversamplingTick & ~GapCnt[log2(Oversampling)+1]) GapCnt <= GapCnt + 1'h1;
|
|
end
|
|
|
|
assign RxD_idle = GapCnt[l2o+1];
|
|
always @(posedge clk)
|
|
RxD_endofpacket <= OversamplingTick & ~GapCnt[l2o+1] & &GapCnt[l2o:0];
|
|
|
|
endmodule
|
|
|
|
////////////////////////////////////////////////////////
|
|
module BaudTickGen(
|
|
input clk, reset, enable,
|
|
output tick // generate a tick at the specified baud rate * oversampling
|
|
);
|
|
|
|
parameter ClkFrequency = 25000000;
|
|
parameter Baud = 115200;
|
|
parameter Oversampling = 1;
|
|
|
|
function integer log2(input integer v); begin log2=0; while(v>>log2) log2=log2+1; end endfunction
|
|
|
|
localparam AccWidth = log2(ClkFrequency/Baud)+8; // +/- 2% max timing error over a byte
|
|
reg [AccWidth:0] Acc;
|
|
localparam ShiftLimiter = log2(Baud*Oversampling >> (31-AccWidth)); // this makes sure Inc calculation doesn't overflow
|
|
localparam Inc = ((Baud*Oversampling << (AccWidth-ShiftLimiter))+(ClkFrequency>>(ShiftLimiter+1)))/(ClkFrequency>>ShiftLimiter);
|
|
|
|
always @(posedge clk)
|
|
begin
|
|
if (reset)
|
|
Acc <= 0;
|
|
else
|
|
if(enable) Acc <= Acc[AccWidth-1:0] + Inc[AccWidth:0]; else Acc <= Inc[AccWidth:0];
|
|
end
|
|
assign tick = Acc[AccWidth];
|
|
|
|
endmodule
|