verilog-apple-one/rtl/apple1.v
2018-01-31 00:48:47 +11:00

217 lines
6.2 KiB
Verilog

// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//
// Description: Apple1 hardware core
//
// Author.....: Alan Garfield
// Niels A. Moseley
// Date.......: 26-1-2018
//
module apple1(
input clk25, // 25 MHz master clock
input rst_n, // active low synchronous reset (needed for simulation)
// I/O interface to computer
input uart_rx, // asynchronous serial data input from computer
output uart_tx, // asynchronous serial data output to computer
output uart_cts, // clear to send flag to computer
// I/O interface to keyboard
input ps2_clk, // PS/2 keyboard serial clock input
input ps2_din, // PS/2 keyboard serial data input
// Outputs to VGA display
input clr_screen_btn, // active high clear screen button
output vga_h_sync, // hozizontal VGA sync pulse
output vga_v_sync, // vertical VGA sync pulse
output reg vga_red, // red VGA signal
output reg vga_grn, // green VGA signal
output reg vga_blu, // blue VGA signal
// Debugging ports
output [15:0] pc_monitor // spy for program counter / debugging
);
//////////////////////////////////////////////////////////////////////////
// Registers and Wires
wire [15:0] ab;
wire [7:0] dbi;
wire [7:0] dbo;
wire we;
//////////////////////////////////////////////////////////////////////////
// Clocks
wire cpu_clken;
wire blink_clken;
clock my_clock(
.clk25(clk25),
.rst_n(rst_n),
.cpu_clken(cpu_clken),
.blink_clken(blink_clken)
);
//////////////////////////////////////////////////////////////////////////
// Reset
wire rst;
pwr_reset my_reset(
.clk25(clk25),
.rst_n(rst_n),
.enable(cpu_clken),
.rst(rst)
);
//////////////////////////////////////////////////////////////////////////
// 6502
arlet_6502 my_cpu(
.clk (clk25),
.enable (cpu_clken),
.rst (rst),
.ab (ab),
.dbi (dbi),
.dbo (dbo),
.we (we),
.irq_n (1'b1),
.nmi_n (1'b1),
.ready (cpu_clken)
//.pc_monitor (pc_monitor)
);
//////////////////////////////////////////////////////////////////////////
// Address Decoding
wire ram_cs = (ab[15:13] == 3'b000); // 0x0000 -> 0x1FFF
wire uart_cs = (ab[15:2] == 14'b11010000000100); // 0xD010 -> 0xD013
//wire ps2kb_cs = 1'b0;
//wire vga_cs = 1'b0;
//wire ps2kb_cs = (ab[15:1] == 15'b110100000001000); // 0xD010 -> 0xD011
//wire uart_cs = (ab[15:1] == 15'b110100000001001); // 0xD012 -> 0xD013
//wire vga_cs = 1'b0;
//wire uart_cs = (ab[15:1] == 15'b110100000001000); // 0xD010 -> 0xD011
wire ps2kb_cs = 1'b0;
wire vga_cs = (ab[15:1] == 15'b110100000001001); // 0xD012 -> 0xD013
wire basic_cs = (ab[15:12] == 4'b1110); // 0xE000 -> 0xEFFF
wire rom_cs = (ab[15:8] == 8'b11111111); // 0xFF00 -> 0xFFFF
//////////////////////////////////////////////////////////////////////////
// RAM and ROM
// RAM
wire [7:0] ram_dout;
ram my_ram(
.clk(clk25),
.address(ab[12:0]),
.w_en(we & ram_cs),
.din(dbo),
.dout(ram_dout)
);
// WozMon ROM
wire [7:0] rom_dout;
rom_wozmon my_rom_wozmon(
.clk(clk25),
.address(ab[7:0]),
.dout(rom_dout)
);
// Basic ROM
wire [7:0] basic_dout;
rom_basic my_rom_basic(
.clk(clk25),
.address(ab[11:0]),
.dout(basic_dout)
);
//////////////////////////////////////////////////////////////////////////
// Peripherals
// UART
wire [7:0] uart_dout;
uart #(
`ifdef SIM
100, 10, 2 // for simulation don't need real baud rates
`else
25000000, 115200, 8 // 25MHz, 115200 baud, 8 times RX oversampling
`endif
) my_uart(
.clk(clk25),
.enable(uart_cs & cpu_clken),
.rst(rst),
.uart_rx(uart_rx),
.uart_tx(uart_tx),
.uart_cts(uart_cts),
//.address({1'b1, ab[0]}), // for ps/2
//.address({1'b0, ab[0]}), // for vga
.address(ab[1:0]), // for uart
.w_en(we & uart_cs),
.din(dbo),
.dout(uart_dout)
);
// PS/2 keyboard interface
wire [7:0] ps2_dout;
ps2keyboard keyboard(
.clk25(clk25),
.rst(rst),
.key_clk(ps2_clk),
.key_din(ps2_din),
.cs(ps2kb_cs),
.address(ab[0]),
.dout(ps2_dout)
);
// VGA Display interface
vga my_vga(
.clk25(clk25),
.enable(vga_cs & cpu_clken),
.rst(rst),
.vga_h_sync(vga_h_sync),
.vga_v_sync(vga_v_sync),
.vga_red(vga_red),
.vga_grn(vga_grn),
.vga_blu(vga_blu),
.address(ab[0]),
.w_en(we & vga_cs),
.din(dbo),
.clr_screen_btn(clr_screen_btn),
.blink_clken(blink_clken),
.debug(pc_monitor)
);
//////////////////////////////////////////////////////////////////////////
// CPU Data In MUX
// link up chip selected device to cpu input
assign dbi = ram_cs ? ram_dout :
rom_cs ? rom_dout :
basic_cs ? basic_dout :
uart_cs ? uart_dout :
ps2kb_cs ? ps2_dout :
8'hFF;
endmodule